
On tangent geometry and microcontinuum with
defects: A scaled material modeling

Nguyen Van Hoi
Joint work with Prof. G. Casale, Prof. L. Le Marrec

Department of Mathematics, IRMAR
University of Rennes 1.

GDR-GDM, La Rochelle, 7th-9th July, 2021



On tangent geometry and microcontinuum with defects: A scaled material modeling

Some words about defects

In reality, any microstructure medium
has a great number of defects.

For instance, dislocation-line is
performed by removing or adding a
section of atom out of the media.

If many discs of missing or excess
atoms come to lie close together, the
defects is now disclination.
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Since the 1950s, it has been
appreciated that continuum with a
distribution of defects has a close
connection with Riemann-Cartan
geometry (RC geometry).

Dislocation density being interpreted to
torsion tensor of a material connection.

Disclinations density being identified
with curvature tensor of a material
connection.
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Geometrical background

A microstructured material is
modelised by a fibre bundle M

π→ B

B is the material differentiable
manifold.
Fibre of the bundle at p ∈ B is
denoted by Mp. It is the set of
microelements of the body at the
point.

After the general definitions, one will consider M = TB meaning that
microelements are first order infinitesimal neighborhoods of geometrical
points of the locus.



On tangent geometry and microcontinuum with defects: A scaled material modeling
Geometrical background

The solder form

The solder form

Denote V (M ) = ker dπ = {v ∈ TM | πv = 0} is the vertical tangent bundle
of M

π→ B. The fibre of the bundle at p ∈ B is the tangent bundle to the
micro space Mp, namely T (Mp).
One considers that the tangent at the microelement m ∈Mp, namely
Tm(Mp) ≡ VmM , should be TpB. It is formalized as

Definition
A solder form on M is an isomorphism TB ×

B
M

ϑ→ V (M ).

This definition implies that the dimension of a micro space Mp equals the
dimension of B.
The main example of solder form is the canonical form on the tangent bundle:
let (x a, y i ) be the standard coordinate on TB, the canonical form is

ϑcan = δj
b
∂

∂y j ⊗ dxb.



On tangent geometry and microcontinuum with defects: A scaled material modeling
Geometrical background

Connections

Connections

One must identify infinitesimally closed
microelements. This task is performed
by Ehresmann connections.

Definition
Formally, Ehresmann connection on M
is a morphism N : TB ×

B
M→TM

such that dπ ◦ N(v ,m) = v . In local
coordinates

N =
(

∂

∂x a − N i
a(x , y) ∂

∂y i

)
⊗ dx a
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Connections

More geometrically, Ehresmann connection consists of a smooth assignment to
each point m ∈M of a decomposition TmM = HmM ⊕ VmM with

HmM = span ( δ

δx a = ∂

∂x a − N i
a(m) ∂

∂y i ) and VmM = span( ∂

∂y i ).

The dual of the horizontal and vertical tangent spaces are given by

H∗mM = span(dx a) and V ∗mM = span(δy i = dy i + N i
a(m)dx a).

Linear connection When M = TB, one may interest in linear connections N
(i.e N i

a(x , y) = Γ i
aj (x)y j). If the case, Γ is an affine connection on B.

Definition
From a connection N and a solder form ϑ one can define another connection
N − ϑ whose expression in local coordinate is

N − ϑ =
(

∂

∂x a − (N i
a(m) + ϑi

a(m)) ∂

∂y i

)
⊗ dx a.
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Parallel and rolling transport

Parallel and rolling transport

Let σ: [0, 1]→ B, t 7→ σ(t) = (x a(t))
be a curve on B.
Parallel transport Thanks N, it

possibles to define (at least
locally) a unique lift
σ↑(t) = (y i (t)) of σ by solving

ẏ i = −N i
a(σ(t), y)ẋ a.

