



# Behaviour of a Kirshhoff rod loaded by a pure moment

#### Marwan Hariz

Joint work with Loic Le Marrec and Jean Lerbet

Rencontre du GDR GDM à La Rochelle 7-9 Juillet 2021

- Problem statement
- Solution of the problem
- 3 Further analysis:rod shapes
- 4 Conclusion

## Beam:structure element that resists loads





L. Da Vinci 1493 G. Galilei 1638

# Rod/Beam theories

Kirshhoff Rod





Kinematical constraint Constrained load Moments

G. Kirchhoff 1859

Beam

Euler-Bernoulli

## Rod/Beam theories

Kirshhoff Rod

Problem statement 000000









Kinematical constraint Constrained load Moments



Kinematical constaint Any type of load Moments

## Rod/Beam theories

Kirshhoff Rod









 Timoshenko beam





Kinematical constraint Constrained load Moments



Kinematical constaint
Any type of load
Moments



Shear effect
Any type of load
Moments

Problem statement 000000

#### Cosserat beam model

- Material curve C.
- S curvilinear coordinate of C.
- $\varphi(S)$  placement of C.



## Kirshhoff rod model

Problem statement 000000

#### Cosserat beam model

- Material curve C.
- S curvilinear coordinate of C.
- $\varphi(S)$  placement of C.
- Moving director frame  $\{d_i\} := (d_1, d_2, d_3)$  $d_3$  tangent to the centerline.





## Kirshhoff rod model

Problem statement

#### Cosserat beam model

- Material curve C.
- S curvilinear coordinate of C.
- $\varphi(S)$  placement of C.
- Moving director frame
   {d<sub>i</sub>} := (d<sub>1</sub>, d<sub>2</sub>, d<sub>3</sub>)
   d<sub>3</sub> tangent to the centerline.



# With

$$\frac{d\mathbf{d_i}}{dS} = \kappa \times \mathbf{d_i}$$



#### Generalised curvatures

$$\boldsymbol{\kappa} = \kappa_1 \boldsymbol{d}_1 + \kappa_2 \boldsymbol{d}_2 + \kappa_3 \boldsymbol{d}_3$$

