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Abstract. The Eringen’s nonlocal elastica equation does not possess a Lagrangian formulation.
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and Hamiltonian structure associated to this equation. We then derive a discrete version of the
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an expression of the solutions in term of elliptic integrals of the first kind.
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de l’Université, BP 1155,64013 Pau Cedex, France.
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1. Introduction

In two letters to one of the authors (J.C) [4], N. Challamel raised a number of issues concerning
the continuous Eringen’s nonlocal elastica equation defined by

(1)
(
1− β`2 cos(x)

) ..
x+ β

(
1 + `2

.
x2
)

sin(x) = 0, with
.
x(0) =

.
x(1) = 0,

where `2 =
a2

12L2
=

1

12N2
and

.
x =

dx

ds
and its discrete analogue defined by N. Challamel and

al. in [5] by

(2) xi+1 − 2xi + xi−1 = − β

n2
sin(xi),

with the boundary conditions x1 = x0 and xn−1 = xn, using the continualization method as
exposed for example in [5].

Putting apart the boundary conditions, we are interested in the algebro-geometric structure
of these two dynamical systems and their relation.

Deriving a discrete analogue of a continuous differential equation is always a challenge and
is not only a question of discretizing the differential equation using classical tools of numerical
analysis. Indeed, doing such a discretization destroyes in general the basic algebraic, geometric
or qualitative properties of the equations and solutions of the continuous model. An example
of well defined discrete analogue is provided by the construction of variational integrators for
Euler-Lagrange equations. Indeed, in this case, variational integrators are designed in order to
preserve the variational structure at the discrete level and as a consequence most of the quali-
tative properties of the solutions.

The main point is that the Eringen’s nonlocal elastica does not possess a specific geometrical
or algebraic structure which can be used to constraint the discrete analogue one is looking for.
For example, this equation does not possess a Lagrangian formulation. In this note, we provide
a discrete analogue of the Eringen’s nonlocal elastica by constructing first a variational inte-
grating factor, i.e. a function a such that the equation multiplied by a possesses a Lagrangian
formulation. Using this result, we are able to derive a Hamiltonian function and to exhibit an
explicit first integral for the Eringen’s nonlocal elastica.

This result can be used to solve three distinct problems:

• First, in [4], N. Challamel suggested that one can probably obtain explicit formula for
the solutions of the Eringen’s nonlocal elastica using elliptic integrals. In Section 6,
taking benefit of the Hamiltonian structure, we prove that this is indeed the case using
elliptic integrals of the first kind and simplifying previous result of M. Lembo [10, 11, 12].

• Second, taking benefit of the existence of a Lagrangian and Hamiltonian structure, we
derive a variational integrator for the Eringen’s nonlocal elastica, i.e. a numerical
integrator preserving the Lagrangian and Hamiltonian structure at the discrete level.
A classical property of variational integrators is that they preserve very well energy,
i.e. the evaluation of the Hamiltonian on solutions. This property induce a very good
preservation of the first integral at the discrete level.

• Third, the variational integrator is implicit due to the presence of the integrating factor.
We obtain an explicit numerical scheme taking into account the value of the first integral.
We call this new numerical integrator a topological integrator.

The plan of the paper is as follows:

In Section 2, we introduce a family of ordinary differential equations called the Eringen’s
family generalizing the classical Eringen’s nonlocal elastica for which we explicit the necessary
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and sufficient Helmholt’z conditions for the existence of a Lagrangian variational formu-
lation (see [?]). In particular, we prove that the Eringen’s nonlocal elastica does not possess a
variational formulation giving a formal proof of arguments and statements given by N. Challamel
and al. in [6].

In Section 3, we characterize the subfamily of the Eringen’s family for which an integrating
exists, i.e. a function such that the given equation multiplied by this function possesses a La-
grangian variational formulation. In particular, we are able to provide an explicit integrating
factor for the Eringen’s nonlocal elastica.

In Section 4, we derive the Hamiltonian associated to the modified Eringen’s nonlocal elastica.
We deduce an explicit first integral. The first integral is then used to provide explicit
formula for the solutions in term of Ellpitic integrals in Section 6.

Section 7 deals with the construction of an efficient numerical scheme for the Eringen’s non-
local elastica. We use the formalism of discrete embedding in order to derive variational in-
tegrators for the modified Eringen’s nonlocal elastica. Variational integrators are in this case
implicit. However, a slight modification of the construction lead to an explicit scheme called a
topological integraor. These two scheme are implemented and compared with the classical
Euler scheme as well as the Challamel and al. discrete Eringen’s nonlocal elastica defined in
[6] here called Challamel’s integrator. In particular, we prove that variational integrators
and the corresponding discrete Hamiltonian versions are more efficient than the other numerical
scheme.

Section 8 discusses some perspectives opened by this work.

2. Explicit Helmholtz’s conditions for a class of second order differential
equations

We denote by E the three parameter family of second order differential equations defined by

(3) a(x)
..
x+ b(x)(

.
x)2 + c(x) = 0,

where a, b, c are real functions. We call Eringen’s family the previous set of second order
differential equations.

This terminology is suggested by the fact that the Eringen’s nonlocal elastica belongs to E
with

(4) a(x) = 1− βl2 cosx, b = a′, c =
1

l2
a′.

An element of E is denoted by Ea,b,c.

A natural question is to characterize the sub-family of equations which are Lagrangian. This
can be done using the Helmholtz’s criterion: Let O be the differential operator associated to
(3) and given by

(5) O = a(·) d
2

dt2
+ b(·)

(
d

dt

)2

+ c(·)

and denotes by DO(x).h the Frechet derivative of O along the direction h defined by

(6) DO(x).h = lim
ε→0

O(x+ εh)−O(x)

ε
.

Then (3) is Lagrangian if and only if DO(x) is self adjoint.

