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Barotropic Euler equations

. _ >
o Kinetic energy T = P dD,
D:

e Potential energy U = W(p)dD, W = pe(p)
D:

e Lagrangian L=T — U,
t1
@ Hamilton's action a :/ Ldt.

to
Constrained Hamilton's principle

% + div (pu) = 0
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Barotropic Euler equations

Z[; + div (pu) = 0,
Oou Ou dp(p)
— + = h(p) = = —.
8t+8xu+v (p)=0, dh p
Conservation laws of momentum and energy
d(pu .
04) v (pu e u + plo)1) =0,
o 2
m+div(,oeu+p(p)u):0, e:5+M, de = @dp.
ot 2 P2
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Helicity for the barotropic Euler equations

ou JOu dp(p)
bl Wt h(p) = h— P\
8t+6xu+v (p) =0, d PR
Helmholtz equation for vorticity
Oow 0w

0
—+—u+wdivu——uw:O, w = curlu.

ot ox ox
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Helicity for the barotropic Euler equations

Local helicity conservation law

gt (47 w) + div <(uTw)u + (h(p) - |”2|2) w> —0,

H:///DtudeD

Here D; is the material domain such that the vorticity field is initially
tangent to its boundary (then, for any time, this property is conserved).

Helicity
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-
Jean Jacques Moreau and Henry Keith Moffatt

1. Moreau J J 1961 Constantes d'un flot tourbillonnaire en fluide parfait
barotrope C. R. Acad. Sci. Paris 252 2810-2812

2. Moffatt H K 1969 The degree of knottedness of tangled vortex lines J.
Fluid Mech. 35 117-129
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“It so often happens that results we publish turn out to have been proved
much earlier, although their true significance may have escaped attention
(as did Moreau's paper until | had sight of it in 1979 and cited it in
1981)". (H K Moffatt)
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Relation to the relabeling symmetry group (H Gouin (1976), R Salmon
(1982), V E Zakharov and E K Kuznetsov (1997)).

pdet <38;(> = po(X).

Change of variables X = X(Y) that does not change the equations in the

Eulerian coordinates :
det 87X =1
oYy ) 7
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Further study of helicity and other generalized integrals for classical
hydrodynamic equations and MHD equations (ideal or not) (A V Tur and
V'V Yanovsky (1993), V | Arnold and B A Khesin (1998), C C Cotter and
D D Holm (2013), G M Webb et al (2014), A F Cheviakov and M
Oberlack (2014), P A Davidson and A Ranjan (2018), ...)
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What the helicity is in dispersive hydrodynamics?
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Classes of the dispersive models : gradient type models

L _ u?
@ Kinetic energy T = P dD,

D:

e Potential energy U :/ W (p, HVsz)dD,
D:
o lLagrangian L=T — U,

(51
@ Hamilton's action a :/ Ldt.

to
Constrained Hamilton's principle

dp

e +div (pu) =0

Examples : Euler-Korteweg—Van de Waals equations (P Casal, M Eglit, H
Gouin, M Slemrod, L Truskinovsky, S Benzoni-Gavage, M Rodrigues, P
Noble, R Danchin, Ch Rohde, D Bresch, B Haspot, ...), thin film flows

(F Dhaouadi, J P Vila, SG, ...), ...
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-
Lagrangian for the defocusing NLS equation

1
it + SO — [P = 0.

Madelung's transform

B(x, ) = /plx, D)D) u= Vb
Lagrangian
2
u
L:/(&j—wmwwﬁw
D:

1 |Vp|?

e
Wip. IV0l) =5+ 215
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Lagrangian for thin film flows
(F Dhaouadi, SG and J P Vila, 2022)

_ Jul?
L= /D <h2 — W(h, ||Vh||)) dD

o |[Vh|?
wib |ohl) = () + IR
pi

o is the surface tension coefficient, p; = const is the homogeneous fluid

p| = const

h2
density, f(h) = % (not only).
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|
Thin film flows : F Dhaouadi, SG and J P Vila (2022)

Let us replace p by h (the fluid depth).
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Classes of the dispersive models : fluids with internal inertia

i _ IIUH2
o Kinetic energy T =
Dt 2

. Dp D o
Potential U = w — | dD, — = — )
e Potentia /Dt (p, Dt) D= TV \Y

daD,

@ Lagrangian L=T — U,
(51
@ Hamilton's action a :/ Ldt.

