Modeling anisotropic damage using a reconstruction by rational covariants of the elasticity tensor obtained by Discrete Element tests

CFRAC 2023 Prague, Czech Republic, 21–23 June 2023.

<u>Flavien Loiseau</u>, Cécile Oliver-Leblond, Rodrigue Desmorat flavien.loiseau@ens-paris-saclay.fr

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.

cors

Context ●00	Damage variable 0000	State model	Conclusion	References	2 / 16
----------------	-------------------------	-------------	------------	------------	--------

Context – Observations

Tensile test on concrete (Terrien, 1980)

Context ●00	Damage variable 0000	State model 0000	Conclusion	References	2 / 16
----------------	-------------------------	---------------------	------------	------------	--------

Context – Observations

Tensile test on concrete (Terrien, 1980)

Context - Observations

Tensile test on concrete (Terrien, 1980)

Damage-induced anistropy (Berthaud, 1991)

Context 0●0	Damage variable 0000	State model 0000	Conclusion	References	3/16

Context – Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle materials in 2D

Context – Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle materials in 2D

Structure of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & \text{(State variables)} \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & \text{(State potential)} \\ \dot{\mathbf{D}} &= \ldots & \text{(Damage evolution)} \end{split}$$

Notations

- ► D damage variable
- $\blacktriangleright \ \mathbf{E}(\mathbf{D})$ effective elasticity tensor

Constraints

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

Context – Objectives

Objective of the project

Formulating an anisotropic damage model for quasi-brittle materials in 2D

Structure of a damage model

$$\begin{split} \mathcal{V} &= \{ \boldsymbol{\varepsilon}, \mathbf{D}, \ldots \} & (\text{State variables}) \\ \rho \psi &= \frac{1}{2} \boldsymbol{\varepsilon} : \mathbf{E}(\mathbf{D}) : \boldsymbol{\varepsilon} & (\text{State potential}) \\ \dot{\mathbf{D}} &= \ldots & (\text{Damage evolution}) \end{split}$$

Notations

- ► D damage variable
- $\blacktriangleright \ \mathbf{E}(\mathbf{D})$ effective elasticity tensor

Constraints

- $\blacktriangleright \ {\bf E}({\bf D})$ is positive definite
- Positive dissipation

Objectives of the presentation

O Generate a dataset of effective elasticity tensors
O Quantify micro-cracking (damage variable)
O Formulate a state model E(D)

ContextDamage variableState modelConclusionReferences4/1600000000000000	Context ○○●	Damage variable 0000	State model	Conclusion	References	4 / 16
---	----------------	-------------------------	-------------	------------	------------	--------

Context – Dataset of effective elasticity tensors

Virtual testing

Measure \mathbf{E} from discrete model (Vassaux et al., 2016)

- ▶ 1 material,
- ► 36 meso-structures,
- ▶ 21 (prop and non-prop) loadings,
- ► 100 time steps,

for a total of \approx 76 000 tensors.

Bi-tension

Shear

ContextDamage variableState modelConclusionReferences4/1600000000000000	Context ○○●	Damage variable 0000	State model	Conclusion	References	4 / 16
---	----------------	-------------------------	-------------	------------	------------	--------

Context – Dataset of effective elasticity tensors

Virtual testing

Measure \mathbf{E} from discrete model (Vassaux et al., 2016)

- ▶ 1 material,
- ► 36 meso-structures,
- ▶ 21 (prop and non-prop) loadings,
- ► 100 time steps,

for a total of \approx 76 000 tensors.

Objectives of the presentation

Bi-tension

Shear

Generate a dataset of effective elasticity tensors
 Quantify micro-cracking (damage variable)
 Formulate a state model

Context 000	Damage variable ●000	State model	Conclusion 00	References	5 / 16

Question What tensorial order for the damage variable?

Context	Damage variable ●000	State model 0000	Conclusion 00	References	5 / 16

Question What tensorial order for the damage variable?

Tool Relative distance to a symmetry stratum Σ

$$\Delta_{\Sigma}(\mathbf{E}) = \min_{\mathbf{E}^* \in \Sigma} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$$

Context 000	Damage variable ●000	State model	Conclusion	References	5 / 16

Question What tensorial order for the damage variable?

Tool Relative distance to a symmetry stratum Σ

$$\Delta_{\Sigma}(\mathbf{E}) = \min_{\mathbf{E}^* \in \Sigma} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$$

Illustration with periodic bi-tension

Context 000	Damage variable ●000	State model	Conclusion	References	5 / 16

Question What tensorial order for the damage variable?

Tool Relative distance to a symmetry stratum Σ

$$\Delta_{\Sigma}(\mathbf{E}) = \min_{\mathbf{E}^* \in \Sigma} \frac{\|\mathbf{E} - \mathbf{E}^*\|}{\|\mathbf{E}\|}$$

Illustration with periodic bi-tension

 $\begin{array}{c} \mathbf{E} \ [\mathsf{MPa}] \\ \hline 0.93 & -0.38 & -0.50 \\ -0.38 & 1.47 & 0.36 \\ -0.50 & 0.36 & 3.66 \end{array}$

Context 000	Damage var ●000	riable State	model	Conclusion	Re	ferences	5 / 16
Damage va Distance to ort	ariable – N thotropy in 21	/licro-cracking D (Antonelli et al.,	induced a 2022)	nisotropy	/		
Question	What ten	sorial order for th	e damage va	riable?			
Tool	Relative o	distance to a symi	metry stratur	m Σ Δ	$\Delta_{\Sigma}(\mathbf{E}) = \min_{\mathbf{E}^* \in \mathbf{E}}$	$ \lim_{\varepsilon \Sigma} \frac{\ \mathbf{E} - \mathbf{E}^*\ }{\ \mathbf{E}\ } $	
Illustratio	on with per	iodic bi-tension	1	sotropy		$\Delta_{\mathcal{I}so} = 0.$.427
		$\begin{array}{c} \mathbf{E} \ [MPa] \\ 0.93 & -0.38 \\ -0.38 & 1.47 \\ -0.50 & 0.36 \end{array}$	$\begin{bmatrix} -0.50 \\ 0.36 \\ 3.66 \end{bmatrix}$	$\mathbf{E}_{\mathcal{I}so} =$	$\begin{bmatrix} 1.68 & -0 \\ -0.91 & 1 \\ 0.00 & 0 \end{bmatrix}$	0.91 0.00 .68 0.00 .00 2.59]

Context 000	Damage variable ●000	State model	Conclusion 00	References	5 / 16
Damage var Distance to orth	riable – Micro-o notropy in 2D (Anto	c racking induced nelli et al., 2022)	l anisotropy		
Question	What tensorial o	rder for the damage	variable?		
Tool	Relative distance	to a symmetry stra	ntum Σ $\Delta_{\Sigma}({f E})$ =	$= \min_{\mathbf{E}^* \in \Sigma} \frac{\ \mathbf{E} - \mathbf{E}^*\ }{\ \mathbf{E}\ }$	
Illustratio	n with periodic b	i-tension	lsotropy	$\Delta_{\mathcal{I}so} = 0.$	427
		E [MPa] -0.38 - 0.50 1.47 - 0.36	$\mathbf{E}_{\mathcal{I}so} = \begin{bmatrix} 1.68\\ -0.91\\ 0.00 \end{bmatrix}$	$\begin{array}{ccc} -0.91 & 0.00 \\ 1.68 & 0.00 \\ 0.00 & 2.59 \end{array}$	
		$\begin{bmatrix} 1.47 & 0.50 \\ 0.36 & 3.66 \end{bmatrix}$	Orthotropy	$\Delta_{\mathcal{O}rt} = 0.$	013
	Jone		$\mathbf{E}_{\mathcal{O}rt} = \begin{bmatrix} 0.92\\ -0.38\\ 0.48 \end{bmatrix}$	-0.38 -0.48 1.38 0.39	3
			-0.48	0.59 5.00	

