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Beam:structure element that resists loads

L. Da Vinci 1493 G. Galilei 1638
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Rod/Beam theories
• Kirshhoff Rod

Kinematical constraint
Constrained load
Moments

G. Kirchhoff 1859

• Euler-Bernoulli
Beam

Kinematical constaint
Any type of load
Moments

L. Euler and D. Bernoulli 1750

• Timoshenko
beam

Shear effect
Any type of load
Moments

S.P. Timoshenko 1921
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Kirshhoff rod model

Cosserat beam model

• Material curve C.

• S curvilinear coordinate of C.

• ϕ(S) placement of C.

LS0
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Kirshhoff rod model

Cosserat beam model

• Material curve C.

• S curvilinear coordinate of C.

• ϕ(S) placement of C.

• Moving director frame
{di} := (d1,d 2,d 3)
d3 tangent to the centerline.

LS0

With

ddi

dS
= κ× di

Generalised curvatures

κ = κ1d1 + κ2d2 + κ3d3

M. Nizette, A. Goriely 1999
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Basic assumption

Internal forces and moment

N = N1d1 + N2d2 + N3d3

M = M1d1 + M2d2 + M3d3

With

N1,N2 shear forces N3 normal force
M1,M2 bending moments M3 torsion

Static equilibrium

dN
dS

= 0

dM
dS

+ d3 ×N = 0

dN
dS = 0 =⇒ N(S) = N

No external forces

N = 0

dM
dS

= 0

Projecting along di

dM1

dS
+ M3κ2 −M2κ3 = 0

dM2

dS
+ M1κ3 −M3κ1 = 0

dM3

dS
+ M2κ1 −M1κ2 = 0
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Constitutive laws

St. Venant Kirshhoff energy per unit length

ψ =
1

2

(
EI1 κ

2
1 + EI2 κ

2
2 + GI3 κ

2
3

)
Linear constitutive laws

M1 = EI1 κ1 M2 = EI2 κ2 M3 = GI3 κ3

dM

dS
= 0

Equilibrium

EI1
dκ1

dS
+ (GI3 − EI2)κ2κ3 = 0

EI2
dκ2

dS
+ (EI1 − GI3)κ1κ3 = 0

GI3
dκ3

dS
+ E (I2 − I1)κ1κ2 = 0
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Dimensionless procedure

Dimensionless parameters

% =
√

I1+I2
A s = S

% ` = L
%

g = E
G e = I1

I2

Kinematical variables

ϕi (s) =
1

%
ϕ
i
(S)

κi (s) = % κi (S)

with I1 ≤ I2 < I3, 0 < e ≤ 1, 2 . g . 3
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Dimensionless variables

Dimensionless parameters

g = E
G e = I1

I2

2 . g . 3 0 < e ≤ 1

Bending stiffness

r1 :=
eg

1 + e

r2 :=
g

1 + e

Moments

M1 = r1κ1 M2 = r2κ1 M3 = κ3

Energy per unit length

Ψ(s) = 1
2

(
r1 κ

2
1 + r2 κ

2
2 + κ2

3

)
Curvature formulation

r1 κ
′
1(s)− (r2 − 1)κ2(s)κ3(s) = 0

r2 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = 0

κ′3(s) + (r2 − r1)κ1(s)κ2(s) = 0

Non linear first order
Similar to Euler’s rotation

D.F. Lawden 2013
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Geometrical regimes (material + cross section shapes)

Dimensionless parameters

g = E
G e = I1

I2

0 < e ≤ 1 2 . g . 3

Bending stiffness

r1 :=
eg

1 + e

r2 :=
g

1 + e

Cross section properties

r1 = r2 i.e. e = 1 Symetric cross-section

1 < r1 i.e. e >
1

g − 1
Thick cross-section

r1 < 1 i.e. e <
1

g − 1
Thin cross-section (ribbon-like rod)
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Homogeneous solutions

Equilibrium
r1 κ

′
1(s)− (r2 − 1)κ2(s)κ3(s) = 0

r2 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = 0

κ′3(s) + (r2 − r1)κ1(s)κ2(s) = 0

Bending % d1

κ1(s) = κ10

κ2(s) = 0
κ3(s) = 0

Bending % d2

κ1(s) = 0
κ2(s) = κ20

κ3(s) = 0

Pure torsion

κ1(s) = 0
κ2(s) = 0
κ3(s) = κ30

e 6= 1 and r1 6= 1
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Trivial solutions