Rolling transport For N − ϑ, the lift
of σ is obtained by solving

ẏ i = −(N i
a(σ(t), y)+ϑi

a(σ(t), y))ẋ a.
In this situation, parallel refers to N
and rolling to N − ϑ.
Particularly, M = TB, it can be read
as a transport of vectors.
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Curvature and torsion

Curvature and torsion

Total curvature of our material is measured by the compatibility of N − ϑ with
Lie brackets of vector fields on B:

R(V ,U) = (N − ϑ)[V ,U]− [(N − ϑ)V , (N − ϑ)U] = R(V ,U) + T(V ,U).

is a vertical vector over M .
Ehresmann curvature R(V ,U) = N[V ,U]− [NV ,NU].
Torsion T(V ,U) = [NV , ϑU] + [ϑV ,NU]− ϑ[V ,U]− [ϑV , ϑU].

Lemma If N is linear (ie N i
a(x , y) = Γ i

aj (x)y j) and ϑ = ϑcan, we can write

R = −Ri
jaby j ∂

∂y i ⊗ dx a ⊗ dxb and T = Ti
ab

∂

∂y i ⊗ dx a ⊗ dxb

with R and T are respectively usual curvature and torsion of the connection Γ

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb + Γ a

ceΓ
e
db − Γ a

deΓ
e
cb and Ta

bc = Γ a
bc − Γ a

cb.
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Sasaki metric and Objective

Compatible with the split structure of the tangent space TM defined by the
connection N, on M one has a special metric tensor g-so-called Sasaki metric:

g(x , y) = gh
ab(x , y)dx a ⊗ dxb + gv

ij (x , y)δy i ⊗ δy j .

It states that there exist two independent mechanisms respect to these
component.
As we mentioned before, the microstructured continuum is the fibre bundle M
over B and the evolution of the continuum in Euclidean space is presented by
a bundle map

Υ : M → En

where En is the Euclidean space. The configuration of the body is the induced
geometry structure pull-backed by Υ .
Our objective is to restrain our construction to obtain linear Ehresmann
connections. The solder form is always assumed to be the canonical form.
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Non-scale material modeling

Formally, the material transformation
can be represented by

Υ : TB → TE3

(X ,V ) 7→ (φ(X), Ψ(X ,V ))

is smooth, has a smooth inverses st
Ψ(X ,V ) = 0 iff V = 0.

Let g be a Sasaki metric on TE3:

g = gab(x)dx a ⊗ dxb + gij (x)δy i ⊗ δy j ,

and ni
a = γ i

ajy j and γ is Levi-Civita
connection according to the metric g.
If (x , y) is Cartesian chart, γ i

aj = 0.

Matte’s size is not considered. In this
context, the continuum is driven by: φ
controls the placement of element, its
stretch is defined by Ψ .



On tangent geometry and microcontinuum with defects: A scaled material modeling
Non-scale material modeling

Induced structure

Let V be an arbitrary tangent vector to B at a point X ∈ B, the induced
Ehresmann connection is naturally defined by considering its horizontal lift:

N(Y )V = Υ ∗n
(
φ(X), Ψ(X ,Y )

)
φ∗V

with coefficients N I
A = ∂jΨ

Inj
aF a

A + ∂iΨ
I∂AΨ

i .

Lemma The connection N has zero curvature R.
Usually, an induced metric G = Υ ∗g. Respect to the connection N, it splits into

G(X ,Y ) = Gh
AB(X)dXA ⊗ dXB + Gv

IJ (X ,Y )δY I ⊗ δY J

with Gh
AB = F a

AgabF b
B and Gv

IJ = ∂IΨ
igij∂JΨ

j .
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Conclusion

Conclusion

Keeping in mind that our objective was to construct a linear Ehresmann
connection with torsion and curvature, the present bundle maps fails for the
following reasons: (1) the metric is generally dependent on fibre coordinate; (2)
the connection is not linear; (3) the curvature of the connection is always zero.
However, it could be another interesting theory. In the linear situation one has:

Theorem
If Υ is linear ie Ψ a(X ,V ) = Ψ a

A(X)V A for any (X ,V ) ∈ TB,
N I

A(X ,Y ) = Γ I
AJ (X)Y J ; with Γ C

AB = ΨC
c ∂AΨ

c
B if Cartesian coordinate

applied on the Euclidean space E3.
The metric Gv induces a metric on B by G = ϑ∗canGv , locally GAB = Ψ a

AgabΨ
b
B .