Context 000	Damage variable 0●00	State model	Conclusion	References	6 / 16

Context 000	Damage variable 0●00	State model	Conclusion	References	6 / 16

Context 000	Damage variable 0●00	State model	Conclusion	References	6 / 16

Context 000	Damage variable 0●00	State model	Conclusion	References	6 / 16

Context 000Damage variable 0000State model 0000ConclusionReferences7/16
--

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

Context Damage variable 000 00€0	State model	Conclusion	References	7 / 16
Context Damage variable	0000	00	References	7 / 16

$\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

Properties

• μ and κ are invariants

Context 000Damage variable 0000State model 0000ConclusionReferences7/16
--

 $\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$

Properties

• μ and κ are invariants

▶ d' and H are covariants

ContextDamage variable 000State model 0000ConclusionReferences7/16
--

$$\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$$

Properties $\blacktriangleright \mu$ and κ are invariants $\blacktriangleright d'$ and \mathbf{H} are covariants Reconstruction $(\mu, \kappa, \mathbf{d}', \mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}' \right)}_{\mathbf{Dil}} + \mathbf{H}$

$$\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$$

Properties μ and κ are invariants \mathbf{b} d' and \mathbf{H} are covariants Reconstruction $(\mu, \kappa, \mathbf{d}', \mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}' \right)}_{\mathbf{Dil}} + \mathbf{H}$

 $\label{eq:composition} \quad \mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H}) \mbox{ where } \mathbf{d} = \mathrm{tr}_{12} \, \mathbf{E}, \ \mathbf{v} = \mathrm{tr}_{13} \, \mathbf{E},$

$$\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$$

Properties $\blacktriangleright \mu$ and κ are invariants $\blacktriangleright d'$ and \mathbf{H} are covariants Reconstruction $(\mu, \kappa, \mathbf{d}', \mathbf{H}) \mapsto \mathbf{E} = \underbrace{2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2}_{\mathbf{Iso}} + \underbrace{\frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}' \right)}_{\mathbf{Dil}} + \mathbf{H}$

 $\label{eq:composition} \quad \mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H}) \mbox{ where } \mathbf{d} = \mathrm{tr}_{12} \, \mathbf{E}, \ \mathbf{v} = \mathrm{tr}_{13} \, \mathbf{E},$

$$\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right)$$
$$\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d}$$

Context 000	Damage variable ००●०	State model	Conclusion	References	7 / 16
Damaga		umonio decompo	sition		

$$\mathbf{E} \cong (\mu, \kappa, \mathbf{d}', \mathbf{H}) \in \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^1(\mathbb{R}^2) \oplus \mathbb{H}^2(\mathbb{R}^2) \oplus \mathbb{H}^4(\mathbb{R}^2)$$

Properties \blacktriangleright μ and κ are invariants \blacktriangleright d' and H are covariants **Reconstruction** $(\mu, \kappa, \mathbf{d}', \mathbf{H}) \mapsto \mathbf{E} = 2\mu \mathbf{J} + \kappa \mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2} \left(\mathbf{d}' \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}' \right) + \mathbf{H}$ Dil Iso $\mathbf{E} \mapsto (\mu, \kappa, \mathbf{d}', \mathbf{H})$ where $\mathbf{d} = \operatorname{tr}_{12} \mathbf{E}, \ \mathbf{v} = \operatorname{tr}_{13} \mathbf{E}$. Decomposition $\mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \ \mathbf{1}_2$ $\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right)$ $\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d}$ H = E - Iso - Dil

Context 000	Damage variable ○○○●	State model	Conclusion	References	8 / 16
----------------	-------------------------	-------------	------------	------------	--------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage?

Context 000	Damage variable ○○○●	State model	Conclusion	References	8 / 16
----------------	-------------------------	-------------	------------	------------	--------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

$$\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \qquad \qquad \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2$$
$$\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \qquad \qquad \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Context 000	Damage variable 000●	State model	Conclusion	References	8 / 16
----------------	-------------------------	-------------	------------	------------	--------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

Context 000	Damage variable ○○○●	State model	Conclusion	References	8 / 16
----------------	-------------------------	-------------	------------	------------	--------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

$$\mu = \frac{1}{8} (2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d}) \qquad \qquad \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2$$
$$\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \qquad \qquad \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Damage variable

$$\mathbf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1}$$

Context 000	Damage variable 000●	State model	Conclusion	References	8/16
----------------	-------------------------	-------------	------------	------------	------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

$$\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \qquad \qquad \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2$$
$$\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \qquad \qquad \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Damage variable

$$\mathbf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d}$$

Context 000	Damage variable 000●	State model	Conclusion	References	8/16
----------------	-------------------------	-------------	------------	------------	------

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

How to define damage? Using the harmonic decomposition

$$\mu = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v} - \operatorname{tr} \mathbf{d} \right) \qquad \qquad \mathbf{d}' = \mathbf{d} - \frac{1}{2} \operatorname{tr} \mathbf{d} \mathbf{1}_2$$
$$\kappa = \frac{1}{4} \operatorname{tr} \mathbf{d} \qquad \qquad \qquad \mathbf{H} = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Damage variable

$$\mathbf{D} = (\mathbf{d}_0 - \mathbf{d}) \cdot \mathbf{d}_0^{-1} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0(\mathbf{1}_2 - \mathbf{D})$$

Context 000	Damage variable 0000	State model ●000	Conclusion	References	9/16
----------------	--------------------------------	---------------------	------------	------------	------

State model – Advantages of the damage definition

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1}_2 - \mathbf{D})$$

Context 000	Damage variable 0000	State model ●000	Conclusion	References	9 / 16
----------------	-------------------------	---------------------	------------	------------	--------

State model – Advantages of the damage definition

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1}_2 - \mathbf{D})$$

Expression of $\kappa(\mathbf{D})$ $\mathbf{D} \text{ def} \quad \frac{1}{4} \operatorname{tr} \bullet$ $\mathbf{D} \longleftrightarrow \mathbf{d} \longrightarrow \kappa$
Context 000	Damage variable 0000	State model ●000	Conclusion	References	9 / 16
Context 000	Damage variable 0000	State model ●000	Conclusion 00	References	9 / 16

State model – Advantages of the damage definition

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1}_2 - \mathbf{D})$$

Expression of $\kappa(\mathbf{D})$ $\mathbf{D} \det \frac{1}{4} \operatorname{tr} \bullet$ $\downarrow \downarrow$ $\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D}\right)$