A proof can be found in the book of J-P. Olver ([13],p.377-379 for a historical about the
Helmholtz’s problem of the calculus of variations and Theorem 5.92 p.364).

Applying the previous result, one can obtain explicit conditions ensuring that (3) is La-
grangian.

Lemma 2.1. The second order differential equation (3) is Lagrangian if and only if a′ = 2b.
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Proof. The Frechet derivative of the differential operator is given by

(7) DO(x).h = a
..
h+ a′

..
xh+ 2b

.
x
.
h+ 2b′(

.
x)2h+ c′h.

The adjoint is then given by

(8) DO(x)?.h =
d2

dt2
(ah) + a′

..
xh− d

dt
(2b

.
xh) + 2b′(

.
x)2h+ c′h,

=
..
ah+ 2

.
a
.
h+ a

..
h+ a′

..
xh−

.
2b
.
xh− 2b

.
x
.
h+ 2b′(

.
x)2h+ c′h.

Using the fact that for an arbitrary function f , we have
.

f(x) =
.
xf ′(x) and

..
f(x) =

..
xf ′(x) +

(
.
x)2f ′′(x), we obtain

(9)

DO(x)?.h = (
..
xa′ + (

.
x)2a′′)h+ 2

.
xa′

.
h+ a

..
h+ a′

..
xh− 2b′(

.
x)2h− 2b

..
xh− 2b

.
x
.
h+ 2b′(

.
x)2h+ c′h,

= a
..
h+ (2

.
xa′ − 2b

.
x)
.
h+ (

..
xa′ + (

.
x)2a′′ + a′

..
x− 2b′(

.
x)2 − 2b

..
x+ 2b′(

.
x)2 + c′)h

The self adjoint property gives the following set of relations

(10)

{
2
.
x(a′ − 2b) = 2b

.
x,

..
xa′ + (

.
x)2a′′ + a′

..
x− 2b′(

.
x)2 − 2b

..
x+ 2b′(

.
x)2 + c′ = a′

..
x+ 2b′(

.
x)2 + c′,

which leads to

(11)

{
a′ − b = b,
..
x(a′ − 2b) + (

.
x)2(a′′ − 2b′) = 0,

Of course, the first equation

(12) a′ − 2b = 0,

implies the second one. This concludes the proof. �

Applying this result to the Eringen’s nonlocal elastica we deduce that:

Lemma 2.2. The Eringen’s nonlocal elastica equation does not possess a Lagrangian formulation

Proof. As b = a′ the Helmholtz’s condition reduces to a′ = 0 which is not true. �

This result has been stated in ([6],p.132). The previous result can be considered as a complete
proof of this statement.

3. Integrating factor and the Helmholtz’s conditions

The Helmholtz’s conditions are deeply related to the presentation of the equation. In partic-
ular, even if O(x) = 0 does not satisfy the conditions, the equation αO(x) = 0 with α a suitable
function of x which is not zero almost everywhere, although equivalent to the initial equation
can possess a Lagrangian formulation. The function α is then called an integrating factor.

Using Lemma 2.1, we have the following characterization of admissible integrating factors:

Lemma 3.1. Let us consider a differential equation of the form (3) such that a′ − 2b = f with
f 6= 0. Let α be an almost everywhere non zero function. Then the differential equation (3)
admits α as an integrating factor if

(13) α′a+ αf = 0.

Applying this result on the Eringen’s nonlocal elastica, we obtain the following result:

Theorem 3.2. The Eringen’s nonlocal elastica possesses a unique (up to multiplication by a
constant) integrating factor given by the function a. A possible Lagrangian is given by

(14) L(x, v) =
1

2
a2v2 +

1

2l2
(a′)2 +

1

l2
a′′.

Proof. In the Eringen’s nonlocal elastica case, we have f = −a′ so that (13) is equivalent to

(15) α′a− αa′ = 0.

As a is almost everywhere non zero, this equation can be solved explicitly ans gives

(16) α = Ca,
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where C is a constant. As a consequence, α is an admissible function and the a-deformation of
the Eringen’s nonlocal elastica equation possesses a Lagrangian formulation.

Using the proposed Lagrangian, we obtain

(17)
∂L

∂v
= a2v,

∂L

∂x
= a′av2 +

1

l2
a′a′′ +

1

l2
a(3),

where a(3) denotes the third derivative of a with respect to x. Using the fact that

(18) a(3) = −a′,
we obtain for the Euler-Lagrange equation

(19)
d

dt

(
a2

.
x
)

= a′a(
.
x)2 +

1

l2
a′a′′ − 1

l2
a′,

which gives using the fact that a′′ = 1− a that

(20)

d

dt

(
a2

.
x
)

= a′a(
.
x)2 − 1

l2
a′a

= a

(
a′(

.
x)2 − 1

l2
a′
)
.

As

(21)
d

dt

(
a2

.
x
)

= 2(
.
x)2a′a+ a2

..
x,

= a
(
2(
.
x)2a′ + a

..
x
)
,

we obtain, introducing this expression in equation (20) that

(22) a

(
(
.
x)2a′ + a

..
x+

1

l2
a′
)

= 0,

which concludes the proof. �

4. A Hamiltonian associated to the modified Eringen’s nonlocal elastica
equation

The classical way of constructing a Hamiltonian formulation associated to the Lagrangian one
via the Legendre transform [2] gives the following result:

Theorem 4.1. The Hamiltonian system corresponding to the Eringen’s equation is given by

(23)


.
x =

∂H

∂p
=

p

a2
,

.
p = −∂H

∂x
= a

(
a′
p2

a4
− 1

l2
a′
)
,

with the Hamiltonian function

(24) H(x, p) =
1

2a2
p2 − 1

2l2
(a′)2 − 1

l2
a′′.

