Blowups of differential equations at singular points

Ruben LOUIS

Institut Élie Cartan de Lorraine 3 Rue Augustin Fresnel, 57070 Metz France

La Rochelle, 7 Juillet 2021

Blowup at a point

Blow-up of a singular point of a foliation

Looking for a good blowup!

Resolution of singularities

Let $X\subseteq\mathbb{R}^d$ or $X\subseteq\mathbb{C}^d$ be a variety with a few singularities :

Formal definition

A variety $X\subseteq\mathbb{R}^d$ or \mathbb{C}^d is the set of solutions of equations, $\varphi_1=0,\ldots,\varphi_k=0$, with $\varphi_1,\ldots,\varphi_k$ are polynomial functions.

Resolution of singularities

The aim is to replace X with a good « $\frac{\text{approximation}}{\text{approximation}}$ » with the same $\frac{\text{dimension}}{\text{dimension}}$.

Formal definition

Let X,Y be varieties. A morphism $\pi\colon Y\to X$ is a resolution of singularities if Y has no singular points and π is proper and birational, that is there exist two open set $U\subset Y,V\subset X$ with $V=\pi(U)$ such that $\pi\colon U\to V$ is an isomorphism.

The simplest transformation which could resolve a singularity is called blow-up!

Blowups on varieties!

Roughly speaking "blow up of a point" means that we replace the point by all the lines that pass through that point, equivalently by a sphere where we identify antipodal points!

Review of Projective Space

Some ways to realize projective space $\mathbb{P}^d_{\mathbb{C}}$

- 1. As $\mathbb{C}^{d+1}\setminus\{0\}/\sim$, under the identification $(a_0,\ldots,a_d)\sim(\lambda a_0,\ldots,\lambda a_d)$, for $\lambda\in\mathbb{C}^\times$, « straight lines through the origin ».
- 2. As S^d/\sim , that is $\{x\in\mathbb{C}^{d+1}\mid \|x\|=1\}/$ "antipodal points".

We usually denote a « point = straight line » of $\mathbb{P}^d_{\mathbb{C}}$ by $(a_0: a_1: \cdots: a_d)$.

Blowup \mathbb{C}^d at the origin

Blowup \mathbb{C}^d at the origin

Blowup \mathbb{C}^d at the origin

The Blowup space:

Consider the closed subvariety,

$$B_0(\mathbb{C}^d) = \left\{ (x, \ell) \in \mathbb{C}^d \times \mathbb{P}_{\mathbb{C}}^{d-1} \mid x \in \mathbb{C}^d, \ell \in \mathbb{P}_{\mathbb{C}}^d \right\} \subset \mathbb{C}^d \times \mathbb{P}_{\mathbb{C}}^{d-1}$$
$$= \left\{ ((x_1, \dots, x_d), (y_1 : \dots : y_d)) \in \mathbb{C}^d \times \mathbb{P}_{\mathbb{C}}^{d-1} \mid x_i y_j - x_j y_i = 0 \right\}$$

together with the projection

$$\pi: B_0(\mathbb{C}^d) \longrightarrow \mathbb{C}^d, (x,\ell) \mapsto x.$$

So, π restricts to an isomorphism between $B_0(\mathbb{C}^d) \setminus \pi^{-1}(0)$ and $\mathbb{C}^d \setminus \{0\}$.

Definition

The blowup of \mathbb{C}^d at the origin is the projection $\pi\colon B_0(\mathbb{C}^d)\longrightarrow \mathbb{C}^d$. The fibers of $\pi:B_0(\mathbb{C}^d)\longrightarrow \mathbb{C}^d$ are

$$\pi^{-1}(x) = \begin{cases} (x, [x]) & \text{if } x \neq 0, \text{ (no other choice)} \\ \{0\} \times \mathbb{P}^{d-1} & \text{if } x = 0, \text{ (lines through the origin)} \end{cases}$$

 $E = \pi^{-1}(0) \subset B_0 \mathbb{C}^n$ is called the exceptional divisor. Points on E are in bijection with lines through 0 of \mathbb{C}^d .