Context 000	Damage variable 0000	State model ●000	Conclusion	References	9/16
----------------	-------------------------	---------------------	------------	------------	------

State model – Advantages of the damage definition

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1}_2 - \mathbf{D})$$

Expression of d'(D) $D \text{ def } Dev \bullet'$ $D \longleftrightarrow d'$

Context 000	Damage variable 0000	State model ●000	Conclusion	References	9 / 16
----------------	-------------------------	---------------------	------------	------------	--------

State model – Advantages of the damage definition

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \mathbf{d} \iff \mathbf{d} = 2\kappa_0 (\mathbf{1}_2 - \mathbf{D})$$

 $\|$

Expression of $\kappa(\mathbf{D})$ Expression of d'(D)**D** def $\frac{1}{4}$ tr • **D** def Dev \bullet' $\mathbf{D} \longleftrightarrow \mathbf{d} \longrightarrow \mathbf{d}'$ $\mathbf{D} \longleftrightarrow \mathbf{d} \longrightarrow \kappa$ $\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right)$ $\mathbf{d}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$

Context 000	Damage variable 0000	State model o●oo	Conclusion	References	10 / 16
State mode Objective	el – Basis of the mo s of the presentation	del	lataset of effect cro-cracking (da state model E	tive elasticity ter amage variable) (D)	isors

Context 000	Damage variable 0000	State model 0●00	Conclusion	References	10/16

State model – Basis of the model

Objectives of the presentationImage: Generate a dataset of effective elasticity tensorsImage: Optimized constraints of the presentationImage: Optimized constraintsImage: Optimized constraints of the presentationImage: Optimized constraintsImage: Optimi

Knowing isotropic $\mathbf{E}_0 \cong (\mu_0, \kappa_0, \mathbf{0}_2, \mathbf{0}_4)$ and \mathbf{D} , elasticity tensor \mathbf{E} can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where decomposition ${\bf E}\mapsto (\mu,\kappa,{\bf d}',{\bf H})$ and damage definition ${\bf d}\mapsto {\bf D}$ give

$$\mu(\mathbf{D}) = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v}(\mathbf{D}) - \operatorname{tr} \mathbf{d}(\mathbf{D}) \right) \qquad \mathbf{d}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$$
$$\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \mathbf{H}(\mathbf{D}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Context 000	Damage variable 0000	State model 0●00	Conclusion	References	10/16

State model – Basis of the model

Objectives of the presentationImage: Generate a dataset of effective elasticity tensorsImage: Optimized constraints of the presentationImage: Optimiz

Knowing isotropic $\mathbf{E}_0 \cong (\mu_0, \kappa_0, \mathbf{0}_2, \mathbf{0}_4)$ and \mathbf{D} , elasticity tensor \mathbf{E} can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where decomposition ${\bf E}\mapsto (\mu,\kappa,{\bf d}',{\bf H})$ and damage definition ${\bf d}\mapsto {\bf D}$ give

$$\mu(\mathbf{D}) = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v}(\mathbf{D}) - \operatorname{tr} \mathbf{d}(\mathbf{D}) \right) \qquad \mathbf{d}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$$
$$\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \mathbf{H}(\mathbf{D}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Context 000	Damage variable 0000	State model ○●○○	Conclusion	References	10 / 16

State model – Basis of the model

-1

Objectives of the presentationImage: Generate a dataset of effective elasticity tensorsImage: O Receive a state model E(D)

Knowing isotropic $\mathbf{E}_0 \cong (\mu_0, \kappa_0, \mathbf{0}_2, \mathbf{0}_4)$ and \mathbf{D} , elasticity tensor \mathbf{E} can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where decomposition ${\bf E}\mapsto (\mu,\kappa,{\bf d}',{\bf H})$ and damage definition ${\bf d}\mapsto {\bf D}$ give

$$\mu(\mathbf{D}) = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v}(\mathbf{D}) - \operatorname{tr} \mathbf{d}(\mathbf{D}) \right) \qquad \mathbf{d}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$$
$$\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D} \right) \qquad \mathbf{H}(\mathbf{D}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Questions How to model

O shear modulus $\mu(\mathbf{D})$?

O harmonic part H(D)?

Context 000	Damage variable 0000	State model 00●0	Conclusion	References	11 / 16
----------------	-------------------------	---------------------	------------	------------	---------

State model – Modelling shear modulus and harmonic part – Overview Shear modulus

 $\mu(\mathbf{D}) = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v}(\mathbf{D}) - \operatorname{tr} \mathbf{d}(\mathbf{D}) \right)$

Assumptions

$$\begin{split} \mu(\mathbf{D} = \mathbf{0}_2) &= \mu_0 & \text{(Initial)} \\ \mu(\mathbf{D} = \mathbf{1}_2) &= 0 & \text{(Full damage)} \\ \text{If } \mathbf{D} &\approx \mathbf{0}_2, \ \operatorname{tr} \mathbf{d} &= \operatorname{tr} \mathbf{v} & \text{(Early}^1) \end{split}$$

Model μ as a linear comb. of invariants

$$\mu(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} \operatorname{tr} \mathbf{D} + \frac{\kappa_0 - 2\mu_0}{4} \mathbf{D} : \mathbf{D}$$

 1 Early damage \implies non-interacting cracks \implies Tot sym stiffness loss (Kachanov, 1992)

Context Damage variable	State model 00●0	Conclusion	References	11 / 16
000 0000	0000	00		11/10

State model – Modelling shear modulus and harmonic part – Overview

Shear modulus

$$\mu(\mathbf{D}) = \frac{1}{8} \left(2 \operatorname{tr} \mathbf{v}(\mathbf{D}) - \operatorname{tr} \mathbf{d}(\mathbf{D}) \right)$$

Assumptions

$$\begin{split} \mu(\mathbf{D} &= \mathbf{0}_2) = \mu_0 & \text{(Initial)} \\ \mu(\mathbf{D} &= \mathbf{1}_2) = 0 & \text{(Full damage)} \\ \text{If } \mathbf{D} &\approx \mathbf{0}_2, \ \operatorname{tr} \mathbf{d} = \operatorname{tr} \mathbf{v} & \text{(Early}^1) \end{split}$$

Model μ as a linear comb. of invariants

$$\mu(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} \operatorname{tr} \mathbf{D} + \frac{\kappa_0 - 2\mu_0}{4} \mathbf{D} : \mathbf{D}$$

Harmonic part (Desmorat & Desmorat, 2015)

$$\mathbf{H}=\pm \|\mathbf{H}\|rac{\mathbf{d}'*\mathbf{d}'}{\|\mathbf{d}'*\mathbf{d}'\|}$$
 (Orthotropy)

where
$$\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - rac{1}{2} (\mathbf{d}' {:} \mathbf{d}') \mathbf{J}.$$

Model $\|\mathbf{H}\|$ as a polynomial of invariants and apply sparse regression on the dataset

 $\|\mathbf{H}\| \approx \mathbf{H}^{\mathrm{m}}(\mathbf{D}) = h(\operatorname{tr} \mathbf{D})^{4} \mathbf{D}' * \mathbf{D}'$

where h is the harmonic parameter.