to
Examples : fluids containing gas bubbles (S V lordanskii (1960), B Kogarko
(1961), L van Wijngaarden (1968), S V lordanskii and A G Kulikovskii
(1977), O V Voinov and A G Petrov (1975)), Serre-Green-Naghdi
equations (R Salmon, 1988, SG and V Teshukov (2001))
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|
Serre—Green—Naghdi (SGN) equations

Here p is replaced by the fluid depth denoted by h(t, x), x = (x,y)7,
u(t, x) is the depth averaged horizontal velocity. Potential

Dh\ gh® h [(Dh\?>
W<h’Dt>_2_6(Dt> - (1)
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Solitary wave interaction with an island

Figure — Interaction of a solitary wave with an island (S. Busto, C. Escalante, M.
Dumbser, N. Favrie and SG (JSC 2021)).
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Lagrangian fluid mechanics

The motion of a continuous media is

X:(,O(t,X),

where t denotes the time. The transformation ¢ possesses an inverse and

has continuous derivatives up to the second order. The deformation
gradient is :

S 0X T aX’
The evolution equation for F :
DF  Ou T
t, X
where u(t, x) = ¢t X) is the velocity field.
Ot |x=p-1(tx)
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Lemma

Lemma

Let e; be a natural local basis (with lower indexes i = 1,2, 3),
Op(t, X

e,: = (;9;’ = ‘Pa(X’I. ) expressed in Eulerian coordinates, and

e’ = VX'(t,x) (with upper indexes i = 1,2,3) be the corresponding
cobasis (dual basis). Then

€k
det F

—e Neé,

where {/,j, k} forms an even permutation of {1,2,3}. Moreover,

dw(diF)
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N
Proof

The proof of the first formula comes from the identity

5,_axf_axf Ox .
T7ToXi T ox oXi

iT
ej,

where 5J’-' is the Kronecker symbol. For the second formula one has :

T ok
; NT e e 1
! ej k: k =
(' e) e = GetF ~ derF

Finally,

div (d:th) = div (ei A e’) ,

= echurl e — eiTcurl e =0.
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Equations for the deformation gradient F

The following identities are satisfied :

% <delt:F> - (g: ~ (divu) ’) de,:F )

In particular, (21) implies

DE; ou . e; . -
D: —(ax—(dlvu)l>E,, E’_ﬁ’ divE; = 0.

Proof Use the equation for the deformation gradient and Euler's equation
for its determinant.
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Example

/ AN
// 2_320 \\ \E20
/ X=X \l
/ —_———
\ \E 10

[ i 7

Figure — The stream lines (circles) of the velocity field u = (x?, —x1)T are shown
in the (x!, x?) plane. The initial material lines X’ = const having tangent vectors

3
E;y, i = 1,2 represent at each time instant straight lines rotating with a constant
angular velocity. The material lines positions at time t = /2 and their tangent

vectors E;, i = 1,2 are shown.
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|
Basic theorem (part 1)

1°) Consider the divergence—free field L satisfying the Helmholtz equation

DL ) ou
E+Ld1vu—87L—0,

and the field K satisfying

DK u\ " ul?
o (90)] (o) o

Then,

;t(KTL)miv{(uKW(G—‘"j)l)L}zo. (5)
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|
Basic theorem (part 2)

2°) Consider a material domain D; of boundary S;. If at t = 0 the
divergence—free vector field L is tangent to Sg, then for any time t the
vector field L is tangent to S;. Moreover, the quantity

H://D KTLdD, (6)

we call generalized helicity, keeps a constant value along the motion.
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|
Euler—van der Waals—Korteweg's fluids : W(p, ||Vpl|)

Governing equations
dp
— +div(pu) =0,

ot
opu’ . ov 1 B ow  9p
ot +d|v(pu®u+ﬂ)+p87—0, MN=PI + <8p>8x
0
0x
ow ow  ow ow
P=p——-W with — =——div|=—=].
Psp YRS, T e T <8Vp>
Energy conservation law :
2
%—l—div eu—+lu _ 90 oW 8V _ lul +W+HpV

ot ot <ap> Por =% €7 2
a _
ox
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The momentum equation can be written as