Expression in local coordinates

Let for instance d=3. In the z-chart, π is the map $(x,y,z)\mapsto (xz,yz,z)$.

The Blow-Up of $W \subset \mathbb{C}^d$ at $p \in W$

Define the strict transform of W as

$$B_pW = \overline{\pi^{-1}(W \setminus \{p\})} \subset B_p\mathbb{C}^d.$$

The blowup of W at p is the projection map $\pi|_{B_pW}: B_pW \longrightarrow W$.

When $p \in \mathbb{C}^d$ is not the origin we shift the origin to p by the transformation $x \longmapsto x - p$.

Resolution of Kleinian Singularities

Let X be the surface given by the equation $A_n : x^2 + y^2 + z^{n+1} = 0$.

Its blow up at the origin

In the z-direction, we obtain $z^2(x^2 + y^2 + z^{n-1}) = 0$. Notice that it is exactly a singularity of type A_{n-2} .

After several blow-ups, it reduces to the case of A_0 or A_{-1} which are smooth.

For
$$A_2: x^2 + y^2 + z^3 = 0$$

A single blow-up is enough to resolve its singularity. We obtain A_0 which is smooth!

Blowup at a point

Blow-up of a singular point of a foliation

Looking for a good blowup!

Blowup a singular vector field

Definition

Let X be a vector field on \mathbb{C}^d such that X(0)=0. The blow-up of X at 0 is the pull-back vector field $\pi^*(X)$ of X by the blow up map $\pi\colon B_0W\longrightarrow W$.

Example

- 1. The blow-up of the Euler vector field $E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$ in the z-direction is the vector field $z \frac{\partial}{\partial z}$.
- 2. The blow up the vector field $x \frac{\partial}{\partial y} y \frac{\partial}{\partial x}$ in the z-direction is itself again.

Blowup a singular vector field

What is a good blow-up for a foliation?

We need these properties

- Diffeomorphism on regular points
- Less singular
- The same number of leaves

Good blow up!

Blowup singular foliations

Definition

Given a foliation \mathcal{F} of W and $p \in W$, the blow-up of \mathcal{F} at p is the pull-back foliation $\pi^*(\mathcal{F})$ of \mathcal{F} by the blow up map $\pi \colon \mathcal{B}_p W \longrightarrow W$.

Example (Concentric spheres)

Let $\mathcal F$ be the singlar foliation generated by the vector fields, $x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}$, $y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}$, $z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}$. $\mathcal F$ has one singular leaf which is $\{0\}$.

Its blow-up yields a regular foliation.

That is a good blow up!

The blowup in the sense above may be a bit lacking

It adds leaves

Consider the foliation $\mathcal{F}=Span_{C^{\infty}(\mathbb{R}^d)}\{x_ix_j\frac{\partial}{\partial x_k},i,j,k=1,\ldots,d\}$ made of vector fields vanishing to order 2 at 0 on \mathbb{R}^d !

Let n=3, and look at the blow up in the z-direction. All the the vector fields of $\widetilde{\mathcal{F}}$ vanish on $\pi^{-1}(0)$. Which gives an infinity of leaves to $\widetilde{\mathcal{F}}$.

Not a good blow up!

More generally, We can do blow up along a sub-variety

Let $X\subset\mathbb{R}^d$, \mathbb{C}^d be variety and let $Z=\{\psi_1=0,\ldots,\psi_k=0\}$ be a subvariety of X. Consider the morphism

$$\gamma: X \setminus Z \longrightarrow \mathbb{P}^{d-1}, x \mapsto (\psi_1(x): \cdots : \psi_k(x))$$

Definition

The Zariski closure \widetilde{X} of the graph Γ of γ inside $X \times \mathbb{P}^{d-1}$ together with the restriction $\pi \colon \widetilde{X} \longrightarrow X$ of the projection map $X \times \mathbb{P}^{d-1} \longrightarrow X$ is the blowup of X along Z.

