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Barotropic Euler equations

Kinetic energy T =

∫
Dt

ρ
‖u‖2

2
dD,

Potential energy U =

∫
Dt

W (ρ)dD, W = ρ ε(ρ)

Lagrangian L = T − U,

Hamilton’s action a =

∫ t1

t0

Ldt.

Constrained Hamilton’s principle

∂ρ

∂t
+ div (ρu) = 0
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Barotropic Euler equations

∂ρ

∂t
+ div (ρu) = 0,

∂u
∂t

+
∂u
∂x

u +∇h(ρ) = 0, dh =
dp(ρ)

ρ
.

Conservation laws of momentum and energy

∂(ρu)

∂t
+ div (ρu ⊗ u + p(ρ)I ) = 0,

∂(ρe)

∂t
+ div (ρeu + p(ρ)u) = 0, e = ε+

||u||2

2
, dε =

p(ρ)

ρ2
dρ.
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Helicity for the barotropic Euler equations

∂u
∂t

+
∂u
∂x

u +∇h(ρ) = 0, dh =
dp(ρ)

ρ
,

Helmholtz equation for vorticity

∂ω

∂t
+
∂ω

∂x
u + ω div u − ∂u

∂x
ω = 0, ω = curlu.
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Helicity for the barotropic Euler equations

Local helicity conservation law

∂

∂t

(
uT ω

)
+ div

(
(uTω)u +

(
h(ρ)− |u|

2

2

)
ω

)
= 0,

Helicity

H =

∫∫∫
Dt

uTω dD

Here Dt is the material domain such that the vorticity field is initially
tangent to its boundary (then, for any time, this property is conserved).

5 / 35



Jean Jacques Moreau and Henry Keith Moffatt

1. Moreau J J 1961 Constantes d’un ı̂lot tourbillonnaire en fluide parfait
barotrope C. R. Acad. Sci. Paris 252 2810–2812
2. Moffatt H K 1969 The degree of knottedness of tangled vortex lines J.
Fluid Mech. 35 117–129
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“It so often happens that results we publish turn out to have been proved
much earlier, although their true significance may have escaped attention
(as did Moreau’s paper until I had sight of it in 1979 and cited it in
1981)”. (H K Moffatt)
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Relation to the relabeling symmetry group (H Gouin (1976), R Salmon
(1982), V E Zakharov and E K Kuznetsov (1997)).

ρdet

(
∂x
∂X

)
= ρ0(X ).

Change of variables X = X (Y ) that does not change the equations in the
Eulerian coordinates :

det

(
∂X
∂Y

)
= 1.
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Further study of helicity and other generalized integrals for classical
hydrodynamic equations and MHD equations (ideal or not) (A V Tur and
V V Yanovsky (1993), V I Arnold and B A Khesin (1998), C C Cotter and
D D Holm (2013), G M Webb et al (2014), A F Cheviakov and M
Oberlack (2014), P A Davidson and A Ranjan (2018), ...)

9 / 35



What the helicity is in dispersive hydrodynamics ?
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Classes of the dispersive models : gradient type models

Kinetic energy T =

∫
Dt

ρ
‖u‖2

2
dD,

Potential energy U =

∫
Dt

W (ρ, ‖∇ρ‖2)dD,

Lagrangian L = T − U,

Hamilton’s action a =

∫ t1

t0

Ldt.

Constrained Hamilton’s principle

∂ρ

∂t
+ div (ρu) = 0

Examples : Euler–Korteweg–Van de Waals equations (P Casal, M Eglit, H
Gouin, M Slemrod, L Truskinovsky, S Benzoni-Gavage, M Rodrigues, P
Noble, R Danchin, Ch Rohde, D Bresch, B Haspot, ...), thin film flows
(F Dhaouadi, J P Vila, SG, ...), ...
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Lagrangian for the defocusing NLS equation

iψt +
1

2
∆ψ − |ψ|2 ψ = 0.

Madelung’s transform

ψ(x, t) =
√
ρ(x, t)e iθ(x ,t) u = ∇θ

Lagrangian

L =

∫
Dt

(
ρ
|u|
2

2

−W (ρ, ‖∇ρ‖)

)
dD

W (ρ, ‖∇ρ‖) =
ρ2

2
+

1

4ρ

‖∇ρ‖
2

2
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Lagrangian for thin film flows
(F Dhaouadi, SG and J P Vila, 2022)

L =

∫
Dt

(
h
|u|
2

2

−W (h, ‖∇h‖)

)
dD

W (h, ‖∇h‖) = f (h) +
σ

ρl

‖∇h‖
2

2

, ρl = const

σ is the surface tension coefficient, ρl = const is the homogeneous fluid

density, f (h) =
gh2

2
(not only).

13 / 35



Thin film flows : F Dhaouadi, SG and J P Vila (2022)

Let us replace ρ by h (the fluid depth).
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Classes of the dispersive models : fluids with internal inertia

Kinetic energy T =

∫
Dt

ρ
‖u‖2

2
dD,

Potential U =

∫
Dt

W

(
ρ,

Dρ

Dt

)
dD,

D

Dt
=

∂

∂t
+ uT∇.