 1 Early damage \implies non-interacting cracks \implies Tot sym stiffness loss (Kachanov, 1992)

Context 000	Damage variable 0000	State model ○○○●	Conclusion	References	12 / 16
----------------	--------------------------------	---------------------	------------	------------	---------

State model – Conclusion

Knowing κ_0 , μ_0 and \mathbf{D} , the elasticity tensor can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where the invariants and covariants models are

$$\mu(\mathbf{D}) = \mu_0 - \frac{\kappa_0}{4} (\operatorname{tr} \mathbf{D}) + \frac{\kappa_0 - 2\mu_0}{4} (\mathbf{D}:\mathbf{D}) \qquad \mathbf{d}'(\mathbf{D}) = -2\kappa_0 \mathbf{D}'$$
$$\kappa(\mathbf{D}) = \kappa_0 \left(1 - \frac{1}{2} \operatorname{tr} \mathbf{D}\right) \qquad \qquad \mathbf{H}^{\mathrm{m}}(\mathbf{D}) = h(\operatorname{tr} \mathbf{D})^4 \mathbf{D}' * \mathbf{D}'$$

Context Damag	e variable State mode	l Conclusion ●○	References	13 / 16
		•••		

Conclusion – Summary

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

Context 000	Damage variable 0000	State model	Conclusion ●○	References	13 / 16

Conclusion – Summary

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \operatorname{tr}_{12} \mathbf{E}$$

- 2. Quantify the micro-cracking
 - Definition of a damage variable

Context 000	Damage variable 0000	State model	Conclusion ●○	References	13 / 16

Conclusion – Summary

Objectives of the presentation

- 1. Gather data on the behavior of quasi-brittle material
 - Virtual testing

$$\mathbf{D} = \mathbf{1}_2 - \frac{1}{2\kappa_0} \operatorname{tr}_{12} \mathbf{E}$$

- 2. Quantify the micro-cracking
 - Definition of a damage variable

- 3. Model the impact of micro-cracking on the relation between arepsilon and σ
 - Exact model of $\kappa(\mathbf{D})$, $\mathbf{d}'(\mathbf{D})$
 - ▶ Model of $\mu(\mathbf{D})$, $\mathbf{H}(\mathbf{D})$

Thank you for your attention!

CFRAC 2023 Prague, Czech Republic, 21–23 June 2023.

<u>Flavien Loiseau</u>, Cécile Oliver-Leblond, Rodrigue Desmorat flavien.loiseau@ens-paris-saclay.fr

Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, 91190, Gif-sur-Yvette, France.

e_____ nale______ ≙rieure______ s_saclay_____

Context 000	Damage variable 0000	State model 0000	Conclusion	References	15 / 16
000	0000	0000	00		,

Conclusion – References I

- Backus, G. (1970). A geometrical picture of anisotropic elastic tensors. *Reviews of Geophysics*, 8(3), 633–671. https://doi.org/10.1029/RG008i003p00633
 - Terrien, M. (1980). Emission acoustique et comportement mécanique post-critique d'un béton sollicité en traction. Bulletin de liaison des laboratoires des ponts et chaussees, 1980(105), 65–71.
- Berthaud, Y. (1991). Damage measurements in concrete via an ultrasonic technique. part i experiment. Cement and Concrete Research, 21(1), 73–82. https://doi.org/10.1016/0008-8846(91)90033-E
- Kachanov, M. (1992). Effective elastic properties of cracked solids: Critical review of some basic concepts [Publisher: American Society of Mechanical Engineers Digital Collection]. *Applied Mechanics Reviews*, 45(8), 304–335. https://doi.org/10.1115/1.3119761
- Blinowski, A., Ostrowska-Maciejewska, J., & Rychlewski, J. (1996). Two-dimensional hooke's tensors isotropic decomposition, effective symmetry criteria [Number: 2]. Archives of Mechanics, 48(2), 325–345. https://doi.org/10.24423/aom.1345
- D'Addetta, G. A., Kun, F., & Ramm, E. (2002). On the application of a discrete model to the fracture process of cohesive granular materials. *Granular Matter*, 4(2), 77–90. https://doi.org/10.1007/s10035-002-0103-9

Context 000	Damage variable 0000	State model	Conclusion	References	16 / 16
000	0000	0000	00		

Conclusion – References II

- Vannucci, P. (2005). Plane Anisotropy by the Polar Method*. *Meccanica*, 40(4), 437–454. https://doi.org/10.1007/s11012-005-2132-z
- Delaplace, A. (2008). Modélisation discrète appliquée au comportement des matériaux et des structures.
- Desmorat, B., & Desmorat, R. (2015). Tensorial Polar Decomposition of 2D fourth-order tensors. Comptes Rendus Mécanique, 343(9), 471–475. https://doi.org/10.1016/j.crme.2015.07.002
- Vassaux, M., Oliver-Leblond, C., Richard, B., & Ragueneau, F. (2016). Beam-particle approach to model cracking and energy dissipation in concrete: Identification strategy and validation. *Cement and Concrete Composites*, 70, 1–14. https://doi.org/10.1016/j.cemconcomp.2016.03.011
- Oliver-Leblond, C. (2019). Discontinuous crack growth and toughening mechanisms in concrete: A numerical study based on the beam-particle approach. *Engineering Fracture Mechanics*, 207, 1–22. https://doi.org/10.1016/j.engfracmech.2018.11.050
- Antonelli, A., Desmorat, B., Kolev, B., & Desmorat, R. (2022). Distance to plane elasticity orthotropy by Euler–Lagrange method. Comptes Rendus. Mécanique, 350(G2), 413–430. https://doi.org/10.5802/crmeca.122

Appendices

Virtual testing – Discrete (beam-particle) model (Vassaux et al., 2016) on the basis of (D'Addetta et al., 2002), (Delaplace, 2008), ...

Features

- ✓ Heterogeneous
- ✓ Explicit cracking
- Accurate fracture process (Oliver-Leblond, 2019)
- ✗ Computational cost

Virtual testing – Discrete (beam-particle) model (Vassaux et al., 2016) on the basis of (D'Addetta et al., 2002), (Delaplace, 2008), ...

Features

- ✓ Heterogeneous
- ✓ Explicit cracking
- Accurate fracture process (Oliver-Leblond, 2019)
- ✗ Computational cost

Remark

Contact/friction disabled

Virtual testing ○●○○	LASSO 0000	State model 0000	Harmonic part 0000	Verifications	3 / 13
-------------------------	----------------------	---------------------	-----------------------	---------------	--------

Virtual testing - Illustration of beam-particle model - Periodic bi-tension

Virtual testingLASSOState modelHarmonic partVerifications30000000000000000000000003	/ 13
---	------

Virtual testing - Illustration of beam-particle model - Periodic bi-tension

Virtual testing – Illustration of beam-particle model – Periodic bi-tension

Of OOO October Fraction fractions 3/13 Of OO OOOO OOOO
--

Virtual testing - Illustration of beam-particle model - Periodic bi-tension

Virtual testing – Measurement of effective elasticity tensors

Virtual testing ००●०	LASSO 0000	State model 0000	Harmonic part 0000	Verifications	4 / 13
-------------------------	----------------------	---------------------	-----------------------	---------------	--------

Virtual testing - Measurement of effective elasticity tensors

Virtual testing LASSO State model Harmonic part Verifications 4	/ 13	3
---	------	---

Virtual testing - Measurement of effective elasticity tensors

Virtual testingLASSOState modelHarmonic partVerifications000000000000000000000000	4/13
---	------

Virtual testing – Measurement of effective elasticity tensors

Virtual testing ००●०	LASSO 0000	State model	Harmonic part 0000	Verifications	4 / 13
-------------------------	----------------------	-------------	-----------------------	---------------	--------

Virtual testing – Measurement of effective elasticity tensors

Virtual testing
000LASSO
0000State model
0000Harmonic part
0000Verifications
00005/13

Virtual testing – Dataset of effective elasticity tensors

Repeat procedure for

- ▶ 1 material,
- 36 particle distributions,
- ► 21 loadings,
- ► 100 time steps,

for a total of

• \approx 76 000 tensors.