Equilibrium
r1 κ

′
1(s)− (r2 − 1)κ2(s)κ3(s) = 0

r2 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = 0

κ′3(s) + (r2 − r1)κ1(s)κ2(s) = 0

1 < r1 = r2 (i.e. e = 1)

κ1(s) = κ10 cos
(g − 2

g
κ30 s

)
+ κ20 sin

(g − 2

g
κ30 s

)
κ2(s) = κ20 cos

(g − 2

g
κ30 s

)
− κ10 sin

(g − 2

g
κ30 s

)
κ3(s) = κ30

r1 = r2 = 1

κ1(s) = κ10

κ2(s) = κ20

κ3(s) = κ30
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Trivial solutions

Equilibrium
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)
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(g − 2

g
κ30 s

)
− κ10 sin

(g − 2

g
κ30 s

)
κ3(s) = κ30

r1 = r2 = 1

κ1(s) = κ10

κ2(s) = κ20

κ3(s) = κ30

r1 = 1 < r2

κ1(s) = κ10 cos
(
(g − 2)κ20 s

)
+ κ30 sin

(
(g − 2)κ20 s

)
κ2(s) = κ20

κ3(s) = κ30 cos
(
(g − 2)κ20 s

)
− κ10 sin

(
(g − 2)κ20 s

)



10

Problem statement Solution of the problem Further analysis:rod shapes Conclusion

Invariants

M is uniform all along the rod ||M || := M is constant.

First invariant: Moment

M2 =
(
r1 κ1(s)

)2
+
(
r2 κ2(s)

)2
+ κ3(s)2

Second invariant: Energy per unit length

ψ =
1

2

(
r1 κ1(s)2 + r2 κ2(s)2 + κ3(s)2

)

µ2 := 2ψ
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Geometrical interpretation

M2 = M2
1 + M2

2 + M2
3 µ2 =

1

r1
M2

1 +
1

r2
M2

2 + M2
3

Sphere Ellipsoid

In (M1,M2,M3) Configuration
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Geometrical interpretation

M2 = M2
1 + M2

2 + M2
3 µ2 =

1

r1
M2

1 +
1

r2
M2

2 + M2
3

Sphere Ellipsoid

In (M1,M2,M3) Configuration

Solutions Surfaces intersections

Existence condition

min
i=1,2

(ri , 1) ≤ η :=
M

µ
≤ max

i=1,2
(ri , 1)
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Geometrical representation with fixed energy µ

Thick

η =
M

µ

Thin

1 ≤ η ≤
√
r1 <

√
r2 1 <

√
r1 ≤ η ≤

√
r2

√
r1 ≤ η ≤ 1 <

√
r2

√
r1 < 1 ≤ η ≤

√
r2
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Analytical solutions
r1 κ

′
1(s)− (r2 − 1)κ2(s)κ3(s) = 0

r2 κ
′
2(s) + (r1 − 1)κ1(s)κ3(s) = 0

κ′3(s) + (r2 − r1)κ1(s)κ2(s) = 0

• For thick rod
1 ≤ η ≤ √r1 <

√
r2

κ1(s) = κ1 sn(λ(s + s0) | m)
κ2(s) = κ2 cn(λ(s + s0) | m)
κ3(s) = ±κ3 dn(λ(s + s0) | m)

1 <
√
r1 ≤ η ≤ √r2

κ1(s) = κ1 sn(λ(s + s0) | m)
κ2(s) = ±κ2 dn(λ(s + s0) | m)
κ3(s) = κ3 cn(λ(s + s0) | m)

• For thin rod√
r1 ≤ η ≤ 1 <

√
r2

κ1(s) = ±κ1 dn(λ(s + s0) | m)
κ2(s) = κ2 cn(λ(s + s0) | m)
κ3(s) = κ3 sn(λ(s + s0) | m)

√
r1 < 1 ≤ η ≤ √r2
κ1(s) = κ1 cn(λ(s + s0) | m)
κ2(s) = ±κ2 dn(λ(s + s0) | m)
κ3(s) = κ3 sn(λ(s + s0) | m)

κi , λ,m controlled by
Structure r1, r2
Load parameters µ, η
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Curvature analysis w.r.t η (fixed µ)

Thick 0.05

0.06
0

0.07

0.08

0.01
0

-0.01 -0.05

η fixed

0.05
0

-0.05

0.02 -0.050

0

0.05

increasing η various regime

Thin

5

10
-3

0

-0.02

-50.122

-0.01

0

0.01

0.02

η fixed

0.01
0

-0.02

0.12 -0.01

0

0.02

increasing η various regime

η controls the type of the solutions
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Homogeneous solutions

