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Introduction

Introduction

Unified frameworks for dissipative systems :
o Metriplectic systems Morrison 1986 and GENERIC systems Grmla éttinger 1997
o Port-Hamiltonian systems Brockett 1977, van der Schaft 1984
o Rate-independent systems Mielke Theil 1999
o Hamiltonian inclusions and BEN principle Buliga 2009, Buliga de Saxcé 2016

Variational formulations of Navier-Stokes equations : (brief) State of the Art
@ Pionnering works : Helmholtz 1869, Rayleigh 1913

Based on Onsager's theory of the production of entropy (1931) :
Glansdorff and Prigogine 1964, Lebon and Lambermont 1973

o Modification of Hamilton's principle : Fukagawa and Fujitani 2012
Gay-Balmaz and Yoshimura 2017

Razafindralandy and Hamdouni 2006 : bi-Lagrangian formalism

The nearest formalism : anti-selfdual Lagrangians of Ghoussoub and Moameni 2005
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Symplectic formalism

Symplectic formalism
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Symplectic formalism :

modelling the matter and its motion

Symplectic formalism

Our convention : the intrinsic, coordinate-free objects are denoted by a bold letter
while their representations in local charts are denoted by a normal letter

. . . . t
@ An event X occuring at position x and at time t is represented by X = {

@ The matter and its motion is modelized by a line fiber bundle

@ The fibers are the particle trajectories

@ In local charts :

o A material particle xo = mo(X) is represented by xp € R3
o the projection g is represented by xp = k(t, x) = k(X)
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Symplectic formalism

Symplectic formalism :
calculus of variation by jet theory

o 1D heuristic : vary both the value y and the variable x of the function y(x)

dy\ _ dxd(dy)— d(dx)dy
5 (5) =

5 (%) =602 500
s —

¥ Unlike the usual rule,
the variation of the derivative is not equal to the derivative of the variation

@ the term in red provides an extra variational equation

@ We shall be going to use this kind of variation to calculate
variational derivatives of functionals for the Eulerian description
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Symplectic formalism

Hamiltonian formalism :
variation by jet theory

=9 As L,H =m-v— L are densities, for consistency, 7 - v so is,
but v are the components of a 1-contravariant tensor,

Then 7 are the components of a
1-covariant and antisymmetric 3-contravariant tensor

Hamiltonian of the system at time t : H [xp, 7] = fﬂt H (t, x, x0, VX0, 7) d°x
We claim that the motion of the continuum is described by the canonical equations
dx O on
— (&= 97 9T — x
(dt’at) <v’ 8t) "
where Xy is the Hamiltonian vector field for the canonical symplectic form
, dx on' Oom dxX'\ ;3
— =222 2 2 )y
w(¢,¢) /Qt (dt ot ot dt )"

Variation by jet theory : new parameterization x = 9(y)

Calculate the symplectic variational derivative Xy of the Hamitonian
H[x, xo, 7] = fQ; H (t, D(y), %0, Vyxo - Vy,det (Vy) (Vy)T - 7r’) det (V,x) d®y

Consider y = x
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Symplectic formalism symplectic gradient

Hamiltonian formalism :
Hamiltonian vector field

@ The corresponding canonical equations are

dx
5 = VA
onr
ot - vH

—V  [VvuH -Vxo—(H—=VH -7) | +V,H 7]
with the extra terms of the jet theory in red

@ For a classical Hamiltonian, we recover
the definition of the linear momentum and its equation of conservation

dx 7 or
E_;—A —5; TV (or—v@m) +p((VA) v —V¢) =0

where A, ¢ are the potentials of the Galilean gravitation
For a barotropic fluid —p 2 — Vp+p (g —2Qx v) =0 (Euler's equation)
DA

where occur the gravity g = —V¢ — 57 and Coriolis’ vector Q = %V X A
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A symplectic minimum principle
for dissipative media
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A symplectic minimum principle for dissipative media

Dissipation potential

o Decomposition of the evolution into reversible and irreversible parts
=(r+ G, Cr = X, G=¢—Xu
o Dissipative constitutive law (; = X¢ where Xo is such that
VL (X (') = lim (O(C+e¢) — ()
o Convex dissipation potential ¢ such that
Ve, (¢ +¢) = 0(C) = w(Xe, (')

o Symplectic polar (or conjugate) function ®**(¢;) = sup, (w(¢/, () — P(C))
@ Satisfying a symplectic Fenchel inequality

V¢ G (') + 0™ (¢) — w(¢,¢) >0
@ and the equality is reached for the constitutive law
G =Xo < () + ™(¢) —w(C, () =0

(extremality condition)
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A symplectic minimum principle for dissipative media

A symplectic minimum principle for dissipative media

Original idea [Brezis & Ekeland CRAS 1976, Nayroles CRAS 1976]

Symplectic version [Buliga & de Saxcé MMS 2016]

An evolution path t — (k¢, () is said admissible
if it satisfies the initial and boundary conditions

Symplectic Brezis-Ekeland-Nayroles principle (SBEN) :
the natural evolution path t — (k¢, () minimizes the functional

s, ¢l = /0 {O(C) + ¢ (¢ = Xu) — w( = Xu, ()} dt (1)

among all the admissible evolution paths, and the minimum is zero.
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SBEN principle for Navier-Stokes principle

SBEN principle for compressible Navier-Stokes equation

o the canonical equations lead to  {; = ¢ — Xy = (v, 1)

with vy = v — 2 + A, Tr,:p%+Vp—p(g—2Q><v)

o Hypothesis 1 : % is ignorable in ® : ®(¢) = ¢(v)

then the symplectic Fenchel polar function has a finite value
d)*w(gl):q)*w(w,ﬂ'/):<p*(77'r/) if Vi =0