# Basic assumption

### Internal forces and moment

$$N = N_1 d_1 + N_2 d_2 + N_3 d_3$$
  
 $M = M_1 d_1 + M_2 d_2 + M_3 d_3$ 

#### With

 $N_1, N_2$  shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

# Basic assumption

#### Internal forces and moment

$$N = N_1 d_1 + N_2 d_2 + N_3 d_3$$
  
 $M = M_1 d_1 + M_2 d_2 + M_3 d_3$ 

#### With

 $N_1, N_2$  shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

$$\frac{d\mathbf{N}}{dS} = 0$$

$$\frac{d\mathbf{M}}{dS} + \mathbf{d}_3 \times \mathbf{N} = 0$$

#### Internal forces and moment

$$N = N_1 d_1 + N_2 d_2 + N_3 d_3$$
  
 $M = M_1 d_1 + M_2 d_2 + M_3 d_3$ 

# $\frac{d\mathbf{N}}{dS} = 0 \Longrightarrow \mathbf{N}(S) = \mathbf{N}$

## With

 $N_1, N_2$  shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

$$\frac{d\mathbf{N}}{dS} = 0$$

$$\frac{d\mathbf{M}}{dS} + \mathbf{d}_3 \times \mathbf{N} = 0$$

## Internal forces and moment

$$N = N_1 d_1 + N_2 d_2 + N_3 d_3$$
  
 $M = M_1 d_1 + M_2 d_2 + M_3 d_3$ 

## With

000000

 $N_1, N_2$  shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

$$\frac{d\mathbf{N}}{dS} = 0 \Longrightarrow \mathbf{N}(S) = \mathbf{N}$$

#### No external forces

$$N = 0$$

$$\frac{d\mathbf{N}}{dS} = 0$$

$$\frac{d\mathbf{M}}{dS} + \mathbf{d}_3 \times \mathbf{N} = 0$$

# Basic assumption

## Internal forces and moment

$$N = N_1 d_1 + N_2 d_2 + N_3 d_3$$
  
 $M = M_1 d_1 + M_2 d_2 + M_3 d_3$ 

## With

000000

 $N_1, N_2$  shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

$$\frac{d\mathbf{N}}{dS} = 0 \Longrightarrow \mathbf{N}(S) = \mathbf{N}$$

#### No external forces

$$N = 0$$

$$\frac{d\mathbf{M}}{dS}=0$$

$$\frac{d\mathbf{N}}{dS} = 0$$

$$\frac{d\mathbf{M}}{dS} + \mathbf{d}_3 \times \mathbf{N} = 0$$

# Basic assumption

## Internal forces and moment

$$\mathbf{N} = N_1 \mathbf{d}_1 + N_2 \mathbf{d}_2 + N_3 \mathbf{d}_3$$
  
 $\mathbf{M} = M_1 \mathbf{d}_1 + M_2 \mathbf{d}_2 + M_3 \mathbf{d}_3$ 

# With

 $N_1, N_2$ shear forces  $N_3$  normal force  $M_1, M_2$  bending moments  $M_3$  torsion

# Static equilibrium

$$\frac{d\mathbf{N}}{dS} = 0$$

$$\frac{d\mathbf{M}}{dS} + \mathbf{d}_3 \times \mathbf{N} = 0$$

# $\frac{d\mathbf{N}}{dS} = 0 \Longrightarrow \mathbf{N}(S) = \mathbf{N}$

## No external forces

$$N = 0$$

$$\frac{d\mathbf{M}}{dS} = 0$$

# Projecting along $d_i$

$$\frac{dM_1}{dS} + M_3\kappa_2 - M_2\kappa_3 = 0$$

$$\frac{dM_2}{dS} + M_1\kappa_3 - M_3\kappa_1 = 0$$

$$\frac{dM_3}{dS} + M_2\kappa_1 - M_1\kappa_2 = 0$$

$$\frac{dM_3}{dS} + M_2\kappa_1 - M_1\kappa_2 = 0$$

## Constitutive laws

000000

## St. Venant Kirshhoff energy per unit length

$$\psi = \frac{1}{2} \left( EI_1 \kappa_1^2 + EI_2 \kappa_2^2 + GI_3 \kappa_3^2 \right)$$

#### Linear constitutive laws

$$M_1 = EI_1 \kappa_1$$
  $M_2 = EI_2 \kappa_2$   $M_3 = GI_3 \kappa_3$ 

## Equilibrium

$$EI_{1}\frac{d\kappa_{1}}{dS} + (GI_{3} - EI_{2})\kappa_{2}\kappa_{3} = 0$$

$$EI_{2}\frac{d\kappa_{2}}{dS} + (EI_{1} - GI_{3})\kappa_{1}\kappa_{3} = 0$$

$$GI_{3}\frac{d\kappa_{3}}{dS} + E(I_{2} - I_{1})\kappa_{1}\kappa_{2} = 0$$

$$GI_3 \frac{d\kappa_3}{dS} + E(I_2 - I_1)\kappa_1\kappa_2 = 0$$

# Dimensionless procedure

## Dimensionless parameters

$$\varrho = \sqrt{\frac{l_1 + l_2}{A}} \qquad s = \frac{s}{\varrho} \qquad \ell = \frac{L}{\varrho}$$