κ1(s) =
µ
√
r1

κ2(s) = 0
κ3(s) = 0

κ1(s) = 0

κ2(s) =
µ
√
r2

κ3(s) = 0

κ1(s) = 0
κ2(s) = 0
κ3(s) = µ
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Trigonometric solutions

κ1(s) = κ10 cos
(g − 2

g
κ30 s

)
+ κ20 sin

(g − 2

g
κ30 s

)
κ2(s) = κ20 cos

(g − 2

g
κ30 s

)
− κ10 sin

(g − 2

g
κ30 s

)
κ3(s) = κ30

κ1(s) = κ10 cos
(
(g − 2)κ20 s

)
+ κ30 sin

(
(g − 2)κ20 s

)
κ2(s) = κ20

κ3(s) = κ30 cos
(
(g − 2)κ20 s

)
− κ10 sin

(
(g − 2)κ20 s

)
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Jacobian solutions

κ1(s) = κ1sn
κ2(s) = κ2cn
κ3(s) = κ3dn

κ1(s) = κ1sn
κ2(s) = κ2dn
κ3(s) = κ3cn

κ1(s) = κ1dn
κ2(s) = κ2cn
κ3(s) = κ3sn

κ1(s) = κ1cn
κ2(s) = κ2dn
κ3(s) = κ3sn
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Jacobian solutions

Further analysis of rod shapes gives a better understanding for the role of
η and e
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Placement and directors

ϕ′ = d3 d ′
i = κ× di

Deformed placement

ϕ′
1−ϕ2κ3 +ϕ3κ2 = 0

ϕ′
2−ϕ3κ1 +ϕ1κ3 = 0

ϕ′
3−ϕ1κ2 +ϕ2κ1 = 1

Directors

d1
′ = κ3d2 − κ2d3

d2
′ = κ1d3 − κ3d1

d3
′ = κ2d1 − κ1d2

Cartesian placement
ϕx = ϕ · ex

ϕy = ϕ · ey

ϕz = ϕ · ez

• First order O.D.E. with nonlinear coefficients

Hard to solve analytically Numerical simulations.

• For fixed e, g ;µ and `, rod behaviour depends on η.

• Detailed study of this control parameter gives a better understanding
of the geometry of rod shapes
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η analysis:Trivial case

Thick

η = 1
Torsion

η =
√
r1

Quasi-bending % d1

η =
√
r2

Bending % d2
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η analysis:Trivial case

Thick

η = 1
Torsion

η =
√
r1

Quasi-bending % d1

η =
√
r2

Bending % d2

Thin

η =
√
r1

Bending % d1

η = 1
Quasi-torsion

η =
√
r2

Bending % d2

What is the behaviour of the rod by varying η for µ fixed???
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η analysis: General rod behaviour

Thick Thin

• η dictates shapes of the beam.

• Increasing η switch rod shape from torsion to bending and vice versa
in a continuous way.
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Influence of e on rod behaviour

e

η

Pattern size ???
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Perspectives

DNA helicoidal shapes Chromosome condensation

Yarn balls shapes Torus knots
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Conclusion

• Kirshhoff rod subjected to pure moment.

• Two invariants dictate the existence of the solutions.

• Exact solutions in terms of Jacobian elliptic functions.

• Four parameters control the problem:

• Material g .

• External moments η.

• Geometry of the cross section e.

• Internal energy per unit length µ.

.

• η controls the shape of the pattern.

• µ controls the size of the pattern.

Independent of rod length.



21

Problem statement Solution of the problem Further analysis:rod shapes Conclusion

Conclusion

• Kirshhoff rod subjected to pure moment.

• Two invariants dictate the existence of the solutions.

• Exact solutions in terms of Jacobian elliptic functions.

• Four parameters control the problem:

• Material g .

• External moments η.

• Geometry of the cross section e.

• Internal energy per unit length µ.

.

• η controls the shape of the pattern.

• µ controls the size of the pattern.

Independent of rod length.



21

Problem statement Solution of the problem Further analysis:rod shapes Conclusion

Conclusion

• Kirshhoff rod subjected to pure moment.

• Two invariants dictate the existence of the solutions.

• Exact solutions in terms of Jacobian elliptic functions.

• Four parameters control the problem:

• Material g .

• External moments η.

• Geometry of the cross section e.

• Internal energy per unit length µ.

.

• η controls the shape of the pattern.

• µ controls the size of the pattern.

Independent of rod length.


	Problem statement
	Solution of the problem
	Further analysis:rod shapes
	Conclusion