Lagrangian L = T − U,

Hamilton’s action a =

∫ t1

t0

Ldt.

Examples : fluids containing gas bubbles (S V Iordanskii (1960), B Kogarko
(1961), L van Wijngaarden (1968), S V Iordanskii and A G Kulikovskii
(1977), O V Voinov and A G Petrov (1975)), Serre-Green-Naghdi
equations (R Salmon, 1988, SG and V Teshukov (2001))
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Serre–Green–Naghdi (SGN) equations

Here ρ is replaced by the fluid depth denoted by h(t, x), x = (x , y)T ,
u(t, x) is the depth averaged horizontal velocity. Potential

W

(
h,

Dh

Dt

)
=

gh2

2
− h

6

(
Dh

Dt

)2

. (1)
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Solitary wave interaction with an island

Figure – Interaction of a solitary wave with an island (S. Busto, C. Escalante, M.
Dumbser, N. Favrie and SG (JSC 2021)).

17 / 35



Lagrangian fluid mechanics

The motion of a continuous media is

x = ϕ (t,X ) ,

where t denotes the time. The transformation ϕ possesses an inverse and
has continuous derivatives up to the second order. The deformation
gradient is :

F =
∂ϕ(t,X )

∂X
≡ ∂x
∂X

.

The evolution equation for F :

DF
Dt

=
∂u
∂x

F with
D

Dt
=

∂

∂t
+ uT∇, (2)

where u(t, x) =
∂ϕ(t,X )

∂t

∣∣∣∣
X=ϕ−1(t,x)

is the velocity field.
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Lemma

Lemma
Let e i be a natural local basis (with lower indexes i = 1, 2, 3),

e i =
∂x
∂X i

=
∂ϕ(t,X )

∂X i
, expressed in Eulerian coordinates, and

e i = ∇X i (t, x) (with upper indexes i = 1, 2, 3) be the corresponding
cobasis (dual basis). Then

ek

detF
= e i ∧ e j ,

where {i , j , k} forms an even permutation of {1, 2, 3}. Moreover,

div
( ek

detF

)
= 0.
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Proof

The proof of the first formula comes from the identity

δij =
∂X i

∂X j
=
∂X i

∂x
∂x
∂X j

= e i Te j ,

where δij is the Kronecker symbol. For the second formula one has :

(
e i ∧ e j

)T ek =
eT
k ek

detF
=

1

detF
,

Finally,

div
( ek

detF

)
= div

(
e i ∧ e j

)
,

= e j T curl e i − e i T curl e j = 0.
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Equations for the deformation gradient F

The following identities are satisfied :

div

(
F

detF

)
= 0, (3)

D

Dt

(
F

detF

)
=

(
∂u
∂x
− (div u) I

)
F

detF
(4)

In particular, (21) implies

DE i

Dt
=

(
∂u
∂x
− (div u) I

)
E i , E i =

e i

detF
, divE i = 0.

Proof Use the equation for the deformation gradient and Euler‘s equation
for its determinant.

21 / 35



Example

X
1
=X

10

X
2
=X

20

E10

E20

E2

E1

x
1

x
2

Figure – The stream lines (circles) of the velocity field u = (x2,−x1)T are shown
in the (x1, x2) plane. The initial material lines X i = const having tangent vectors
E i0, i = 1, 2 represent at each time instant straight lines rotating with a constant
angular velocity. The material lines positions at time t = π/2 and their tangent
vectors E i , i = 1, 2 are shown.
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Basic theorem (part 1)

1o) Consider the divergence–free field L satisfying the Helmholtz equation

DL
Dt

+ Ldiv u − ∂u
∂x

L = 0,

and the field K satisfying

DK
Dt

+

(
∂u
∂x

)T

K +∇
(
G − |u|

2

2

)
= 0.

Then,

∂

∂t

(
KT L

)
+ div

{(
u KT +

(
G − |u|

2

2

)
I
)

L
}

= 0. (5)
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Basic theorem (part 2)

2o) Consider a material domain Dt of boundary St . If at t = 0 the
divergence–free vector field L is tangent to S0, then for any time t the
vector field L is tangent to St . Moreover, the quantity

H =

∫∫∫
Dt

KTL dD, (6)

we call generalized helicity, keeps a constant value along the motion.
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Euler–van der Waals–Korteweg’s fluids : W (ρ, ‖∇ρ‖)

Governing equations
∂ρ

∂t
+ div (ρu) = 0,

∂ρuT

∂t
+ div (ρu ⊗ u + Π) + ρ

∂V

∂x
= 0T , Π = P I +

∂W

∂

(
∂ρ

∂x

) ∂ρ
∂x
,

P = ρ
δW

δρ
−W with

δW

δρ
=
∂W

∂ρ
− div

(
∂W

∂∇ρ

)
.