$$=\frac{S}{\rho}$$
  $\ell=\frac{L}{\rho}$ 

$$g = \frac{E}{G}$$
  $e = \frac{I_1}{I_2}$ 

with

 $I_1 < I_2 < I_3$ 

 $0 < e \le 1$ ,  $2 \lesssim g \lesssim 3$ 

### Kinematical variables

$$\varphi_i(s) = \frac{1}{\varrho} \underline{\varphi}_i(S)$$

$$\kappa_i(s) = \varrho \underline{\kappa}_i(S)$$

$$2 \lesssim g \lesssim 3$$

## Dimensionless variables

## Dimensionless parameters

$$g = \frac{E}{G}$$

$$e=\frac{I_1}{I_2}$$

$$2 \lesssim g \lesssim 3$$
  $0 < e \leq 1$ 

## Bending stiffness

$$r_1 := \frac{eg}{1+e}$$

$$r_2:=\frac{g}{1+e}$$

#### **Moments**

$$M_1 = r_1 \kappa_1$$
  $M_2 = r_2 \kappa_1$   $M_3 = \kappa_3$ 

## Energy per unit length

$$\Psi(s) = \frac{1}{2} \left( r_1 \, \kappa_1^2 + r_2 \, \kappa_2^2 + \kappa_3^2 \right)$$

#### Curvature formulation

$$r_1 \kappa_1'(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$

$$r_2 \kappa_2'(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$$

$$\kappa_3'(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$$

Non linear first order Similar to Euler's rotation

D.F. Lawden 2013

# Geometrical regimes (material + cross section shapes)

## Dimensionless parameters

$$g = \frac{E}{G}$$

$$g = \frac{E}{G} \qquad \qquad e = \frac{I_1}{I_2}$$

$$0 < e \le 1$$
  $2 \lesssim g \lesssim 3$ 

## Bending stiffness

$$r_1 := \frac{eg}{1+e}$$

$$r_2:=\frac{g}{1+e}$$

## Cross section properties

$$r_1 = r_2$$
 i.e.  $e = 1$ 

$$e = 1$$

$$1 < r_1$$
 i.e.  $e > \frac{1}{g-1}$ 

$$r_1 < 1$$
 i.e.  $e < \frac{1}{g-1}$ 

Thin cross-section (ribbon-like rod)

## Homogeneous solutions

## Equilibrium

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

## Bending % $d_1$

$$\kappa_1(s) = \kappa_{10}$$
 $\kappa_2(s) = 0$ 
 $\kappa_3(s) = 0$ 

# Bending % $d_2$

$$\kappa_1(s) = 0$$
 $\kappa_2(s) = \kappa_{20}$ 
 $\kappa_3(s) = 0$ 

## Pure torsion

$$\kappa_1(s) = 0$$
 $\kappa_2(s) = 0$ 
 $\kappa_3(s) = \kappa_{30}$ 

$$e 
eq 1$$
 and  $r_1 
eq 1$ 

## Trivial solutions

## Equilibrium

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  

$$r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$$
  

$$\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$$

$$1 < r_1 = r_2$$
 (i.e.  $e = 1$ )

$$\kappa_{1}(s) = \kappa_{10} \cos\left(\frac{g-2}{g}\kappa_{30}s\right) + \kappa_{20} \sin\left(\frac{g-2}{g}\kappa_{30}s\right)$$

$$\kappa_{2}(s) = \kappa_{20} \cos\left(\frac{g-2}{g}\kappa_{30}s\right) - \kappa_{10} \sin\left(\frac{g-2}{g}\kappa_{30}s\right)$$

$$\kappa_{3}(s) = \kappa_{30}$$

$$r_{1} = r_{2} = 1$$

$$\kappa_{1}(s) = \kappa_{10}$$

$$\kappa_{2}(s) = \kappa_{20}$$

$$\kappa_{3}(s) = \kappa_{30}$$

$$r_1 = r_2 = 1$$
 $\kappa_1(s) = \kappa_{10}$ 
 $\kappa_2(s) = \kappa_{20}$ 
 $\kappa_3(s) = \kappa_{30}$ 