They construct a Weitzenböck manifold (B, Γ, G) with metric-compatible
connection has torsion while vanishing curvature.
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Scaled material modeling

The preceding bundle map is not
sufficient to our purpose since the
pull-back is performed by DΥ .

To go further, let consider the material
transformation as the following

Υ v : VTB → VTE3

X 7→ φ(X)
V 7→ F (X)V
W 7→ Θ(X)W

To construct an induced Ehresmann
connection on B. The idea is to define

Υ : TTB → TTE3 st
Υ|VTB = Υ v

F = Dφ and Θ define the stretch of
macro/micro-element, respectively.
Notice that scaling effect is no more
redundant since the maps related to
each scale are separated.
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Linear contribution

Linear contribution
A typical example of the extension is

Υ : TTB → TTE3

(X ,Y ,W ) 7→ (φ(X),F (X)Y , Ω(X ,Y )W )

with detF = Dφ > 0; detΨ > 0, detΘ > 0, and Ω is in the following form

Ω = F a
A∂a ⊗ dXA +Ωi

A∂i ⊗ dXA +Θi
J∂i ⊗ dY J .

Until now, Ωi
A is still free. At the same spirit as before, an induced Ehresmann

connection is naturally defined by

N(Y )V = Ω−1n(F (X)Y )(φ∗V )

with coefficients NJ
A = ΘJ

i Ω
i
A +ΘJ

i ni
aF a

A.

Lemma
The connection is linear ie N I

A(X ,Y ) = Γ I
AJ (X)Y J if and only if Ωi

A(X ,Y ) is
linear ie Ωi

A(X ,Y ) = Ωi
AJ (X)Y J . At this context, one gets

Γ I
AJ = ΘI

iΩ
i
AJ +ΘI

i γ
i
ajF j

JF
a
A.
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Induced structure

Induced structure

The letter Ωi
AI is still free. In order to remove this indeterminacy, it is

constructed by a linear balance between the stretching variation at each scale:

Ωi
AI =

(
(1− ζ)∂AF i

I + ζ∂AΘ
i
I
)

where 0 < ζ ≤ 1 is a free parameter controlling the scaling effect (for example,
ζ = `/L). At this stage, one gets, if Cartesian chart applied on E3,

Γ I
AJ = ΘI

i
(
(1− ζ)∂AF i

I + ζ∂AΘ
i
I
)

Usually, an induced metric G = Υ ∗g. Respect to the connection N, it splits into

G(X ,Y ) = Gh
AB(X)dXA ⊗ dXB + Gv

IJ (X)δY I ⊗ δY J

with Gh
AB = F a

AgabF b
B and Gv

IJ = Θi
IgijΘ

j
J .

They are functions of base coordinate alone. Gv is independent on N.
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Conclusion

Conclusion

The split structure of the transformation and metrics allows to describe the
current state as the superposition of a microscopic and macroscopic processes
by considering a micro-manifold (B, Γ, G) with G = ϑ∗canGv and a
macro-manifold (B, L, Gh) where L is Levi-Civita connection of the horizontal
metric, it has no torsion and no curvature and is metric-compatible. The
properties of (B, Γ, G) is more richer:

Theorem
(B, Γ, G) is sufficient to state the shape change as well as the defected state of
the material. It satisfies:
o If Θ = F, it yields that T = 0; R = 0 and ∇G = 0. The manifold is Euclidean.
o If ζ = 1, then T 6= 0, R = 0 and ∇G = 0. It behaves as a Weitzenböck

manifold.
o If Θ 6= F and 0 < ζ < 1, then T 6= 0, R 6= 0 and ∇G 6= 0. The manifold

behaves as a Weyl manifold.
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On comparison with nonholonomic principle

The nonholonomic principle The scaled material modeling

SettingB → E3, X 7→ x is multivalued Υ v : VTB → VTE3 smooth, single
dxa = ea

AdXA (X ,V ,W ) 7→ (φ(X ),F (X )V , Θ(X )W )
Base on RC point of view Base on Ehresmann point of view

ResultΓ̂C
AB = eC

c ∂Aec
B ΓC

AB = ΘC
c ((1− ζ)∂AF c

B + ζ∂AΘ
c
B)

and ĜAB = ea
Agabeb

B and GAB = Θa
AgabΘ

b
B .