Energy conservation law :

∂e

∂t
+div

eu + Πu − ∂ρ

∂t

∂W

∂

(
∂ρ

∂x

)
−ρ ∂V∂t = 0, e =

ρ|u|2

2
+W +ρV
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The momentum equation can be written as

Du
Dt

+∇
(
δW

δρ
+ V

)
= 0,

where W = W (ρ, ‖∇ρ‖) and V (t, x) is a given external potential. We use
the notation

H =
δW

δρ
+ V

for the total specific enthalpy. The momentum equation can be written in
the form :

Du
Dt

+

(
∂u
∂x

)T

u +∇
(
H − |u|

2

2

)
= 0. (7)

The vorticity of the capillary fluid ω = curlu satisfies the Helmholtz
equation :

∂ω

∂t
+
∂ω

∂x
u + ω div u − ∂u

∂x
ω = 0.
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Theorem

1o) Equations of capillary fluids (7) admit the following conservation law

∂

∂t

(
uT ω

)
+ div

{(
uTω

)
u +

(
H − |u|

2

2

)
ω

}
= 0

2o) Consider a material domain Dt of boundary St . If at t = 0 the vector
field ω is tangent to S0, then for any time t the vector field ω is tangent
to St . Moreover, the quantity (called helicity)

H =

∫∫∫
Dt

uTω dD

keeps a constant value along the motion. The results remain true if we
replace ω by vectors E i , i = 1, 2, 3.
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Application to the NLS equation

For the NLS equation ω = 0. Thus we have only conservation laws related
with the vectors E i , i = 1, 2, 3.

28 / 35



Fluids with internal inertia

Mathematical model of bubbly fluids with incompressible liquid phase at
small volume concentration of gas bubbles (Iordansky–Kogarko–van
Wijngarden model), Serre–Green–Naghdi (SGN) equations describing long
surface gravity waves. These models can be obtained as the Euler-Lagrange
equations for the Hamilton action (SG, V M Teshukov, 2001).

L =
ρ‖u‖2

2
−W

(
ρ,

Dρ

Dt

)
− ρV (t, x).

Here W

(
ρ,

Dρ

Dt

)
represents a potential depending not only on the

density, but also on the material time derivative of the density.
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Governing equations
∂ρ

∂t
+ div (ρu) = 0,

∂ρuT

∂t
+ div (ρu ⊗ u + p I ) + ρ

∂V

∂x
= 0T ,

p = ρ
δW

δρ
−W

The energy conservation law

∂e

∂t
+ div ((e + p) u)− ρ ∂V

∂t
= 0,

with the definition of the total volume energy e

e =
ρ|u|2

2
+ E + ρV where E = W − Dρ

Dt

 ∂W

∂

(
Dρ

Dt

)
 .
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We introduce the vector field K :

K = u +
∇σ
ρ

where σ = −ρ

 ∂W

∂

(
Dρ

Dt

)
 .

Let us introduce the volume internal energy E (ρ, τ) as a partial Legendre
transform of W (ρ, ρ̇) :

E (ρ, τ) = W +
Dρ

Dt
τ where τ = −

 ∂W

∂

(
Dρ

Dt

)
 .

Instead of E (ρ, τ) we define Ẽ (ρ, σ) = E (ρ, σ/ρ). The momentum
equation becomes (SG, Teshukov, 2001) :

DK
Dt

+

(
∂u
∂x

)T

K +∇
(
Ẽρ + V − |u|

2

2

)
= 0
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Theorem

1o) The equations of fluids with internal inertia admit the conservation law

∂

∂t

(
KT Ω

)
+ div

{(
KTΩ

)
u +

(
Ẽρ + V − |u|

2

2

)
Ω

}
= 0

2o) Consider a material domain Dt of boundary St . If at t = 0 the vector
field Ω is tangent to S0, then for any time t the vector field Ω is tangent
to St . Moreover, the quantity

H =

∫∫∫
Dt

KTΩ dD

we call generalized helicity, keeps a constant value along the motion. The
results remain true if we replace Ω by the vectors E i , i = 1, 2, 3.
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Applications to Serre-Green-Naghdi equations

W (h, ḣ) =
g h2

2
− h

6

(
Dh

Dt

)2

with
Dh

Dt
=
∂h

∂t
+∇h · u.

The water depth h and depth averaged velocity u are functions of time t
and of the horizontal coordinates x = (x1, x2)T .

K = u +
1

3h
∇
(
h3 divu

)
.

The physical meaning of K : it is the fluid velocity tangent to the free
surface (SG, Z Khorsand and H Kalisch (2015), Y Matsuno (2016)). The
equation for K is :

DK
Dt

+

(
∂u
∂x

)T

K +∇

(
g h − 1

2

(
Dh

Dt

)2

− |u|
2

2

)
= 0.
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x2

x1

K

u

X2
= Cst

X1
= Cst

E1

E2

Figure – In the (x1, x2)–plane the material curves X 1(t, x1, x2) = const and
X 2(t, x1, x2) = const are shown. At any point, these curves are tangent to the
vectors E 2 and E 1. A priori, the vectors u and K are not collinear.
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Conclusion

An analog of helicity integrals is found for two classes of dispersive systems
of equations coming from Hamilton’s principle of stationary action.

Références :
S. Gavrilyuk and H. Gouin,
https ://hal.archives-ouvertes.fr/hal-03867002/document
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