@ the last term in the functional becomes

—w(¢ — Xu,¢) = th (m-v—v-28)d’x = fﬂf - vd3x
@ Then the SBEN functional becomes

N[x,¢] = fOT{Lp(v) + o (—m) + er - vd3x} dt

@ Remark : ®(¢) + ¢*“(¢/) = ¢(v) + ¢"(—m) is Ghoussoub's anti-selfdual
Lagrangian. This reveals its symplectic origin
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SBEN principle for Navier-Stokes principle

SBEN principle for compressible Navier-Stokes equation

o SBEN principle for compressible Navier-Stokes equation :
the natural evolution path t — (K¢, v) minimizes the functional
T * v
ik, vl = fy {o(v) + 9" (—p Zf = VP +p (g —2Q2 x v))
+Jo, [P 5 +Vp—pg] - vdx}dt

among all the admissible evolution paths, and the minimum is zero.

@ Remark : For the limit case of inviscid flows, the potential of dissipation ¢ vanishes
and its polar function ¢* has a finite value equal to zero if 7, = 0, i.e. Euler's
equations,
then the SBEN principle claims that the total head loss is zero, that is the
expression of Bernoulli's principle.

It is worth to notice that in this limit case
the SBEN principle does not degenerate into Hamilton's principle.
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SBEN principle for Navier-Stokes principle

SBEN principle for compressible Navier-Stokes equation

o Hypothesis 2 : ¢ depends on v through its symmetric gradient
D=D(v)=Vsv=1/2(Vv+(Vv)")
and is quadratic with respect to v of the form

o(v) = th (D(v)) d3x = th [Tr(Dz) — %(Tr(D))Z] d3x

@ then the viscous part of the stress tensor is traceless (Stokes hypothesis)
o1 =VoW(D(v)) =2u (D — 3 Tr(D) 1)

@ Proof that the principle of minimum restitues Navier-Stokes equation
Indeed, if the minimum equal to zero is reached, we have

a.e.in [0, T], e(v) + " (=m) + Jo, ™ vdx =0

that is equivalent to the dissipative constitutive law

—m = Vp(v) ==V -0

Owing to Stokes hypothesis, we recover Navier-Stokes equation
PR = —Vp+puAv+LV(V-v)+p(g—2QxV)
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SBEN principle for Navier-Stokes principle

SBEN principle for incompressible Navier-Stokes equation

o For this limit case, V-v =0
and the pressure p becomes a free variable independent of x.
Navier-Stokes equation is reduced to

pR=—Vp+puLv+p(g—29x%xv)

@ To obtain the corresponding SBEN principle, the internal energy is cancelled in the
functional and the Hamiltonian.
The incompressibility condition is introduced as a constraint in the minimization.

The pressure disappears of the functional and reappears as a Lagrange multiplier of
this constraint

@ SBEN principle for incompressible Navier-Stokes equation :
the natural evolution path t — (k¢, v) minimizes the functional

Nie, vl = f) {e() + 0" (=p % +p (8 =22 x V) + [y, p (B — &) -vd'x} dt

among all the admissible evolution paths such that V - v =0,
and the minimum is zero.
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SBEN principle for Navier-Stokes principle

Extension to NonSmooth Mechanics
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SBEN principle for Navier-Stokes principle

Extension to NonSmooth Mechanics

o For set-valued dissipative laws, we consider convex
but not differentiable potentials of dissipation ¢

o Symplectic subdifferential of ® at ¢ [Buliga 2009]
9“®(¢) = {¢ such that V¢, &(C+ (') — &(¢) > w(¢ ¢}
@ Then the dissipative constitutive law is given by the Hamiltonian inclusion
¢ € 9¥d(C)
o Everything else remains identical (symplectic polar, SBEN principle)

Applications

o Plasticity : DOF = (u,&”) with numerical applications
[Cao, Oueslati, An Danh & de Saxcé Comput. Mech. 2020],
[Cao et al. Appl. Math. Model. 2021], [Cao et al. CMAME 2021]

o Fracture Mechanics : DOF = (u, 1) [de Saxcé 1JSS 2022]
o Bingham fluids

o Extension to the non associated plasticity using the symplectic bipotential
(ANR Project "BigBen", in start-up phase)
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Conclusion

Conclusion

o Advantages of the present formulation

e The present variational approach covers a large class of problems including
Navier-Stokes equations

o the expression of the functional is independent of the boundary conditions
that appear only as constraints of the minimization.

o The functional is not convex but there is (at least partial) convexity,
that is favourable for the convergence of the minimization algorithm.

o It paves the way to provide variational approximations of the solutions
Perspective

@ Analytical exemples

@ Numerical applications

o Develop symplectic integrators

o Construct variational schemes
based on the Lagrangian
of the SBEN principle

@ Functional analysis aspects FIGURE — Arxiv publication

Cooperations with researchers in fluid mechanics and mathematics are welcome
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Conclusion

Thank you!

Claude-Louis NAVIER Georges Gabriel STOKES
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Conclusion

Calculus of the Fenchel polar function of ¢

o if W is quadratic
and if the velocity or the dissipative stress vector is null on the boundary,
Fenchel polar function of ¢ is :

¢ (f) = A W(D(K™(f))) d’x

@ where the linear operator K is define by f = K(v) = =V - (VpW(D(v)))
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