Proof. The variable p corresponding to the momentum is defined by

(25) p =
∂L

∂v
= a2v,

which is one to one as long as a 6= 0.

The Legendre transform gives for the Lagrangian L given in Lemma 3.2 the following Hamil-
tonian:

(26)

H(x, p) = pv − L(x, v),

=
p2

a2
− 1

2
a2
p2

a4
− 1

2l2
(a′)2 − 1

l2
a′′,

=
1

2a2
p2 − 1

2l2
(a′)2 − 1

l2
a′′.

A simple computation gives the equation of motion. This concludes the proof. �
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It must be noted that the Hamiltonian function depends on the parameters β and l and must
be understood as

(27) Hβ,l(x, p) =
1

2a2β,l
p2 − 1

2l2
(a′β,l)

2 − 1

l2
a′′β,l,

with

(28) aβ,l(x) = 1− βl2 cos(x).

As we have

(29) a′β,l(x) = βl2 sin(x), and a′′β,l(x) = βl2 cos(x),

we have explicitly the Hamiltonian

(30) Hβ,l(x, p) =
1

2(1− βl2 cos(x))2
p2 − 1

2
β2l2(sin(x))2 − β cos(x).

Taking l = 0 in the previous Hamiltonian, we obtain the classical simple pendulum equa-
tion:

Corollary 4.2. Let ` = 0, then the Hamiltonian system Eqs. (23) corresponds to the simple
pendulum motion:

(31)

{ .
x = p,
.
p = −β sin(x).

with the Hamiltonian

(32) Hβ,0(x, p) =
p2

2
− β cos(x).

This property can be used to deduce interesting qualitative properties if the Eringen’s
nonlocal elastica using perturbation theory and the fact that the Hamiltonian is a constant of
motion on the solutions of the system.

The shape of the energy manifold looks as follows:

Figure 1. Energy manifold for β = 1 and l = 0, l = 0.2 and l = 0.5

5. Qualitative behavior of the Eringen’s nonlocal elastica solutions

As already reminded in Section 4, the main consequence of the existence of a Hamiltonian
structure given by Theorem 4.1 is the fact that it provides a constant of motion, i.e. that for all
solutions (x(t),p(t)) of the Hamiltonian equation (23), we have

(33) Hβ,l(x(t), p(t)) = Hβ,l(x(0), p(0)),

for all t ∈ R.

Giving the Legendre transform, it means that we have the following result:

Lemma 5.1. Let x be a solution of the Eringen’s nonlocal elastica equation, then the function
H(x, a2ẋ) is constant.
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Proof. This follows directly from the fact that for any solution (xt, pt) of the Hamiltonian system,
we have H(xt, pt) which is a constant function. As pt = a2ẋ by the Legendre transform and xt
is by construction a solution of the Eringen’s nonlical elastica, we obtain the result. �

A natural idea is then to look at the level sets of the function Iβ,l : R2 7→ R defined as

(34) Iβ,l(x, v) = Hβ,l(x, a
2(x)v),

in order to have a global view of the qualitative behavior of the solutions of the Eringen’s non-
local elastica.

In the following, we provide the level set of H1,l and I1,l for different values of l and we
compare with the phase portrait of the Eringen’s nonlocal elastica showing the strong influence
of the first integral on the dynamics.

Figure 2. Level sets of Hβ,l, Iβ,l and phase portrait of the Eringen’s nonlocal
elastica for (β, l) = (1, 0.2)

Figure 3. Level sets of Hβ,l, Iβ,l and phase portrait of the Eringen’s nonlocal
elastica for (β, l) = (1, 0.5)

Figure 4. Level sets of Hβ,l, Iβ,l and phase portrait of the Eringen’s nonlocal
elastica for (β, l) = (1, 0.7)
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Figure 5. Level sets of Hβ,l, Iβ,l and phase portrait of the Eringen’s nonlocal
elastica for (β, l) = (1, 0.9)

Another representation can be obtained taking into account the 2π-periodicity of the solutions
of the equations. In that case, the phase portrait must be given on R/2πZ×R, i.e. S1×R where
S1 is the unit circle, i.e. a cylinder, which is the classical phase space of the simple pendulum
equation.

Figure 6. Phase portrait of the Eringen’s nonlocal elastica for β = 1, l = 0,
l = 0.2, l = 0.5, l = 0.7 and l = 0.9

6. Explicit computation of the solutions of the Eringen’s nonlocal elastica
equation

An important problem is to obtain explicit forms for the solutions of the Eringen’s nonlocal
elastica equation. In [4], N. Challamel suggests that one can probably obtain such solutions
using elliptic integrals.

Taking benefit of the Hamiltonian structure of the equation and as a consequence, of the
existence of a constant of motion, we derive explicit expression for the solutions of the Eringen’s
nonlocal elastica equation. They are indeed expressed using elliptic integrals of the first
kind as suggested by N. Challamel and the fact that for l = 0 the system reduces to the simple
pendulum equation.

6.1. Eringen’s solutions from Hamiltonian function.

6.1.1. The simple case. Let us begin with the classical case of the simple pendulum equation,

i.e. for the Hamiltonian Hβ,0(x, p) = p2

2 − β cos(x) which is associated to Hβ,` with l = 0. As
Hβ,0 is a constant of motion, we have

p2

2
− β cos(x) = c =⇒ p2 = 2 (c+ β cos(x)) ,

⇐⇒ .
x2 = 2(c+ β)

[
1− 2β

c+ β
sin2 (θ/2)

]
,

⇐⇒ dx

dt
= ±

√
2(c+ β)

√
1− 2β

c+ β
sin2 (θ/2),

⇐⇒ dt = ± 1√
2(c+ β)

dx√
1− 2β

c+β sin2 (x/2)
.
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Setting k2 = 2β
c+β and integrating both sides gives

(35) t = ± 1√
2(c+ β)

∫ x(t)

x0

dz√
1− k2 sin2 (z/2)

:= Eβ,k,c(x).