## Trivial solutions

## Equilibrium

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

$$1 < r_1 = r_2$$
 (i.e.  $e = 1$ )

$$\kappa_{1}(s) = \kappa_{10} \cos\left(\frac{g-2}{g}\kappa_{30} s\right) + \kappa_{20} \sin\left(\frac{g-2}{g}\kappa_{30} s\right)$$

$$\kappa_{2}(s) = \kappa_{20} \cos\left(\frac{g-2}{g}\kappa_{30} s\right) - \kappa_{10} \sin\left(\frac{g-2}{g}\kappa_{30} s\right)$$

 $r_1 = r_2 = 1$  $\kappa_1(s) = \kappa_{10}$  $\kappa_2(s) = \kappa_{20}$  $\kappa_3(s) = \kappa_{30}$ 

$$r_1 = 1 < r_2$$

 $\kappa_3(s) = \kappa_{30}$ 

$$\kappa_1(s) = \kappa_{10} \cos \left( (g-2)\kappa_{20} s \right) + \kappa_{30} \sin \left( (g-2)\kappa_{20} s \right)$$
 $\kappa_2(s) = \kappa_{20}$ 

$$\kappa_{3}(s) = \kappa_{20}$$
  
 $\kappa_{3}(s) = \kappa_{30} \cos((g-2)\kappa_{20} s) - \kappa_{10} \sin((g-2)\kappa_{20} s)$ 

 ${\it M}$  is  ${\it uniform}$  all along the rod

 $||\boldsymbol{M}|| := M$  is constant.

**M** is **uniform** all along the rod

$$||\boldsymbol{M}|| := M$$
 is constant.

First invariant: Moment

$$M^2 = (r_1 \kappa_1(s))^2 + (r_2 \kappa_2(s))^2 + \kappa_3(s)^2$$

**M** is **uniform** all along the rod

$$||\boldsymbol{M}|| := M$$
 is constant.

First invariant: Moment

$$M^2 = (r_1 \kappa_1(s))^2 + (r_2 \kappa_2(s))^2 + \kappa_3(s)^2$$

Second invariant: Energy per unit length

$$\psi = \frac{1}{2} \Big( r_1 \, \kappa_1(s)^2 + r_2 \, \kappa_2(s)^2 + \kappa_3(s)^2 \Big)$$

**M** is **uniform** all along the rod

$$||\boldsymbol{M}|| := M$$
 is constant.

First invariant: Moment

$$M^2 = (r_1 \kappa_1(s))^2 + (r_2 \kappa_2(s))^2 + \kappa_3(s)^2$$

Second invariant: Energy per unit length

$$\psi = \frac{1}{2} \Big( r_1 \, \kappa_1(s)^2 + r_2 \, \kappa_2(s)^2 + \kappa_3(s)^2 \Big)$$

$$\mu^2 := 2\psi$$

$$M^2 = M_1^2 + M_2^2 + M_3^2$$

$$\left[ \mu^2 = rac{1}{r_1} M_1^2 + rac{1}{r_2} M_2^2 + M_3^2 
ight]$$

Sphere

Ellipsoid

In  $(M_1, M_2, M_3)$  Configuration

$$M^2 = M_1^2 + M_2^2 + M_3^2$$

$$\int \mu^2 = rac{1}{r_1} M_1^2 + rac{1}{r_2} M_2^2 + M_3^2$$

Sphere

Ellipsoid

In  $(M_1, M_2, M_3)$  Configuration

Solutions Surfaces intersections

#### Existence condition

$$\min_{i=1,2} (r_i,1) \leq \eta := \frac{M}{\mu} \leq \max_{i=1,2} (r_i,1)$$

# Geometrical representation with fixed energy $\mu$

Thick

$$\eta = \frac{M}{\mu}$$

Thin





$$r_1 \kappa_1'(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  

$$r_2 \kappa_2'(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$$
  

$$\kappa_3'(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$$

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

For thick rod

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

#### For thick rod

$$1 \le \eta \le \sqrt{r_1} < \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_3(s) = \pm \overline{\kappa}_3 \operatorname{dn}(\lambda(s+s_0) \mid m)$$

$$1 < \sqrt{r_1} \le \eta \le \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$
 $\kappa_2(s) = \pm \overline{\kappa}_2 \operatorname{dn}(\lambda(s+s_0) \mid m)$ 
 $\kappa_3(s) = \overline{\kappa}_3 \operatorname{cn}(\lambda(s+s_0) \mid m)$ 