Du ow
—4+V|—4+V ]| =0
Dt ' <5p+ ) ’

where W = W(p, ||[Vp||) and V(t, x) is a given external potential. We use

the notation
ow

H=—+V
dp +
for the total specific enthalpy. The momentum equation can be written in
the form : - ,
Du ou lu|
=z - H-—"")=0o.
Dt+<6x> u+V< 2) 0 (7)

The vorticity of the capillary fluid w = curl u satisfies the Helmholtz

equation :
ow Ow

0
7+—u+wdivu——uw:0.

ot  0Ox ox
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Theorem

1°) Equations of capillary fluids (7) admit the following conservation law

gt(uTw> +div{<uTw)u+ (H—|"2|2> w} =0

2°) Consider a material domain D; of boundary S;. If at t = 0 the vector
field w is tangent to Sy, then for any time t the vector field w is tangent
to S¢. Moreover, the quantity (called helicity)

’H:///DtudeD

keeps a constant value along the motion. The results remain true if we
replace w by vectors E;, i =1,2,3.
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|
Application to the NLS equation

For the NLS equation w = 0. Thus we have only conservation laws related
with the vectors E;, i = 1,2,3.
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Fluids with internal inertia

Mathematical model of bubbly fluids with incompressible liquid phase at
small volume concentration of gas bubbles (lordansky—Kogarko—van
Wijngarden model), Serre-Green—Naghdi (SGN) equations describing long
surface gravity waves. These models can be obtained as the Euler-Lagrange
equations for the Hamilton action (SG, V M Teshukov, 2001).

2
pllu Dp

D
Here W { p, ﬁ/t) represents a potential depending not only on the

density, but also on the material time derivative of the density.
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Governing equations

0
a{ + div (pu) = 0,
opu’ v
%Lt' +diV(pU®U+pl)+p% =07,
ow
p=p5-—W
P
The energy conservation law
0 %4
£+diV((e+p)U) —p%t =0,
with the definition of the total volume energy e
2
e:p’g| + E+ pV  where E:W—% oW

Dt Dp
0 (m)
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We introduce the vector field K :
ow

Let us introduce the volume internal energy E(p, 7) as a partial Legendre
transform of W(p, p) :

\Y
K:u—l——a where o= —p

D w
E(paT):W“‘F/t)T where 7= — 8Dp
Dt

Instead of E(p, 7) we define E(p, o) = E(p,/p). The momentum
equation becomes (SG, Teshukov, 2001) :

DK ou\ " ~ lul?
Dt+<8x> K+V<EP+V—2)—O
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N
Theorem

1°) The equations of fluids with internal inertia admit the conservation law

gt (kT ) +d1v{(KTQ> u+ (E +V— |‘;|2> Q} =0

2°) Consider a material domain D; of boundary S;. If at t = 0 the vector
field Q is tangent to Sy, then for any time t the vector field € is tangent
to S;. Moreover, the quantity

H—// K'QdD
D;

we call generalized helicity, keeps a constant value along the motion. The
results remain true if we replace Q by the vectors E;, i =1,2,3.
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-
Applications to Serre-Green-Naghdi equations

gh® h(Dh\?> . Dh 0h
W(hh)=——— (= th h-
(hh) == 6<Dt with 5y =g TVhow

The water depth h and depth averaged velocity u are functions of time t

and of the horizontal coordinates x = (x!,x2?) 7.

3
K=u-+ 3hV (h leU)

The physical meaning of K : it is the fluid velocity tangent to the free
surface (SG, Z Khorsand and H Kalisch (2015), Y Matsuno (2016)). The
equation for K is :

DK (du\’ Dh |ul?
Dt+<8x) K+V< h—(Dt> S —o

33/35



22
A E,
X! =Cst
u
E,
K X2 =_Cst

Figure — In the (x!, x?)—plane the material curves X(t, x*,x?) = const and
X2(t,x', x?) = const are shown. At any point, these curves are tangent to the
vectors E; and E;. A priori, the vectors u and K are not collinear.
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Conclusion

An analog of helicity integrals is found for two classes of dispersive systems
of equations coming from Hamilton’s principle of stationary action.
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