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Very classical story

Canonical case:
given H: T*Q — R

oH . OH

q:a_p7 p__B_q

Symplectic geometry
w= Z dpi A dg’
i

txyw =dH

More general case:
given H: M — R and
an antisymmetric J(x)

. oH
X = J(X)a

Poisson geometry

{-,-} on:C®(M)
X = {Ha'}

x ={H,x}
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conférence de Jean-Pierre Bourguignon
https://www.youtube.com/watch?v=93hFolIBo0Q
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Classical story in modern language
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Classical story in modern language
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Classical story revisited (Tulczyjew)
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Classical story revisited (Tulczyjew)

4.3.5 Theorem (W.M. Tulczyjew). With the notations specified above (4.3.4), let Xy :
T*N — TT*N be the Hamiltonian vector field on the symplectic manifold (T*N,d6y)
associated to the Hamiltonian H : T*N — R, defined by i(Xy)d6y = —dH. Then

Xu(T*N) = By ' (dH(T*N)).

Moreover, the equality
oy (dL(TN)) = By ' (dH(T*N))

holds if and only if the Lagrangian L is hyper-regular and such that
dH =d(ELoL]"),

where L : TN — T*N is the Legendre map and Ep : TN — R the energy associated to
the Lagrangian L.



Beyond: port-Hamiltonian systems; constraints

A lot of examples
(ask Antoine Falaize, David Roze) :

almos €

Conjecture (VS): Everything is port-Hamiltonian.
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Geometry behind: Courant algebroids, Dirac structures
On E=TM & T*M (or more generally F & F*)
Symmetric pairing: < v @& n, v @ n' >=n(v')+1n'(v),
Dorfman bracket: [v @& n, v/ @ 1n']p = [v, V/]Lie ® (Lvn' — dn(V")).
A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of E closed w.r.t. [-,]p
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DYSIEMS  ENGINELRING
SEMINAR
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ENERGY, % m o2

Professor Henry M, Pgynter will present a seminar on

e subject, "Ports, knergy snd Thermodynamie Systems"
t 3:15 pom, in Room B 103 of the
Mechani€3T ERgIMEaring Building,

Dr. Paynter is Assistant Professor of Mechanicel
Enpineering at M.I.T. snd Director of the fmerican
Center for Analog Computing (a facility of Pl-Square
Engineering Company). He is prominently recognized
for his work in controls, dynamic systems, anslog
simulation and related fields. He is the author of
very many authoritative papers covering a wide range
of topies. Be has glso done extensive consulting
work in industry and government,

Dr. Paynter is a very interesting and stimlating
speaker. His viewpoints are novel and thoughte
provoking.

CASE INSTITUTE OF TECHNOLOGY

e

— Henry M. Paynter,
Analysis and Design of
Engineering  Systems,
MIT Press, Cambridge,
Massachusetts, 1961.

— Jean U. Thoma,
Introduction to Bond
Graphs and  Their

Applications, Pergamon
Press, Oxford, 1975.



Philosophy

C o QO B https://math.ucr.edu/home/baez/week292.html
displacement flow momentum
q q' p
Mechanics position velocity momentum
(translation)
Mechanics angle angular angular
(rotation) velocity momentum
Electronics charge current flux
linkage
Hydraulics volume flow pressure
momentum
Thermodynamics entropy entropy temperature
flow momentum
Chemistry moles molar chemical
flow momentum

(e cconmmie

>

)

effort
p'
force
torque
voltage
pressure

temperature

chemical
potential

“This Week's Finds in Mathematical Physics”’, by John Baez



Philosophy

C @ O & https://math.ucr.edu/home/baez/week292.html

displacement flow

q q

Mechanics position velocity
(translation)
Mechanics angle angular
(rotation) velocity
Electronics charge current
Hydraulics volume flow
Thermodynamics entropy entropy

flow
Chemistry moles molar

flow

J.-M. Souriau’s thermodynamics,

momentum
p

momentum
angular
momentum

flux
linkage

pressure
momentum

temperature
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chemical
momentum
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pressure

temperature
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cf. also C.-M. Marle https://arxiv.org/abs/1608.00103


https://arxiv.org/abs/1608.00103

What is the conceptual difference?

Beyond: port-Hamiltonian systems; constraints

A lot of examples
(ask Antoine Falaize, David Roze) :

e

H(% P) .

Conjecture (VS): Everything is port-Hamiltonian.

Geometry behind: Courant algebroids, Dirac structures
On E = TM® T*M (or more generally F & F*)

\)/ Symmetric pairing: < v @1, v' @ 1 >=n(v') +1/(v),

Dorfman bracket: [v &1, v ® 1/]p = [V, V/]uie @ (L7 — dn(v")).

Y45 A Dirac structure D is a maximally isotropic (Lagrangian)
i, O subbundle of E closed w.rt. [-]p
R
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Some directions

— Geometrical Mechanics on algebroids
K.Grabowska, J.Grabowski, P.Urbanski,
https://arxiv.org/abs/math-ph/0509063

— Variational formulation of dynamics on Dirac structures,
j/w O. Cosserat, C. Laurent-Gengoux, A. Kotov, L. Ryvkin.


https://arxiv.org/abs/math-ph/0509063
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Q 8 connection 1-forms

Gluons

SU(3) symmetry

(j/w Thomas Strobl — Lyon, Alexei Kotov — Hradec Kralové)



Methods from HEP
Qu ntization of (Jauge Systems

Chapter One. Constrained Hamiltonian Systems

Marc Henneaux

and

Claudio Teitelboim

1.1. Gauge Invariance—Constraints

L.1.1.