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

For thick rod

$$1 \le \eta \le \sqrt{r_1} < \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_3(s) = \pm \overline{\kappa}_3 \operatorname{dn}(\lambda(s+s_0) \mid m)$$

$$1 < \sqrt{r_1} \le \eta \le \sqrt{r_2}$$

$$egin{array}{lll} \kappa_1(s) &=& \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m) \ \kappa_2(s) &=& \pm \overline{\kappa}_2 \operatorname{dn}(\lambda(s+s_0) \mid m) \ \kappa_3(s) &=& \overline{\kappa}_3 \operatorname{cn}(\lambda(s+s_0) \mid m) \end{array}$$

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  

$$r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$$
  

$$\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$$

#### For thick rod

$$1 \le \eta \le \sqrt{r_1} < \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_3(s) = \pm \overline{\kappa}_3 \operatorname{dn}(\lambda(s+s_0) \mid m)$$

#### For thin rod

$$\sqrt{r_1} \le \eta \le 1 < \sqrt{r_2}$$

$$\kappa_1(s) = \pm \overline{\kappa}_1 \operatorname{dn}(\lambda(s+s_0) \mid m)$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_3(s) = \overline{\kappa}_3 \operatorname{sn}(\lambda(s+s_0) \mid m)$$

$$1 < \sqrt{r_1} \le \eta \le \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$
 $\kappa_2(s) = \pm \overline{\kappa}_2 \operatorname{dn}(\lambda(s+s_0) \mid m)$ 
 $\kappa_3(s) = \overline{\kappa}_3 \operatorname{cn}(\lambda(s+s_0) \mid m)$ 

$$\sqrt{r_1} < 1 \le \eta \le \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{cn}(\lambda(s+s_0) \mid m)$$
 $\kappa_2(s) = \pm \overline{\kappa}_2 \operatorname{dn}(\lambda(s+s_0) \mid m)$ 
 $\kappa_3(s) = \overline{\kappa}_3 \operatorname{sn}(\lambda(s+s_0) \mid m)$ 

$$r_1 \kappa'_1(s) - (r_2 - 1) \kappa_2(s) \kappa_3(s) = 0$$
  
 $r_2 \kappa'_2(s) + (r_1 - 1) \kappa_1(s) \kappa_3(s) = 0$   
 $\kappa'_3(s) + (r_2 - r_1) \kappa_1(s) \kappa_2(s) = 0$ 

#### For thick rod

$$1 \le \eta \le \sqrt{r_1} < \sqrt{r_2}$$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m) 
\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m) 
\kappa_3(s) = \pm \overline{\kappa}_3 \operatorname{dn}(\lambda(s+s_0) \mid m)$$

# $1 < \sqrt{r_1} \le \eta \le \sqrt{r_2}$

$$\kappa_1(s) = \overline{\kappa}_1 \operatorname{sn}(\lambda(s+s_0) \mid m)$$
 $\kappa_2(s) = \pm \overline{\kappa}_2 \operatorname{dn}(\lambda(s+s_0) \mid m)$ 
 $\kappa_3(s) = \overline{\kappa}_3 \operatorname{cn}(\lambda(s+s_0) \mid m)$ 