The right-hand side of Eq. (35) is an incomplete elliptic integral of the first kind.

Eβ,x0,c
(
x(t)

)
:=

∫ x(t)

x0

± 1√
2

dz√
c+ β cos(z)

=

∫ φ(t)

φ0

∓ 1√
2

1√
c+ βu

du√
1− u2

= t,(36)

As the simple pendulum case is the simplest one for which the computations can be made, we
have no hope to obtain a simpler form in the general case than one using elliptic integrals. This
is done in the following Section.

6.1.2. The general case. The same procedure can be followed for the general case, i.e. one
considers the Hamiltonian Hβ,`. The result can be resumed as follows:

Lemma 6.1. Let (x0, v0) ∈ R2 be given. We denote by c the quantity Hβ,l(x0, a
2(x0)v0) = c0

and βl2 = λ, 2c0 + β2l2 = k0, β2l2 = γ then for all t ∈ R, the solution x(t) satisfies

t = Eβ,l,x0,c0
(
x(t)

)
:=

∫ cos(x(t))

cos(x0

± λu− 1√
k0 + 2βu− γu2

du√
1− u2

.

This kind of integral is called an elliptic integral.

Proof. Solving the equation Hβ,l(x, p) = c with respect to p, we have

1

2(1− βl2 cos(x))2
p2 − 1

2
β2l2(sin(x))2 − β cos(x) = c

then

(37) p = ±(1− βl2 cosx)
√

2c+ β2l2 + 2β cos(x)− β2l2(cos(x))2,

where we use 1 − (sin(x))2 = (cos(x))2. Taking into account the Hamiltonian system, we have
p = (1− βl2 cos(x))2

.
x and substituting into (37),

.
x =± 1

(1− βl2 cosx)

√
2c+ β2l2 + 2β cos(x)− β2l2(cos(x))2,

m

dt =± (1− βl2 cosx)√
2c+ β2l2 + 2β cos(x)− β2l2(cos(x))2

dx

Integrating both side we obtain, using the function for incomplete elliptic integral of the first
kind,

t = Eβ,l,x0,c
(
x(t)

)
:=

∫ x(t)

x0

± (1− λ cos(z))√
k + 2β cos(z)− γ(cos(z))2

dz,(38)

Setting u = cos z then du = − sin zdz = −
√

1− u2dz, then the previous integral becomes

t = Eβ,l,x0,c
(
x(t)

)
:=

∫ u(t)

u0

± λu− 1√
k + 2βu− γu2

du√
1− u2

,

where u(t) = cos(x(t)) and u0 = cos(x0). This concludes the proof. �

6.2. Eringen’s solutions from canonical variables. There is in fact another way to obtain
solutions Eringen equation by considering a suitable change of variables the so-called canonical
variables (see [15]).
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6.2.1. Canonical variables for the original Eringen’s equation. Consider the Eringen’s equation

(39) a(x)
..
x+ b(x)

.
x2 + kb(x) = 0.

where a(x) = 1 − βl2 cos(x), b(x) = a′(x) and k = 1
l2

. By a suitable change of variables
(t, x) = (r, w), we have that

ẋ = ẇ =
1

ṙ
, ẍ = − r̈

ṙ3
.

Rewriting equation in terms of r and w becomes

−a(w)
r̈

ṙ3
+ b(w)

1

ṙ2
+ kb(w) = 0⇒ −a(w)r̈ + b(w)ṙ + kb(w)ṙ3 = 0

Sitting z = ṙ, the last equation becomes separable first-order ODE

ż =
b(w)

a(w)

(
z + kz3

)
,

its solution is given by
z√

1 + kz2
= ca(w), c > 0

Solving the last equation for z yields,

z = ṙ = ± ca(w)√
1− k2c2a2(w)

Finally, returning to the original variables we have that ṙ = dt/dx and integrating the last
equation gives

t = ±
∫

ca(x)√
1− k2c2a(x)

dx+ c1

which is an elliptic integral.

6.2.2. Canonical variables with the Lagrangian L. We can also find the solutions of Eringen’s
equation using the corresponding Lagrangian L as given in Section 3:

L(x, v) =
1

2
a2v2 +

1

2l2
(a′)2 +

1

l2
a′′

It is obvious that the Lagrangian L does not depend on t so the operator X = ∂
∂t called a

variational symmetry [13]. The canonical variables corresponds to the operator X are given by
(t, x) = (r, w) (see [15]) so that, under such variables one can write the Lagrangian L in term of
r and w (see [15, page 65]), we have

v = ẋ = ẇ =
1

ṙ

and the Lagrangian L becomes

L̃(w, ṙ) =
1

ẇ
L(x, v) =

1

v
L(x, v) =

1

2
a2v +

1

2l2v
(a′)2 +

1

l2v
a′′

=
1

2
a2(w)ṙ +

1

2l2ṙ
(a′(w))2 +

1

l2ṙ
a′′(w).

Therefore, the corresponding Euler Lagrange equation is given by

d

dw

(
∂L̃

∂ṙ

)
=
∂L̃

∂r

As L̃ does not depend on r, we have the following first integral:

I(w, ṙ) =
∂L̃

∂ṙ
=

1

2
a2(w)− 1

2l2ṙ2
(a′(w))2 − 1

l2ṙ2
a′′(w).

Rewriting I in term of the original variables becomes

I(x, v) =
1

2
a2 − 1

2l2
(a′)2ẋ2 − 1

l2
a′′ẋ2.
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Since I(x, v) is a constant of motion one can write I(x, v) = c, then we obtain

ẋ = ±

√
1
2a

2 − c√
1
2l2

(a′)2 +
1

l2
a′′

=⇒ t =

∫
±

√
1
2l2

(a′)2 +
1

l2
a′′√

1
2a

2 − c
dx+ c1

This kind of integral is also an elliptic one.