Bi-tension

Shear

Tension

Virtual testing
000LASSO
0000State model
0000Harmonic part
0000Verifications
00005/13

Virtual testing – Dataset of effective elasticity tensors

Repeat procedure for

- ▶ 1 material,
- 36 particle distributions,
- ► 21 loadings,
- ► 100 time steps,

for a total of

• pprox 76 000 tensors.

Objectives of the presentation

Bi-tension

Tension

Generate a dataset of effective elasticity tensors
 Quantify micro-cracking (damage variable)
 Formulate a state model

Virtual testing	LASSO ●000	State model	Harmonic part 0000	Verifications	5 / 13
-----------------	----------------------	-------------	-----------------------	---------------	--------

LASSO – Polynomial of invariants \rightarrow linear relationship

The polynomial can be rewritten as a linear relationship

$$p(\mathbf{D}) = \begin{bmatrix} I_1(\mathbf{D}) & I_2(\mathbf{D}') & \dots & I_1(\mathbf{D})^{n_1} I_2(\mathbf{D}')^{n_2} \end{bmatrix} \begin{bmatrix} c_{1,0} \\ c_{0,1} \\ \vdots \\ c_{n_1,n_2} \end{bmatrix}.$$

Remark – Numerous parameters

New question – How to fit the model?

LASSO – Regression

Notations

 $\mathbf{y} = y_j$ outcomes $\mathbf{X} = (x_j)_i$ input variables $\mathbf{c} = c_i$ coefficients Least-square linear regression

$$\mathbf{c}^* = \operatorname*{argmin}_{\mathbf{c} \in \mathbb{R}^{N_c}} \left(rac{1}{N} \| \mathbf{y} - \mathbf{X} \cdot \mathbf{c} \|_2^2
ight)$$

Sparse regression (LASSO)

$$\mathbf{c}^* = \operatorname*{argmin}_{\mathbf{c} \in \mathbb{R}^{N_c}} \left(\frac{1}{N} \| \mathbf{y} - \mathbf{X} \cdot \mathbf{c} \|_2^2 + \alpha \| \mathbf{c} \|_1 \right)$$

Features

- ► Penalize nonzero parameters
- Linear convex optimization problem, easy linear constraints
- Arbitrary penalization coefficient

Virtual testing

LASSO

State model

Harmonic part

ent

efficie

Ð

umbe

LASSO – Choosing the penalization coefficient (N = 6)

=== Non-zero parameters: 1 | Coefficient of determination 0 686 ||H|| = +1.23e+10 x I 1(D) x I 1(D) x I 1(D) x I 1(D) x I 2(D') === Non-zero parameters: 2 | Coefficient of determination 0.690 11811 = +1.29e+10 x I 1(D) x I 1(D) x I 1(D) x I 1(D) x I 2(D') -6.06e+09 x I 1(D) x I 1(D) x I 2(D') x I 2(D') === Non-zero parameters: 3 | Coefficient of determination 0.688 11H11 = -6.11e+08 x I 1(D) x I 1(D) x I 2(D') +1.29e+10 × I_1(D) × I_1(D) × I_1(D) × I_2(D') -2.62e+89 x T 1(D) x T 1(D) x T 2(D') x T 2(D') === Non-zero parameters: 4 | Coefficient of determination 0.708 |||||| = +3.23e+10 x I 2(D') -3.09e+10 x I 1(D) x I 2(D') -2.74e+10 x I 2(D') x I 2(D') +1.66e+10 x I 1(D) x I 1(D) x I 1(D) x I 1(D) x I 2(D') === Non-zero parameters: 5 | Coefficient of determination 0.714 LIHII = +4.28e+10 x I 2(D') -3.74e+10 x I 1(D) x I 2(D') -8.45e+10 x T 2(D') x T 2(D') +1.61e+10 x I 1(D) x I 1(D) x I 1(D) x I 1(D) x I 2(D') +3.32e+10 x I 1(D) x I 1(D) x I 2(D') x I 2(D') === Non-zero parameters: 6 | Coefficient of determination 0.717 ||H|| = +5.21e+10 x I 2(D') -4.20e+10 x I_1(D) x I_2(D') -1.48e+11 x I_2(D') x I_2(D') +4.55e+05 x I 1(D) x I 2(D') x I 2(D') +1.52e+10 x I 1(D) x I 1(D) x I 1(D) x I 1(D) x I 2(D') +6.97e+18 x I 1(D) x I 1(D) x I 2(D') x I 2(D') === Non-zero parameters: 7 | Coefficient of determination 0.716 ||H|| = +4.69e+10 x I 2(D') -3.92e+10 x I 1(D) x I 2(D') +1.96e+05 x I 1(D) x I 1(D) x I 2(D') -1.14e+11 x I 2(D') x I 2(D') +2.16e+05 x I 1(D) x I 1(D) x I 1(D) x I 2(D') +1.56e+10 x I 1(D) x I 1(D) x I 1(D) x I 2(D')

+5.03e+10 x I 1(D) x I 1(D) x I 2(D') x I 2(D')

Virtual testing LASSO State model Harmonic part Verifications 5/13

LASSO – Conclusion

Models for the harmonic part The harmonic part ${\bf H}$ can be modelled as

$$\mathbf{H}^{\mathrm{m}}(\mathbf{D}) = +H^{\mathrm{m},\mathrm{i}}(\mathbf{D}) \frac{\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})}{\|\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})\|}$$

where $H^{\mathrm{m,i}}(\mathbf{D})$ is either

$$H^{m,0}(\mathbf{D}) = 0, \text{ or}$$
(H0)
$$H^{m,1}(\mathbf{D}) = 1.23 \cdot 10^{10} \cdot I_1(\mathbf{D})^4 \cdot I_2(\mathbf{D}').$$
(H1)

New question

How accurate is the modeling of the whole elasticity tensor?

 $D_{\mathbf{v}}$ such that $\operatorname{tr} \mathbf{v} = \operatorname{tr} \mathbf{v}_0(1 - D_{\mathbf{v}})$.