Properties of foliations can be studied in a purely algebraic way

Given a singular foliation \mathcal{F} over a manifold M we use the relations between its generators, relations of its relations... to bring an algebraic structure behind \mathcal{F} .

$$\cdots \to C^{\infty}(M)^r \to C^{\infty}(M)^p \xrightarrow{\text{minimal system of relations on generators of } \mathcal{F}} C^{\infty}(M)^q \xrightarrow{\text{minimal system of generators of } \mathcal{F}} \mathcal{F}$$

We reproduce the Lie bracket of \mathcal{F} on the module $C^{\infty}(M)^q$. Unfortunately, it does not satisfy "Jacobi identity" in general. i.e,

$$[[X,Y],Z]+\circlearrowleft(X,Y,Z)\neq0.$$

This will give rise to an extra bracket "3-ary-bracket", C(X, Y, Z)....

Properties of foliations can be studied in a purely algebraic way

3 generators \longrightarrow 1 relation = C(X, Y, Z).

Look at an effect of blowup on on this algebraic structure

On the blow-up space of the hypersurface

$$W = \{ \varphi = \sum_{i=1}^d x_i^3 + t^3 = 0 \}$$
 at the origin

Consider the singular foliation

$$\mathcal{F} = \{ \text{Vector fields on } \mathbb{R}^d \text{ such that } X[\varphi] = 0 \}$$

 ${\cal F}$ is generated by the vector fields $x_i^2 \frac{\partial}{\partial x_i} - x_j^2 \frac{\partial}{\partial x_i}$,.....

NMRLA

We know that there is no way to get Jacobi in this case.

The blowup of W at zero in the t-direction is given by the equation,

$$\sum_{i=1}^{d} x_i^3 = -1,$$

with t left to be a free variable.

 $\widetilde{\mathcal{F}}$ is generated by the vector fields

$$\widetilde{\Delta}ij = t\left(x_i^2 \frac{\partial}{\partial x_j} - x_j^2 \frac{\partial}{\partial x_i}\right), \ \widetilde{\Delta}_{it} = t\left(tx_i^2 \frac{\partial}{\partial t} - \frac{\partial}{\partial x_i} - x_i^2 \sum_{j=1}^d x_j \frac{\partial}{\partial x_j}\right). \ \text{We}$$
 have

$$\widetilde{\mathcal{F}} = Span\{\widetilde{\Delta}_{it}, i = 1, \dots N\}$$

The blowup foliation $\widetilde{\mathcal{F}}$ coincides with the Lie algebroid on the trivial bundle E_{-1} whose sections are the $\mathcal{O}_{\widetilde{W}\cap U}$ -module generated by some set $(e_i, i=1...N)$, equipped with the Lie bracket :

$$[e_i, e_j] := 2t \left(x_i^2 e_j - x_j^2 e_i\right)$$
 (1)

together with the anchor map ρ which assigns e_i to $\widetilde{\Delta}_{it}$, for $i=1\ldots N$.

Proposition

After blow-up, we have Jacobi. But we have « too much » leaves.

Blowup at a point

Blow-up of a singular point of a foliation

Looking for a good blowup!

A blow-up through bi-submersions

A mecanic process, but faillable, that gives a good resolution.

Theorem.(RL)

Let $\Gamma \rightrightarrows M$ a Lie groupoid (bissubmersion) and $C \subset \overline{S}$ a crossing $(S \subset M \text{ a leaf})$. Take B to be the normalization of C that is, the vector bundle $B \to C \cap S$ defined over $C \cap S$ by

$$B_x = \rho^{-1}(T_x C), x \in C \cap S.$$

Then, $B \setminus \Gamma_C \longrightarrow \overline{S}$ is a good resolution. Where $\Gamma_C := s^{-1}(C)$.

References

Herwig Hauser.
Blowups and resolution.

Nicolas Hemelsoet.
Simple lie algebras and singularities.