7. Variational and Topological numerical integrator for the Eringen’s
nonlocal elastica

The existence of the first integral Iβ,l for the Eringen’s nonlocal elastica can be used to design
numerical integrators preserving this first integral. Such a numerical integrator is reminiscent of
geometric numerical integration and can be called topological numerical integrator as the preser-
vation of the first integral ensure that the topological properties of the solutions constrained by
the first integral are preserved. To construct such a topological numerical integrator an idea is
first to use the existence of an integrating factor and the variational structure which is associ-
ated. We then first construct a variational integrator for the modified Eringen’s nonlocal elastica
using the discrete embedding formalism ([8],[7]). Having this numerical integrator, we are
able to propose a discrete dynamical systems which can be called ”discrete Eringen’s nonlocal
elastica” as the fundamental properties of this discrete system are similar to the continuous case
from the point of view of first integral and existence of an underlying variational structure up
to an integrating factor.

7.1. Using a classical Euler scheme. In this Section, we provide some simulations of the
Eringen’s nonlocal elastica using an explicit Euler scheme. The quality of the numerical scheme
is measured by the quality of the preservation of the first integral at the discrete level. As we
have seen in Section 5, the qualitative properties of the solutions are controlled by the level
surface of the first integral.

Figure 7. Numerical solution of the Eringen’s nonlocal elastica for l = 0 and
l = 0.2 and the corresponding evaluation of the first integral - Euler scheme -
h = 0.01
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Figure 8. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7 and
l = 0.9 and the corresponding evaluation of the first integral - Euler scheme -
h = 0.01

As we can see, a rapid divergence of the values of the first integral is observed.

7.2. Variational integrator and the Eringen’s nonlocal elastica.

7.2.1. Reminder about discrete derivatives and integrals. Let [a, b] be a given interval and N ∈
N∗. Let h = 1/N . We denote by Th (or simply T) a uniform time scale defined by Th =
{ti}i=0,...,N and ti = a+ i ∗ h. We denote by T− = T \ {t0} and T+ = T \ {tN}.

Let g ∈ C([a, b],R) be a given function. The discrete associate to g is simply the function g
restricted to T. We also denote it by g in the following.

Let f ∈ C(T,R) and t ∈ Tpm. The ±-discrete integral of f over [a, t] is the quantity denoted

by

∫
[a,b]

f(t)∆±t and defined by

(40)

∫
[a,t]

f(t)∆±t =
∑

ti∈[a,t]∩T±

g(ti)h.

Of course
∫
[ a, b]f(s)∆−s corresponds to the right Riemann sum associated to T and

∫
[ a, b]f(s)∆+s

to the left one.

We denote by ∆−[x]x the backward discrete derivative defined for all x ∈ C(T,R),
x(ti) = xi, i = 0, . . . , N by

(41) ∆−[x](ti) =
xi − xi−1

h
, i = 1, . . . , N.

We denote by ∆+ the forward discrete derivative defined for all x ∈ C(T,R) by

(42) ∆+[x](ti) =
xi+1 − xi

h
, i = 0, . . . , N − 1.

In the following, we simply denote ∆±[x]i for ∆pm[x](ti) when no confusion is possible.

The discrete derivatives and integrals satisfy a discrete analogue of the fundamental theorem
of differential calculus, i.e.

(43) ∆pm

[∫ t

a
f(s)∆−s

]
(t) = f(t), ∀ t ∈ T±.

7.2.2. Variational integrators and discrete embedding. In this Section, we follow the discrete
embedding formalism introduced in [?] an developed further in [8, 9] and [7].

We first define a discrete analogue of the Lagrangian functional

(44) L (x) =

∫ b

a
L(x(s), ẋ(s)ds,
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with L given by Theorem 3.2. The ±-discrete Lagrangian functional denoted by Lh is defined
C(T,R) by

(45) Lh±[x] =

∫
Th

L (x,∆±x) ∆±t.

The discrete Calculus of variations [7] leads to the discrete Euler-Lagrange equation defined
by

(46) ∆∓

[
∂L

∂v
(x,∆±[x])

]
(t) =

∂L

∂x
(x,∆±[x])(t), ∀ t ∈ T+− = T+ ∩ T−.

The particular feature of the previous numerical integrator is to provide a symplectic integra-
tor which are known to possess very good properties of preservation of energy, i.e. of H.

7.2.3. The discrete Eringen’s nonlocal elastica. We use the previous construction using the La-
grangian obtained in Theorem 3.2. The backward discrete Lagrangian functional is given
(47)

L−(x) =

∫
[a,b]

(
1

2
(a(x)∆x)2 +

1

2l2
(a′(x))2 +

1

l2
a′′(x)

)
∆−t =

N∑
i=1

(
1

2
(ai(∆−[x]i)

2 +
1

2l2
(a′i)

2 +
1

l2
a′′i

)
,

where ai = a(xi), a
′
i = a′(xi) and a′′i = a′′(xi) .

The discrete Euler-Lagrange equation associated to L is given by the following Theorem:

Theorem 7.1. The backward variational integrator associated to Eq. (1) is given by

(48) a2i+1(xi+1 − xi) = a2ixi − a2ixi−1 + aiβ sin(xi)
(
l2(xi − xi−1)2 − h2

)
for i = 1, . . . , N − 1

When l = 0 and β = 1, we obtain the classical variational integrator for the simple pendulum:

(49) xi+1 = 2xi − xi−1 − h2 sin(xi).

It must be noted that the implicit character of the numerical scheme is directly related to the
term corresponding to the integrating factor.