Virtual testing	LASSO 0000	State model ○●○○	Harmonic part 0000	Verifications	7 / 13
-----------------	----------------------	---------------------	-----------------------	---------------	--------

State model – Partial formulation

Knowing isotropic $\mathbf{E}_0 \cong (\mu_0, \kappa_0, \mathbf{0}_2, \mathbf{0}_4)$ and \mathbf{D} , elasticity tensor \mathbf{E} can be modelled as

$$\mathbf{E}(\mathbf{D}) = 2\mu(\mathbf{D})\mathbf{J} + \kappa(\mathbf{D})\mathbf{1}_2 \otimes \mathbf{1}_2 + \frac{1}{2}\left(\mathbf{d}'(\mathbf{D}) \otimes \mathbf{1}_2 + \mathbf{1}_2 \otimes \mathbf{d}'(\mathbf{D})\right) + \mathbf{H}(\mathbf{D})$$

where the invariants and covariants models are

$$\mu(\mathbf{D}) = \mu_0 - \frac{1}{4}\kappa_0(\operatorname{tr} \mathbf{D}) + \frac{1}{4}(\kappa_0 - 2\mu_0)(\mathbf{D}:\mathbf{D}) \qquad \mathbf{d}'(\mathbf{D}) = -2\kappa_0\mathbf{D}'$$
$$\kappa(\mathbf{D}) = \kappa_0\left(1 - \frac{1}{2}\operatorname{tr} \mathbf{D}\right) \qquad \mathbf{H}(\mathbf{D}) = \mathbf{E} - \mathbf{Iso} - \mathbf{Dil}$$

Questions How to model

 \odot shear modulus $\mu(\mathbf{D})$?

 \boldsymbol{O} harmonic part $\mathbf{H}(\mathbf{D})?$

Virtual testing	LASSO 0000	State model 00●0	Harmonic part 0000	Verifications	8 / 13
-----------------	----------------------	---------------------	-----------------------	---------------	--------

State model – Harmonic part – Parametrization

How to parametrize the harmonic part? (Vannucci, 2005) (Desmorat & Desmorat, 2015)

Orthotropy
$$\implies$$
 $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}':\mathbf{d}')\mathbf{J}$.

Virtual testing	LASSO 0000	State model 00●0	Harmonic part 0000	Verifications	8 / 13
-----------------	----------------------	---------------------	-----------------------	---------------	--------

State model – Harmonic part – Parametrization

How to parametrize the harmonic part? (Vannucci, 2005) (Desmorat & Desmorat, 2015)

$$\mathsf{Orthotropy} \implies \mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}':\mathbf{d}') \mathbf{J}$.

Questions

- **O** Model orientation (\pm) ?
- **O** Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

Virtual testing	LASSO 0000	State model 00●0	Harmonic part 0000	Verifications	8 / 13

State model – Harmonic part – Parametrization

How to parametrize the harmonic part? (Vannucci, 2005) (Desmorat & Desmorat, 2015) Orthotropy \implies $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' * \mathbf{d}'}{\|\mathbf{d}' * \mathbf{d}'\|} \right)$

where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}': \mathbf{d}') \mathbf{J}$.

Questions

- **O** Model orientation (\pm) ?
- **O** Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

2

3

4

State model – Harmonic part – Parametrization

 $\cdot 10^{4}$ How to parametrize the harmonic part? 4 (Vannucci, 2005) (Desmorat & Desmorat, 2015) No. of elasticity tensors 3 Orthotropy \implies $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$ 2where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2} (\mathbf{d}':\mathbf{d}') \mathbf{J}$. Questions 0 0 **O** Model orientation (\pm) ? $\left\| \frac{\mathbf{H}}{\|\mathbf{H}\|} - \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right\|$

Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

2

3

4

State model – Harmonic part – Parametrization

How to parametrize the harmonic part? $\cdot 10^{4}$ 4 (Vannucci, 2005) (Desmorat & Desmorat, 2015) No. of elasticity tensors $\|\mathbf{H}\|^{2} > 0.02 \|\mathbf{E}\|^{2}$ $\|\mathbf{H}\|^{2} \leq 0.02 \|\mathbf{E}\|^{2}$ 3 Orthotropy \implies $\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$ 2where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}':\mathbf{d}')\mathbf{J}$. Questions 0 0 **O** Model orientation (\pm) ? $\left\| \frac{\mathbf{H}}{\|\mathbf{H}\|} - \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right\|$

Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

2

3

4

State model – Harmonic part – Parametrization

How to parametrize the harmonic part? $\cdot 10^{4}$ 4 (Vannucci, 2005) (Desmorat & Desmorat, 2015) No. of elasticity tensors $\|\mathbf{H}\|^{2} > 0.02 \|\mathbf{E}\|^{2}$ $\|\mathbf{H}\|^{2} \leq 0.02 \|\mathbf{E}\|^{2}$ 3 Orthotropy \implies $\mathbf{H} = \|\mathbf{H}\| \left(+ \frac{\mathbf{d}' * \mathbf{d}'}{\|\mathbf{d}' * \mathbf{d}'\|} \right)$ 2where $\mathbf{d}' * \mathbf{d}' = \mathbf{d}' \otimes \mathbf{d}' - \frac{1}{2}(\mathbf{d}':\mathbf{d}')\mathbf{J}$. Questions 0 0 Model orientation (\pm) ? \odot $\left\| \frac{\mathbf{H}}{\|\mathbf{H}\|} - \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right\|$

Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

Virtual testingLASSOState modelHarmonic partVerifications9 /0000000000000000000000009 /	13
---	----

Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13
-----------------	----------------------	---------------------	-----------------------	---------------	------

Invariants

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}':\mathbf{D}'$

Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13
-----------------	----------------------	---------------------	-----------------------	---------------	------

 $I_1(\mathbf{D}) = \operatorname{tr}(\mathbf{D}) \quad I_2(\mathbf{D}') = \mathbf{D}':\mathbf{D}'$ $\times 10^{10}$ 1.6 1.41.21.0 $\|\mathbf{H}\| = 0.8^{\circ}$ 0.60.40.20.0 $0.30 \underbrace{0.25}_{l_2(\mathcal{D}')} \underbrace{0.10}_{0.15} \underbrace{0.10}_{0.10}$ 2.01.5 1.0 D 0.5 0.050.0 0.00

Virtual testing LASSO State model Harmonic part Verifications 9/1	Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13
---	-----------------	----------------------	---------------------	-----------------------	---------------	------

Invariants

 $I_1\left(\mathbf{D}
ight) = \operatorname{tr}(\mathbf{D}) \quad I_2\left(\mathbf{D}'
ight) = \mathbf{D}':\mathbf{D}'$

Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13

Invariants

$$I_1\left(\mathbf{D}
ight) = \mathrm{tr}(\mathbf{D}) \quad I_2\left(\mathbf{D}'
ight) = \mathbf{D}'{:}\mathbf{D}'$$

Assumptions

 $H^{\mathrm{m}}(\mathbf{D} = \mathbf{0}_2) = \mathbf{0}_4$ (Initial isotropy) $H^{\mathrm{m}}(\mathbf{D} = \mathbf{1}_2) = \mathbf{0}_4$ (Fully damaged)

Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13

Invariants

$$I_1\left(\mathbf{D}
ight) = \operatorname{tr}(\mathbf{D}) \quad I_2\left(\mathbf{D}'
ight) = \mathbf{D}':\mathbf{D}'$$