Require ∇ and G single-valued NO
If X 7→ x is singlevalued, defect-free If Θ = F , defect-free
If e is single-valued, we have only T If ζ = 1, we have only T
If e is multivalued, T 6= 0 and R 6= 0 Otherwise, T 6= 0, R 6= 0 and ∇G 6= 0
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Other comments

Spin connection: For the single-valued tetrads, connection, having both torsion
and curvature, cannot be obtained only in terms tetrads. A more rigorous
method would be introducing a new additional fields to give a connection

Γ̃ A
BC = eA

c ∂Bec
C + eA

c Γ
c
bC eb

B = Weitzenböck + spin connection.

This connection has in common with ours,

Γ A
BC = ζΘA

a ∂AΘ
a
C + (1− ζ)ΘA

a ∂BF a
C .

But, the sum of the two distribution is controlled by the factor ζ.

Kröner-Lee-decomposition: Our model seems to be an alternative to
F = FeFp generally used for elastoplastic transformation of a material. Clearly
that the total gradient is Θ which control stretch of microelement as smallest
pieces from the initial to final state. Elastic part is then the gradient F and
hence Fp = F−1Θ. It implies the intermediate configuration is not needed.
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Explicit transformations producing curvature, torsion and
metricity tensor
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In order to expose the application of scaled material modeling, illustrations are
restricted to in-plane motion in the Euclidean ambient space endowed with
n = 0 and g = δ.
Each colored cell is related to a micro-element (considered as VTB). Note
that all transformation as below are finite, and loop is infinitesimal.
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Pure-non-metric transformation

Pure-non-metric transformation

Let consider Θ is identity and

φ X 1 → x1 = X 1 + h(X 2)
X 2 → x2 = X 2

This situation is illustrated with h′ = π/4 sin (X 2π/8L)

o G = δ.
o T = R = 0.
o ∇2G12 = −(1− ζ)h′′.
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Torsion with no curvature

Torsion with no curvature

Here, φ identity, but

Θ =
(
1 θ(X 1)
0 1

) o ∇1G22 = 2(1− ζ)θθ′ and ∇1G12 = (1− ζ)θ′.
o R = 0 while T1

12 = ζθ′.

Illustrations are given with θ(X 1) = π

4 cos ( X1

4L π).
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Curvature with no torsion

Curvature with no torsion

Let consider:

F =
(
1 f (X 2)
0 1

)
, Θ =

(
1 + θ(X 1) 0

0 1

)
ex θ(X 1) = 1

2L cos ( X1

4L π), f (X 2) = π
4 sin ( X2

8L π)

o Torsion is null.
o R1

212 = −(1−ζ)2/(1+θ)2f ′θ′

o ∇1G11 = 2(1− ζ)(1 + θ)θ′

∇2G12 = −(1− ζ)(1 + θ)f ′.
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Conclusion remark
The kinematic (finite) models contain many advantage features and open
several interesting issues:
o The new theory is easy to handle for both theoretical and numerical analysis

rather focusing on multivalued fields. It brings microscopic defects into
macroscopic observations.

o The existence of the extension bundle map is not unique. In this work, it is
proposed by introducing just a scalar zeta as a weight of macro and micro
effect in a linear way. It is sufficient to illustrate the presence of various
defect types and avoids adding new unknown fields in the theory.

o Other possible extensions as well as the ratio parameter-family may be
explored some others interesting physical phenomena.

o Study of the solder form can be another interesting subject in order to take
into account specific micro-structured materials and nano-material.

o Last but not at least, another possible issue consists in introducing time, in
the Galilean or in the Lorentzian framework
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