Proof. The equation (52) can be found directly from (17) using the fact that

(50)
1

l2
a′(a′′ − 1) = − 1

l2
aa′,

so that

(51)
∂L

∂x
= aa′

[
v2 − 1

l2

]
We then obtain the discrete Euler-Lagrange equation

(52) ∆+

[
a2 ·∆−[x]

]
i

= aia
′
i

[
(∆−[x])i2 − 1

l2

]
, i = 1, . . . , n− 1.

Using the expression of ∆+ and ∆− a more explicit form can be obtained. We have

(53)
h∆+

[
a2 ·∆−[x]

]
i

= a2i+1∆−[x]i+1 − a2i∆−[x]i,

= h−1
(
a2i+1xi+1 − (a2i+1 + a2i )xi + a2ixi−1

)
.

The right hand term is given by

(54) aia
′
i

[
(∆−[x])i2 − 1

l2

]
= aia

′
ih
−2 ((xi − xi−1)2 − h2l−2) .

As a consequence, we obtain the following expression

(55) a2i+1xi+1 − (a2i+1 + a2i )xi + a2ixi−1 = aia
′
i

(
(xi − xi−1)2 − h2l−2

)
for i = 1, . . . , N − 1 which can be rewritten as

(56) a2i+1(xi+1 − xi) = a2ixi − a2ixi−1 + aia
′
i

(
(xi − xi−1)2 − h2l−2

)
for i = 1, . . . , N − 1. This concludes the proof. �

In the same way, the forward variational integrator is given by:
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Theorem 7.2. The forward variational integrator associated to Eq. (1) is given by
(57)

xi+1 =
1

a2i

[
(a2i + a2i−1)xi − a2i−1xi−1 + ail

2 sin(xi)(xi+1 − xi)2 − h2ai sin(xi)
]
, i = 1, . . . , N −1.

for i = 1, . . . , N − 1

When β = 1 and l = 0, we obtain again the classical variational integrator for the simple
pendulum

(58) xi+1 = 2xi − xi−1 − h2 sin(xi).

When l 6= 0, the numerical scheme is implicit but relies on finding roots of a polynomials of
degree 2. Precisely, in order to find xi+1, we have to solve the polynomial equation Pi(x) = 0
where the polynomial Pi is given by

(59) Pi(x) = αix
2 − xβi + γi,

with

(60) αi = ail
2 sin(xi), βi = 2ail

2xi sin(xi) + a2i , γi = (a2i + a2i−1)xi − a2i−1xi−1 − h2ai sin(xi).

Proof. We have

(61)

∆−
[
a2(x)∆+[x]](ti)

]
=

1

h

(
a2i∆+[x]i − a2i−1∆+[x]i−1

)
,

=
1

h2
(
a2i (xi+1 − xi)− a2i−1(xi − xi−1)

)
,

=
1

h2
(
a2ixi+1 − (a2i + a2i−1)xi + a2i−1xi−1

)
.

Moreover, we have

(62)
∂L

∂x
(xi,∆+[x]i) = l2 sin(xi)ai(∆+[x]i)

2 − sin(xi)ai,

= ai sin(xi)(l
2(∆+[x]i)

2 − 1).

�

In the forward and backward case the corresponding variational integrators are implicit. This
little increase of the algorithmic complexity is the price to pay in order to obtain a variational
integrator in this case. In Section 7.4, we look for a modification of the scheme which can lead
to an explicit one.

7.3. Simulations of the variational integrator for the Eriengen’s nonlocal elastica.
In order to implement the variational integrator for the Eringen’s nonlocal elastica, we need to
solve the implicit equation. This is done numerically using a Newton-Raphson method.

Simulations of the variational integrator are provides in the following for h = 0.1 on the
interval [0, 20] with x0 = 1, x1 = x0 for l = 0, 0.2, 0.5, 0.7 and 0.9.
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Figure 9. Numerical solution of the Eringen’s nonlocal elastica for l = 0, l =
0.2, l = 0.5 and the corresponding evaluation of the first integral - Variational
integrator - h = 0.1

Figure 10. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7
and l = 0.9 and the corresponding evaluation of the first integral - Variational
integrator - h = 0.1

We have then a very good preservation of the first integral and an accurate simulation of the
behavior of the solutions.
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Figure 11. Numerical solution of the Eringen’s nonlocal elastica for l = 0, l =
0.2 and the corresponding evaluation of the first integral - Variational integrator
- h = 0.01

Figure 12. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7
and l = 0.9 and the corresponding evaluation of the first integral - Variational
integrator - h = 0.01

7.4. Topological integrator. As we want to preserve the first integral, we have to satisfy the
following equation for all i = 0, . . . , N as precisely as possible in the backward case :

(63)
1

2
a2i (∆−[x]i)

2 − 1

2
l2(sin(xi))

2 − cos(xi) = c0,

where c0 is fixed as long as x0 and x1 are given. Another equivalent formulation is

(64)
1

2
a2i (xi − xi−1)2 − h2

1

2
l2(sin(xi))

2 − h2 cos(xi) = h2c0,

In the forward case, we have to satisfy the equation

(65)
1

2
a2i (∆+[x]i)

2 − 1

2
l2(sin(xi))

2 − cos(xi) = c0,

or equivalently that

(66)
1

2
a2i (xi+1 − xi)2 − h2

1

2
l2(sin(xi))

2 − h2 cos(xi) = h2c0,

This last equation can be used to replace directly the term (xi+1 − xi)2 in the right hand side
of the forward variational integrator. Indeed, multiplying the forward variational integrator by
ai, we obtain:

(67)
a3ixi+1 = ai(a

2
i + a2i−1)xi − aia2i−1xi−1

+a2i l
2 sin(xi)(xi+1 − xi)2

−h2a2i sin(xi), i = 1, . . . , N − 1.