Assumptions

 $H^{\mathrm{m}}(\mathbf{D} = \mathbf{0}_2) = \mathbf{0}_4$ (Initial isotropy) $H^{\mathrm{m}}(\mathbf{D} = \mathbf{1}_2) = \mathbf{0}_4$ (Fully damaged)

Proposition – Polynomial of invariants $H^{\mathrm{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_1(\mathbf{D})^n \cdot I_2(\mathbf{D}')^m$

Virtual testing	LASSO 0000	State model 000●	Harmonic part 0000	Verifications	9/13

Invariants

$$I_1\left(\mathbf{D}
ight) = \operatorname{tr}(\mathbf{D}) \quad I_2\left(\mathbf{D}'
ight) = \mathbf{D}':\mathbf{D}'$$

Assumptions

 $H^{\mathrm{m}}(\mathbf{D} = \mathbf{0}_2) = \mathbf{0}_4$ (Initial isotropy) $H^{\mathrm{m}}(\mathbf{D} = \mathbf{1}_2) = \mathbf{0}_4$ (Fully damaged)

Proposition – Polynomial of invariants

$$H^{\mathrm{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_1(\mathbf{D})^n \cdot I_2(\mathbf{D}')^m$$

Sparse regression $\implies H^{\mathrm{m}}(\mathbf{D}) = 12 \cdot 10^9 \cdot I_1(\mathbf{D})^4 \cdot I_2(\mathbf{D}')$

Virtual testing	LASSO 0000	State model 0000	Harmonic part ●000	Verifications 0000	10/13
-----------------	----------------------	---------------------	-----------------------	-----------------------	-------

Harmonic part – Harmonic part – Parametrization

Based on (Vannucci, 2005) and (Desmorat & Desmorat, 2015), intuition from (Kachanov, 1992).

How to parametrize the harmonic part?

Virtual testingLASSOState modelHarmonic partVerifications10/130000000000000000000010/13

Harmonic part – Harmonic part – Parametrization

Based on (Vannucci, 2005) and (Desmorat & Desmorat, 2015), intuition from (Kachanov, 1992).

How to parametrize the harmonic part?

 $\begin{array}{ll} \mbox{Anisotropy} & \mathbf{H} = \|\mathbf{H}\|(\pm \underbrace{\mathbf{e}_1' \ast \mathbf{e}_1'}_{\mathbf{e}_1' \otimes \mathbf{e}_1' - \frac{1}{2}(\mathbf{e}_1' : \mathbf{e}_1')} \\ \end{array}$

Virtual testing LASSO State model Harmonic part Verifications 10/13

Harmonic part – Harmonic part – Parametrization

Based on (Vannucci, 2005) and (Desmorat & Desmorat, 2015), intuition from (Kachanov, 1992).

How to parametrize the harmonic part?

Anisotropy
$$\mathbf{H} = \|\mathbf{H}\| (\pm \underbrace{\mathbf{e}'_1 \ast \mathbf{e}'_1}_{\mathbf{e}'_1 \otimes \mathbf{e}'_1 - \frac{1}{2}(\mathbf{e}'_1:\mathbf{e}'_1)} \mathbf{J}$$

Orthotropy
$$\mathbf{H} = \|\mathbf{H}\| \left(\pm rac{\mathbf{d}' * \mathbf{d}'}{\|\mathbf{d}' * \mathbf{d}'\|}
ight)$$

Virtual testing LASSO State model Harmonic part Verifications 10/13

Harmonic part – Harmonic part – Parametrization

Based on (Vannucci, 2005) and (Desmorat & Desmorat, 2015), intuition from (Kachanov, 1992).

How to parametrize the harmonic part?

Anisotropy
$$\mathbf{H} = \|\mathbf{H}\| (\pm \underbrace{\mathbf{e}'_1 \ast \mathbf{e}'_1}_{\mathbf{e}'_1 \otimes \mathbf{e}'_1 - \frac{1}{2}(\mathbf{e}'_1:\mathbf{e}'_1)\mathbf{J}}$$

Orthotropy
$$\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$$

Virtual testingLASSOState modelHarmonic partVerifications10/130000000000000000000010/13

Harmonic part – Harmonic part – Parametrization

Based on (Vannucci, 2005) and (Desmorat & Desmorat, 2015), intuition from (Kachanov, 1992).

How to parametrize the harmonic part?

Anisotropy $\mathbf{H} = \|\mathbf{H}\| (\pm \underbrace{\mathbf{e}'_1 \ast \mathbf{e}'_1}_{\mathbf{e}'_1 \otimes \mathbf{e}'_1 - \frac{1}{2}(\mathbf{e}'_1:\mathbf{e}'_1)} \mathbf{J}$

Orthotropy
$$\mathbf{H} = \|\mathbf{H}\| \left(\pm \frac{\mathbf{d}' \ast \mathbf{d}'}{\|\mathbf{d}' \ast \mathbf{d}'\|} \right)$$

Questions

O Model orientation (\pm) ?

O Model norm $H(\mathbf{D}) = \|\mathbf{H}\|$?

Virtual testingLASSOState modelHarmonic partVerifications11,0000000000000000000011,	/ 13
---	------

Indications

$$O_{+}(\mathbf{E}) = 0 \iff \mathbf{H} \propto +\mathbf{d}' * \mathbf{d}'$$
$$O_{+}(\mathbf{E}) = 4 \iff \mathbf{H} \propto -\mathbf{d}' * \mathbf{d}'$$

Virtual testing	LASSO 0000	State model 0000	Harmonic part ○●○○	Verifications	11 / 13

Indications

$$O_{+}(\mathbf{E}) = 0 \iff \mathbf{H} \propto +\mathbf{d}' * \mathbf{d}'$$
$$O_{+}(\mathbf{E}) = 4 \iff \mathbf{H} \propto -\mathbf{d}' * \mathbf{d}'$$

Virtual testing	LASSO 0000	State model 0000	Harmonic part ○●○○	Verifications	11 / 13

Indications

$$O_{+}(\mathbf{E}) = 0 \iff \mathbf{H} \propto +\mathbf{d}' * \mathbf{d}'$$
$$O_{+}(\mathbf{E}) = 4 \iff \mathbf{H} \propto -\mathbf{d}' * \mathbf{d}'$$

Conclusion

$$\mathbf{H}^{\mathrm{m}}(\mathbf{D}) = +H^{\mathrm{m}}(\mathbf{D}) \ \frac{\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})}{\|\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})\|}$$

Virtual testing	LASSO 0000	State model	Harmonic part ○●○○	Verifications	11 / 13

Indications

$$O_{+}(\mathbf{E}) = 0 \iff \mathbf{H} \propto +\mathbf{d}' * \mathbf{d}'$$
$$O_{+}(\mathbf{E}) = 4 \iff \mathbf{H} \propto -\mathbf{d}' * \mathbf{d}'$$

Conclusion

$$\mathbf{H}^{\mathrm{m}}(\mathbf{D}) = +H^{\mathrm{m}}(\mathbf{D}) \ \frac{\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})}{\|\mathbf{d}'(\mathbf{D}) \ast \mathbf{d}'(\mathbf{D})\|}$$

Questions

Model orientation (±)?
Model norm H(D) = ||H||?