#### For thin rod

$$egin{array}{lll} \sqrt{r_1} \leq \eta \leq 1 < \sqrt{r_2} \ \kappa_1(s) &=& \pm \overline{\kappa}_1 \operatorname{dn}(\lambda(s+s_0) \mid m) \end{array}$$

$$\kappa_2(s) = \overline{\kappa}_2 \operatorname{cn}(\lambda(s+s_0) \mid m)$$

$$\kappa_3(s) = \overline{\kappa}_3 \operatorname{sn}(\lambda(s+s_0) \mid m)$$

$$\sqrt{r_1} < 1 \le \eta \le \sqrt{r_2}$$

$$\kappa_{1}(s) = \overline{\kappa}_{1} \operatorname{cn}(\lambda(s+s_{0}) \mid m) 
\kappa_{2}(s) = \pm \overline{\kappa}_{2} \operatorname{dn}(\lambda(s+s_{0}) \mid m) 
\kappa_{3}(s) = \overline{\kappa}_{3} \operatorname{sn}(\lambda(s+s_{0}) \mid m)$$

 $\overline{\kappa}_i, \lambda, m$  controlled by

Structure  $r_1, r_2$ Load parameters  $\mu, \eta$ 

Further analysis:rod shapes

•0000000

# Curvature analysis w.r.t $\eta$ (fixed $\mu$ )





 $\eta$  fixed

Thick





 $\eta$  fixed

increasing  $\eta$ 

•0000000





 $\eta$  fixed



increasing  $\eta$ 



various regime





0.05  $M_3$ 0 -0.05 0.05 0 0.02 -0.05  $M_1$  $M_2$ 



 $\eta$  fixed

increasing  $\eta$ 

various regime

### Thin



 $\eta$  fixed





0.05  $M_3$ 0 -0.05 0.05 0 0.020 -0.05  $M_1$  $M_2$ 



 $\eta$  fixed

increasing  $\eta$ 

various regime

Thin



 $\eta$  fixed



increasing  $\eta$ 





0.05  $M_3$ 0 -0.05 0.05 0 0.020 -0.05  $M_1$  $M_2$ 



### $\eta$ fixed

increasing  $\eta$ 

various regime

### Thin







 $\eta$  fixed

increasing  $\eta$ 

various regime









 $\eta$  fixed

increasing  $\eta$ 

various regime

Thin







 $\eta$  fixed

increasing  $\eta$ 

various regime

 $\eta$  controls the type of the solutions

0000000

Thick



Thick





0000000

Thick



 $\mu$  fixed



Thin



Thick



 $\mu$  fixed



increasing  $\mu$ 

Thin



0.5 -0.5  $M_2$  $M_1$ 

increasing  $\mu$ 

Thick



 $\mu$  fixed



increasing  $\mu$ 

Thin



 $\mu$  fixed



increasing  $\mu$ 

 $\mu$  scaling parameter: size of the solution

## Homogeneous solutions



$$\kappa_1(s) = \frac{\mu}{\sqrt{r_1}}$$

$$\kappa_2(s) = 0$$

$$\kappa_3(s) = 0$$

$$\kappa_1(s) = 0$$

$$\kappa_2(s) = \frac{\mu}{\sqrt{r_2}}$$

$$\kappa_3(s) = 0$$

$$\kappa_1(s) = 0$$
 $\kappa_2(s) = 0$ 
 $\kappa_3(s) = \mu$ 

## Trigonometric solutions



$$\kappa_1(s) = \kappa_{10} \cos\left(\frac{g-2}{g}\kappa_{30}s\right) + \kappa_{20} \sin\left(\frac{g-2}{g}\kappa_{30}s\right)$$

$$\kappa_2(s) = \kappa_{20} \cos\left(\frac{g-2}{g}\kappa_{30}s\right) - \kappa_{10} \sin\left(\frac{g-2}{g}\kappa_{30}s\right) \qquad \kappa_3(s) = \kappa_{30}$$

$$\kappa_1(s) = \kappa_{10} \cos((g-2)\kappa_{20} s) + \kappa_{30} \sin((g-2)\kappa_{20} s) \qquad \kappa_2(s) = \kappa_{20} 
\kappa_3(s) = \kappa_{30} \cos((g-2)\kappa_{20} s) - \kappa_{10} \sin((g-2)\kappa_{20} s)$$