Replacing a2i (xi+1 − xi)2 by its expression, we have
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(68)
a3ixi+1 = ai(a

2
i + a2i−1)xi − aia2i−1xi−1

+l2 sin(xi)
(
h2l2(sin(xi))

2 + 2h2 cos(xi) + 2h2c0
)

−h2a2i sin(xi), i = 1, . . . , N − 1.

We then obtain the following topological integrator:

Lemma 7.1. The topological integrator associated to the Eringen’s nonlocal elastica is the ex-
plicit numerical scheme defined by

(69)

xi+1 =
1

a3i

[
ai(a

2
i + a2i−1)xi − aia2i−1xi−1

+l2 sin(xi)
(
h2l2(sin(xi))

2 + 2h2 cos(xi) + 2h2c0
)

−h2a2i sin(xi)
]
, i = 1, . . . , N − 1.

Of course, recovering an explicit numerical scheme has a price: we have destroyed the discrete
variational structure of the variational integrator. Nevertheless, as we will see in the next
Section, we obtain a numerical integrator with good properties in particular for the preservation
of the first integral.

7.5. Simulations of the topological integrator. Using the topological integrator which cor-
responds to the variational integrator associated to the modified equation, we obtain the follow-
ing result for the same walues of l:

Figure 13. Numerical solution of the Eringen’s nonlocal elastica for l = 0 and
l = 0.2 and the corresponding evaluation of the first integral - Topological inte-
grator - h = 0.01

Figure 14. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7
and l = 0.9 and the corresponding evaluation of the first integral - Topological
integrator - h = 0.01
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We have a controled fluctuation around the exact value of the first integral I1,l which is a
characteristic property of variational integrators due to their symplectic character.

7.6. The Challamel’s integrator. In ([6], Equation (38) p.132), N. Challamel and al. intro-
duce a discrete version of the Eringen’s nonlocal elastica by rewritting first the second order
equation as a two dimensional system of first order differential equations.

Definition 7.2 (Challamel’s integrator). The Challamel’s integrator is defined for i = 0, . . . , n−
1, by

(70)
xi+1 = xi + hκi,
κi+1 = κi − hβ sin(xi+1)(1 + l2κ2i )a

−1
i+1.

In the context of the study of Eringen’s nonlocal elastica, they have to consider boundary
conditions given by κ0 = 0 and κn = 0.

Putting aside the boundary conditions, we look for the behavior of the previous integrator
with respect to the first integral obtained for the continuous Eringen’s nonlocal elastica.

7.7. Simulations of the Challamel’s integrator. We implement the semi-implicit numerical
scheme proposed by N. Challamel and al. in [6] called the Challamel’s integrator in the following.
We first take h = 0.1.

Figure 15. Numerical solution of the Eringen’s nonlocal elastica for l = 0 and
l = 0.2 and the corresponding evaluation of the first integral - Challamel’s inte-
grator - h = 0.1

Figure 16. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7
and l = 0.9 and the corresponding evaluation of the first integral - Challamel’s
integrator - h = 0.1

As one can see, we have a bad behavior for the discrete model when l is greater than 0.5. For
h = 0.01, we obtain the following results:
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Figure 17. Numerical solution of the Eringen’s nonlocal elastica for l = 0 and
l = 0.2 and the corresponding evaluation of the first integral - Challamel’s inte-
grator - h = 0.01

Figure 18. Numerical solution of the Eringen’s nonlocal elastica for l = 0.7
and l = 0.9 and the corresponding evaluation of the first integral - Challamel’s
integrator - h = 0.01

Here again for large value of l the Challamel’s integrator behaves badly with respect to the
preservation of the first integral. The opportunity to consider this model as a good discrete
analogue of the Eringen’s nonlocal elastica is then questionable.

7.8. Discrete Hamiltonian’s Eringen’s nonlocal elastica. The Challamel’s integrator looks
for a two dimensional discrete equation associated to the original second order differential equa-
tion. Having in mind that the modified Eringen’s nonlocal elastica is Lagrangian, a convenient
procedure is to transform the classical Euler-Lagrange equation to its Hamiltonian form as done
in Section 4.1. Using this structure, we can also derive a two dimensional discrete analogue of
the modified Eringen’s nonlocal elastica which preserve the Hamiltonian structure at the discrete
level contrary to the Challamel’s integrator. Again, we follow the discrete embedding formalism.

7.8.1. Reminder about shifted and non shifted discrete Hamiltonian systems. We remind some
definitions and basic results about discrete Hamiltonian systems in the framework of the shifted
or unshifted calculus of variations as exposed for example in [7]. We restrict ourself to uniform
time scales, i.e. T = {ti}i=0,...,n, ti+1 − ti = h for a given h > 0.

C. D. Ahlbrandt, M. Bohner, and J. Ridenhour in [1] introduced a notion of discrete Hamil-
tonian systems (on time scales) as follows:

Definition 7.3. Let H : (t, q, p) ∈ R × Rd × Rd → H(t, q, p) ∈ R be a function of class C2 in
each of its variables. Let T = {ti}i=0,...,n be a time scale, ti+1 = ti + h, i = 0, . . . , n − 1. The
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Hamiltonian system associated to H on T+ is defined by

(71)

{
∆+q = ∂pH(t, qσ, p),

∆+p = −∂qH(t, qσ, p).

Using the shifted calculus of variations on time scales developed in [3], M. Bohner proved that
the previous Hamiltonian systems on time scales can be obtained as critical points of shifted
Lagrangian functionals on time scales. Precisely, we have:

Theorem 7.4. The solutions of the Hamiltonian system (71) on T corresponds to critical points
of the time scales functional

(LσH) LσH,a,b,T(q, p) =

∫ b

a
[p∆+q −H(t, qσ, p)] ∆+t.