Harmonic part – Modeling the norm $H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

$$egin{aligned} &I_1\left(\mathbf{D}
ight)= ext{tr}(\mathbf{D})\ &I_2\left(\mathbf{D}'
ight)=\mathbf{D}'{:}\mathbf{D}' \end{aligned}$$

Remarks

► Initial isotropy $\mathbf{D} = \mathbf{0}_2 \implies \|\mathbf{H}\| = \mathbf{0}_4$

$$\label{eq:basic} \begin{array}{l} \blacktriangleright \ \, \mathbf{E} = \mathbf{0}_4 \ \text{when fully damaged} \\ \mathbf{D} = \mathbf{1}_2 \ \Longrightarrow \ \|\mathbf{H}\| = \mathbf{0}_4 \end{array}$$

Harmonic part – Modeling the norm $H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

$$egin{aligned} &I_1\left(\mathbf{D}
ight) = ext{tr}(\mathbf{D}) \ &I_2\left(\mathbf{D}'
ight) = \mathbf{D}'{:}\mathbf{D}' \end{aligned}$$

Remarks

- ► Initial isotropy $\mathbf{D} = \mathbf{0}_2 \implies \|\mathbf{H}\| = \mathbf{0}_4$
- $\label{eq:basic} \begin{array}{l} \blacktriangleright \ \mathbf{E} = \mathbf{0}_4 \text{ when fully damaged} \\ \mathbf{D} = \mathbf{1}_2 \implies \|\mathbf{H}\| = \mathbf{0}_4 \end{array}$

Harmonic part – Modeling the norm $H^m(\mathbf{D}) \approx \|\mathbf{H}\|$?

Invariants

$$egin{aligned} I_1\left(\mathbf{D}
ight) &= ext{tr}(\mathbf{D}) \ I_2\left(\mathbf{D}'
ight) &= \mathbf{D}'{:}\mathbf{D}' \end{aligned}$$

Remarks

- ► Initial isotropy $\mathbf{D} = \mathbf{0}_2 \implies \|\mathbf{H}\| = \mathbf{0}_4$
- $\label{eq:basic} \begin{array}{l} \blacktriangleright \ \, \mathbf{E} = \mathbf{0}_4 \mbox{ when fully damaged} \\ \mathbf{D} = \mathbf{1}_2 \ \Longrightarrow \ \|\mathbf{H}\| = \mathbf{0}_4 \end{array}$

$$\label{eq:conclusion} \begin{split} & {\rm Conclusion} \\ & H^m({\bf D}) \approx \|{\bf H}\| \text{ should be possible} \end{split}$$

Virtual testing	LASSO 0000	State model 0000	Harmonic part 000●	Verifications	13 / 13
-----------------	----------------------	---------------------	-----------------------	---------------	---------

Harmonic part – Modeling the norm $H^{\rm m}(\mathbf{D}) \approx \|\mathbf{H}\|$ Proposition

Polynomial of invariants

$$H^{\mathrm{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_1(\mathbf{D})^n \cdot I_2(\mathbf{D}')^m$$
Virtual testing	LASSO 0000	State model 0000	Harmonic part 000●	Verifications	13 / 13
-----------------	----------------------	---------------------	-----------------------	---------------	---------

Harmonic part – Modeling the norm $H^{\mathrm{m}}(\mathbf{D}) \approx \|\mathbf{H}\|$ Proposition

Polynomial of invariants

$$H^{\mathrm{m}}(\mathbf{D}) = \sum_{n,m} c_{n,m} \ I_1 \left(\mathbf{D}\right)^n \cdot I_2 \left(\mathbf{D}'\right)^m$$

A Large number of parameters $c_{n,m}$

Virtual testing	LASSO 0000	State model 0000	Harmonic part 000●	Verifications 0000	13 / 13
-----------------	----------------------	---------------------	-----------------------	-----------------------	---------

Harmonic part – Modeling the norm $\mathit{H}^{\mathrm{m}}(\mathbf{D})\approx \|\mathbf{H}\|$ Proposition

Polynomial of invariants

$$H^{m}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_{1}(\mathbf{D})^{n} \cdot I_{2}(\mathbf{D}')^{m}$$
A Large number of parameters $c_{n,m}$

Tool Sparse regression (LASSO)

$$\begin{split} \mathbf{c}^* &= \mathop{\mathrm{argmin}}_{\mathbf{c}~\in \mathbb{R}^N} \| [\| \mathbf{H} \|] - \mathbf{c} \cdot \mathbf{Inv} \|_2 \\ \text{subject to} ~ \| \mathbf{c} \|_1 < \alpha \end{split}$$

- ► Constrained linear regression
- Minimize number of non zero coeff
- \blacktriangleright Introduces a hyper-parameter α

Virtual testing	LASSO 0000	State model 0000	Harmonic part 000●	Verifications 0000	13 / 13

Harmonic part – Modeling the norm $H^{\mathrm{m}}(\mathbf{D}) \approx \|\mathbf{H}\|$ Proposition

Polynomial of invariants

$$H^{m}(\mathbf{D}) = \sum_{n,m} c_{n,m} I_{1}(\mathbf{D})^{n} \cdot I_{2}(\mathbf{D}')^{m}$$

A Large number of parameters $c_{n,m}$

Tool Sparse regression (LASSO)

$$\begin{split} \mathbf{c}^* &= \mathop{\mathrm{argmin}}_{\mathbf{c}~\in \mathbb{R}^N} \| [\| \mathbf{H} \|] - \mathbf{c} \cdot \mathbf{Inv} \|_2 \\ \text{subject to} ~ \| \mathbf{c} \|_1 < \alpha \end{split}$$

- Constrained linear regression
- Minimize number of non zero coeff
- \blacktriangleright Introduces a hyper-parameter α

 $\times 10^{10}$ 1.50° 1.25'1.00 $\|\mathbf{H}\|_{0.75}$ 0.50 0.250.00 2.0 $0.25 \\ 0.20$ 1.5 1.0 1) $L_{2(D')}^{0.15}$ 0.10 0.5 0.05 0.00 0.0

Resulting model

 $H^{\mathrm{m}}(\mathbf{D}) = 12 \cdot 10^9 \cdot I_1 \left(\mathbf{D}\right)^4 \cdot I_2 \left(\mathbf{D}'\right)$

Virtual testing	LASSO 0000	State model 0000	Harmonic part 0000	Verifications ●000	13 / 13

Verifications – Application to a shear \rightarrow tension loading

Verifications – Application to a shear \rightarrow tension loading

Legend

- ► I1H0 Dashed
- I1H1 Continuous

Partial conclusions

- ► H1 increase accuracy
- $\blacktriangleright \ \mathrm{err}(\mathbf{Iso}) \approx \mathrm{err}(\mathbf{H})$

Virtual testing 0000	LASSO 0000	State model	Harmonic part 0000	Verifications 00●0	13 / 13

Verifications – Over the whole dataset

Conclusion

► H1 increases accuracy

Question Accuracy at high damage ?

Verifications – For highly damaged tensors ($D_1 > 0.8$ or $D_2 > 0.8$)

Conclusion

► Keep same levels of error