### Jacobian solutions



### Jacobian solutions



Further analysis of rod shapes gives a better understanding for the role of  $\eta$  and e

Further analysis:rod shapes

00000000

$$oldsymbol{arphi}' = oldsymbol{d}_3 \qquad \qquad oldsymbol{d}_i' = \kappa imes oldsymbol{d}_i$$

$$\boldsymbol{arphi'} = \boldsymbol{d}_3$$

$$d_i' = \kappa imes d_i$$

#### Deformed placement

$$\begin{aligned} \varphi_1' - \varphi_2 \kappa_3 + \varphi_3 \kappa_2 &= 0 \\ \varphi_2' - \varphi_3 \kappa_1 + \varphi_1 \kappa_3 &= 0 \\ \varphi_3' - \varphi_1 \kappa_2 + \varphi_2 \kappa_1 &= 1 \end{aligned}$$

### **Directors**

$$\mathbf{d_1}' = \kappa_3 \mathbf{d_2} - \kappa_2 \mathbf{d_3}$$

$$\mathbf{d_2}' = \kappa_1 \mathbf{d_3} - \kappa_3 \mathbf{d_1}$$

$$\mathbf{d_3}' = \kappa_2 \mathbf{d_1} - \kappa_1 \mathbf{d_2}$$

### Cartesian placement

$$\varphi_{\mathsf{x}} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{\mathsf{x}} 
\varphi_{\mathsf{y}} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{\mathsf{y}}$$

$$\varphi_{\mathsf{z}} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{\mathsf{z}}$$

$$\varphi' = d_3$$

$$d_i' = \kappa imes d_i$$

### Deformed placement

$$\varphi_1' - \varphi_2 \kappa_3 + \varphi_3 \kappa_2 = 0 
 \varphi_2' - \varphi_3 \kappa_1 + \varphi_1 \kappa_3 = 0 
 \varphi_3' - \varphi_1 \kappa_2 + \varphi_2 \kappa_1 = 1$$

## Directors

$$\mathbf{d_1}' = \kappa_3 \mathbf{d_2} - \kappa_2 \mathbf{d_3}$$
$$\mathbf{d_2}' = \kappa_1 \mathbf{d_3} - \kappa_3 \mathbf{d_1}$$
$$\mathbf{d_3}' = \kappa_2 \mathbf{d_1} - \kappa_1 \mathbf{d_2}$$

### Cartesian placement

$$\varphi_{\mathsf{x}} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{\mathsf{x}} 
\varphi_{\mathsf{v}} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{\mathsf{v}}$$

$$\varphi_{z} = \boldsymbol{\varphi} \cdot \boldsymbol{e}_{z}$$

• First order O.D.E. with nonlinear coefficients



Hard to solve analytically

Numerical simulations.

$$\varphi' = d_3$$

$$d_i' = \kappa imes d_i$$

### Deformed placement

$$\varphi_1' - \varphi_2 \kappa_3 + \varphi_3 \kappa_2 = 0 
 \varphi_2' - \varphi_3 \kappa_1 + \varphi_1 \kappa_3 = 0 
 \varphi_3' - \varphi_1 \kappa_2 + \varphi_2 \kappa_1 = 1$$

## Directors

$$\mathbf{d_1}' = \kappa_3 \mathbf{d_2} - \kappa_2 \mathbf{d_3}$$
$$\mathbf{d_2}' = \kappa_1 \mathbf{d_3} - \kappa_3 \mathbf{d_1}$$
$$\mathbf{d_3}' = \kappa_2 \mathbf{d_1} - \kappa_1 \mathbf{d_2}$$

### Cartesian placement

$$arphi_{\mathsf{x}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{x}} \ arphi_{\mathsf{y}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{y}} \ arphi_{\mathsf{z}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{z}}$$

First order O.D.E. with nonlinear coefficients



Hard to solve analytically

Numerical simulations.