F. Pierret introduced in [14] a notion of Hamiltonian systems on time scales adapted to the
framework of the non shifted calculus of variations. Precisely, we have:

Definition 7.5. Let H : (t, q, p) ∈ R × Rd × Rd → H(t, q, p) ∈ R be a function of class C2 in
each of its variables. Let T = {ti}i=0,...,n be a time scale, ti+1 = ti+h, i = 0, . . . , n−1 be a time
scales . The Hamiltonian system associated to H on T is defined by

(72)

{
∆+q = ∂pH(t, q, p),

∆−p = −∆−[σ]∂qH(t, q, p).

Here again, one can prove that Hamiltonian systems are critical point of Lagrangian func-
tionals on time scales:

Theorem 7.6. The solutions of the Hamiltonian systems (72) on T corresponds to critical
points of the time scales functional

(LH) LH,a,b,T(q, p) =

∫ b

a
[p∆q −H(t, q, p)] ∆t.

We refer to the work of F. Pierret [14] for more details.

7.8.2. Using non shifted discrete Hamiltonian systems for the Eringen’s nonlocal elastica. Let
p = a2(x)∆+[x] then a discrete Hamiltonian system associated to the modified Eringen’s nonlocal
elastica is given by:

(73)
∆−[p] = aβ sin(x)

(
l2a−4p2 − 1

)
,

∆+[x] = a−2p.

We then obtain

(74)
pi − pi−1 = haiβ sin(xi)

(
l2a−4i p2i − 1

)
,

xi+1 − xi = ha−2i pi.

7.8.3. Using a shifted discrete Hamiltonian system for the Eringen’s nonlocal elastica. A different
version of discrete Hamiltonian systems has been introduced by C.D. Ahlbrandt, M. Bohner and
J. Ridendour in [1]. In that case, the so called shifted Hamiltonian system is given by

(75)
∆+[p] = a(σ(x))β sin(σ(x))

(
l2a−4(σ(x))p2 − 1

)
,

∆+[x] = a−2(σ(x))p,

where σs is the shift operator on the time-scale T defined by σ(ti) = ti+1 and as a consequence
σ(xi) = xi+1.

We then obtain

(76)
pi+1 − pi = hai+1β sin(xi+1)

(
l2a−4i+1p

2
i − 1

)
,

xi+1 − xi = ha−2i+1pi.

As we can see, the first equation gives an explicit formula for pi+1 as long as xi+1 is known,
which relies on the resolution of the second equation which is implicit. This semi-implicit scheme
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is very close to the discrete Eringen’s nonlocal elastica introduced by N. Challamel and al. in
[6].

7.8.4. Simulations of the shifted and nonshifted discrete Hamiltonian. In the following, we pro-
vide simulations of the shifted and non shifted discrete Hamiltonian for the Eringen’s nonlocal
elastica on the same figure. As we can see the difference between the two integrators is very
small up to l = 0.7 and become ony significant for l = 0.9.

Figure 19. Simulations for l = 0, l = 0.2 and l = 0.5 - shifted and non-shifted
Hamiltonian integrator - h = 0.1

Figure 20. Simulations for l = 0.7 and l = 0.9 - shifted and non-shifted Hamil-
tonian integrator - h = 0.1

7.8.5. Comparison with the Challamel’s integrator. We can compare the previous result with the
one obtained using the Challamel’s integrator by comparing for each integrator the behavior of
the first integral I(x) = H(x, aẋ) = H(x, p). As we will see, the Challamel’s integrator diverge
when l increases.

Figure 21. Simulations for l = 0, l = 0.2 and l = 0.5 -comparison of the value
of the first integral for the shifted , non-shifted Hamiltonian and Challamel’s
integrator - h = 0.01
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Figure 22. Simulations for l = 0.7 and l = 0.9 - comparison of the value of the
first integral for the shifted, non-shifted Hamiltonian and Challamel’s integrator
- h = 0.01

7.9. Numerical study of the convergence of each scheme. For each numerical scheme,
we fix l and h, and we denote by ?(t) the resulting discrete solution. We compute the error term
as

(77) e?(h) = max
t∈T
| x(t)− ?(t) |,

where x is taken as a reference solution computed for h = 10−5.

In the following, we provide a comparison for l = 0, l = 0.2, l = 0.7 and l = 0.9 between the
Euler (in green), the topological (in red), the Challamel’s integrator (in blue) and the variational
integrator (in magenta) for value of h = 10−3, h = 10−2 and h = 10−1.

For l = 0 and l = 0.2, we have:

The Euler scheme is always the less good integrator but the topological and the Challamel’s
one behaves more or less equally and no significant difference is observable.

For l = 0.7 we obtain:
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As we can see the topological integrator is better than the two other when h is below 0.1 and
the variational integrator gives always a better result.

For greater values of l we have an increasing instability of the Euler and Challamel’s integrator
as can be seen in the following for l = 0.9:

As we can see, the variational integrator is very well adapted to the study of the Eringen’s
nonlocal elastica.

8. Conclusion and perspectives

The previous results only give partial answers to the problems raised in [4]. As already quoted
in the Introduction, this article focus and the discrete and continuous Eringen’s nonlocal elastica
from the point of view of their algebro-geometric structures and how they are preserved from the
continuous to the discrete case. However, in order to do applications in the mechanical context,
we have to take into account the boundary conditions. This will be the subject of a forthcoming
paper. The explicit expression of the solutions coming from the Lagrangian and Hamiltonian
structure of the modified Eringen’s nonlocal elastica will be of importance for this purpose. In
that context, the asymptotic behavior of the solutions as well as the bifurcation diagram will be
investigated.

9. Supplementary material

All the numerical scheme have been implemented using Scilab and can be downloaded from
the web page of J. Cresson and K. Hariz Belgacem.
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