1.1.2.
1.1.3.
1.1.4.
L.L5.
1.1.6.
1L1.7.
1.18.
1L.1.9.
1.1.10.

The Lagrangian as a Starting Point:
Primary Constraints

Conditions on the Constraint Functions
The Canonical Hamiltonian

Action Principle in Hamiltonian Form
Secondary Constraints

Weak and Strong Equations
Restrictions on the Lagrange Multipliers
Irreducible and Reducible Cases

Total Hamiltonian

First-Class and Second-Class Functions

1.2. First-Class Constraints as Generators of
Gauge Transformations

L2.1.

1.2.2.
1.23.
1.2.4.

Transformations That Do Not Change the
Physical State. Gauge Transformations.

A Counterexample to the Dirac Conjecture
The Extended Hamiltonian

Extended Action Principle

1.3. Second-Class Constraints: The Dirac Bracket
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Important
graded

differential
manifolds.

“tool™:
geometry,
graded



Graded manifolds

— details

“...graded manifolds are
just manifolds with a few bells
and whistles...” (D. Roytenberg)

Graded manifolds, super manifolds
History

Joseph Pierre Deligne
Felix Berezin Bernstein € Dimitry Leites

Philosophy

“...graded manifolds are just
manifolds with a few bells and
whistles...”

Dmitry
Roytenberg

Graded geometry: definitions (do not read)

o Graded vector space V s a collection of vector spaces V = &V;
(i€ Zori€Zs)ifve Vi deg(v)=i.

o Homomorphism shifting the grading by p: (V[p]); = Vi_p.

o Assume the base to be of degree 0, the dual vector space (V;)* is
defined as (V*)_.

® Graded algebra structure -: V@V =V, st. V, @ Vg =V,
 Graded commutator [a, b] = ab — (—1)98(2)9ez(b) py

o Graded symmetric algebra over V: S(V) = Tensor(V)/[-,"]

Definition. Graded manifold M is a couple (Mo, Opr), where
Mo is a smooth manifold and the sheaf of functions O is locally
isomorphic to C*(Up) @ S(V'), where Up is an open subset of My

« Top degree of the generators of Oy — is called degree of M.
Standard abuse of notations: Vj-vector bundle or sheaf of sections.

Graded manifolds

D. Roytenberg: “...bells and whistles...”

Prop. (D.Roytenberg) Given a non-negatively graded manifold
(M, Op) there is a tower of fibrations

M =M, = M,y — - = My = My,

where any My is a graded manifold of degree at most k, for k > 0
Micy1 — My is an affine bundle.

Remark. Gradings can be encoded in the Euler vector field
¢ = deg(q")q" 59=: Vi corresponds to the i-eigenspace of ¢

Remark. Gradings can be encoded in the homogeneity structure
h: Ry x M — M such that
(q% . q") = he(qh, ... qN) = (t%8()gh . roeslaIg).



G = Graded

F ded d
Oor graded goo Q= D%gfg&«/{[q{ &‘raz[e,a/

— "Folkloric" applications in geometry

A= Al}eérm‘af

— Other applications (in mechanics?):
A. Bruce, K. Grabowska, J. Grabowski, Higher order mechanics on
graded bundles https://arxiv.org/abs/1412.2719


https://arxiv.org/abs/1412.2719

Derived bracket construction

Let (M, Q) be a Q-manifold (i.e. graded manifold with a degree 1
homological vector field Q), and

G be degree —1 vector fields € on M.

Define the Q-derived bracket: [e,&]g = [, [Q, €']].

Remark. Good for equivariant Q-cohomology.
V.S. “Graded geometry in gauge theories and beyond”, JGP, 2015.

Example 1. (T*[1]M, Q;)
e =ci(x) g5 © ei(x)dx’ € QY(M).
If € is exact, i.e. g;dx’ = € ;dx’, then [¢,€]q = {6’6/}7"8%;

Example 2. Dirac structures.



Equivariant cohomology and gauging in a nutshell

“equations of motion” <« Q@-morphisms
“symmetries” > Q-homotopies
“gauge invariant” < “equivariantly Q-closed”

Example: Dirac sigma model — functional on vector bundle
morphisms from TX to D.

Spsu = / g(dX, (1 + O)A) + g(A OA) + / H.
ba X3
Theorem. The algebra of infinitesimal gauge transformations is
given by smooth maps ¥ — (D), subject to dnp — ¢, H =0. (%)
Conversely, DSM is obtained by gauging of an extension of (*).

Theorem. DSM is the most general theory obtained by gauging
the Wess-Zumino term in space-time dimension 2.

— V.S., T.Strobl, “Dirac Sigma Models from Gauging”, JHEP, 2013.
— A.Kotov, V.S., T.Strobl, “2d Gauge theories and generalized
geometry”, JHEP, 08, 2014.



Instead of conclusion — big puzzle and questions
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And what preC|ser about mechanics? What phenomena?
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