• For fixed  $e, g; \mu$  and  $\ell$ , rod behaviour depends on  $\eta$ .

$$\varphi' = d_3$$

$$d_i' = \kappa imes d_i$$

#### Deformed placement

$$\begin{aligned}
\varphi_1' - \varphi_2 \kappa_3 + \varphi_3 \kappa_2 &= 0 \\
\varphi_2' - \varphi_3 \kappa_1 + \varphi_1 \kappa_3 &= 0 \\
\varphi_3' - \varphi_1 \kappa_2 + \varphi_2 \kappa_1 &= 1
\end{aligned}$$

### **Directors**

$$egin{aligned} {m{d_1}'} &= \kappa_3 \, {m{d_2}} - \kappa_2 \, {m{d_3}} \ {m{d_2}'} &= \kappa_1 \, {m{d_3}} - \kappa_3 \, {m{d_1}} \ {m{d_3}'} &= \kappa_2 \, {m{d_1}} - \kappa_1 \, {m{d_2}} \end{aligned}$$

### Cartesian placement

$$arphi_{\mathsf{X}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{X}} \ arphi_{\mathsf{y}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{y}} \ arphi_{\mathsf{z}} = oldsymbol{arphi} \cdot oldsymbol{e}_{\mathsf{z}}$$

First order O.D.E. with nonlinear coefficients



Hard to solve analytically

Numerical simulations.

- For fixed  $e, g; \mu$  and  $\ell$ , rod behaviour depends on  $\eta$ .
- Detailed study of this control parameter gives a better understanding of the geometry of rod shapes

## $\eta$ analysis:Trivial case

Thick







$$\eta=1$$
 Torsion

$$\eta = \sqrt{\mathit{r}_1}$$
 Quasi-bending  $\%~ \emph{\textbf{d}}_1$ 





## $\eta$ analysis:Trivial case

Thin





00000000



$$\eta = \sqrt{r_1}$$
 Bending %  $d_1$ 







## $\eta$ analysis:Trivial case

Thick

= 1

 $\eta=1$ Torsion  $\eta = \sqrt{r_1}$  Quasi-bending %  $extbf{\emph{d}}_1$ 

 $\eta = \sqrt{r_2}$  Bending %  $\emph{\textbf{d}}_2$ 

Thin





 $\eta = \sqrt{r_1}$ Bending %  $m{d_1}$ 

 $\eta=1$  Quasi-torsion

 $\eta = \sqrt{r_2}$  Bending %  $d_2$ 

What is the behaviour of the rod by varying  $\eta$  for  $\mu$  fixed???



00000000

## $\eta$ analysis: General rod behaviour



•  $\eta$  dictates shapes of the beam.



00000000

- $\eta$  dictates shapes of the beam.
- Increasing  $\eta$  switch rod shape from torsion to bending and vice versa in a continuous way.

## Influence of e on rod behaviour



### Influence of e on rod behaviour



Pattern size ???

## Perspectives



DNA helicoidal shapes



Yarn balls shapes



Chromosome condensation



Torus knots

## Conclusion

- Kirshhoff rod subjected to pure moment.
- Two invariants dictate the existence of the solutions.

#### Conclusion

- Kirshhoff rod subjected to pure moment.
- Two invariants dictate the existence of the solutions.
- Exact solutions in terms of Jacobian elliptic functions.
- Four parameters control the problem:
- Material g.
- External moments  $\eta$ .

- Geometry of the cross section e.
- Internal energy per unit length  $\mu$ .

#### Conclusion

- Kirshhoff rod subjected to pure moment.
- Two invariants dictate the existence of the solutions.
- Exact solutions in terms of Jacobian elliptic functions.
- Four parameters control the problem:
- Material g.

• Geometry of the cross section e.

• External moments  $\eta$ .

- Internal energy per unit length  $\mu$ .
- ullet  $\eta$  controls the shape of the pattern.
- Independent of rod length.

ullet  $\mu$  controls the size of the pattern.