

Le formalisme des Systèmes Hamiltoniens à Ports pour la simulation passive de systèmes couplés

<u>Antoine Falaize</u>^a, Thomas Hélie^b et David Roze^b Réunion du GDR CNRS n°2043 *Géométrie Différentielle et Mécanique (GDM)* 4 au 6 novembre 2020, Paris Jussieu

^a Team M2N, LaSIE (UMR CNRS 7356), Université de la Rochelle, France ^b Team S3AM, STMS Laboratory (UMR CNRS 9912), IRCAM-CNRS-SU, Paris, France

Introduction

Contexte

- Modélisation de systèmes complexes, multiphysiques et ouverts au cœur des logiciels de CAE¹.
- Ces systèmes ouverts interagissent en échangeant énergie, matière et/ou information via leurs frontière.
- Ils sont constitués de sous-systèmes qui émanent de plusieurs domaines physiques.
- Complexité : nombreux phénomènes intriqués \rightarrow Modèles algébro-différentiels non-linéaires de grande dimension.

Motivations

- Tous ces systèmes physiques sont passifs : accroissement d'énergie totale ≤ apports de l'extérieur.
- Préservée dans les modèles, cette propriété assure la stabilité.
- Exploitée pour construire schémas numériques et lois de commandes inconditionnellement stables.

La passivité est un paradigme de choix pour le développement systématique de logiciels de CAE

^{1.} Computer Aided Engineering

Le formalisme des Systèmes Hamiltoniens à Ports (SHP)

- Classe de systèmes introduite en 1995².
- Combine trois paradigmes : (i) modélisation par ports, (ii) mécanique théorique et (iii) théorie du contrôle.
- Fournit une représentation d'état structurée selon les échanges de puissance.
- Garantit la passivité des modèles.

^{2.} Arjan van der SCHAFT et Bernhard MASCHKE. "The Hamiltonian formulation of energy conserving physical systems with external ports". In : AEU. Archiv für Elektronik und Übertragungstechnik 49.5-6 (1995), p. 362-371.

Paradigme 1 : Les modèles par ports (port-based modeling)

- Théorie introduite par Henry Paynter à la fin des années 50³.
- Cadre unifié pour la modélisation des systèmes multiphysiques.
- Focus sur les flux d'énergie et approche divide and conquer.
- Un système physique = (i) interconnexion de (ii) composants

Ingrédients

- 1. Composant : système dynamique ouvert qui interagit avec l'extérieur via des ports.
- 2. Port : couple de variables duales (e.g. force/vitesse) dont le produit donne la puissance reçue.
- 3. Réseau : définit les échanges de puissance internes (entre composants) et avec l'extérieur.

^{3.} Henry M PAYNTER. Analysis and design of engineering systems. MIT press, 1961.

Paradigme 2 : Géométrie différentielle

- Fournit un structure (symplectique) pour la formulation de la dynamique des systèmes conservatifs (Hamiltoniens).
- Pour les SHP, la structure sous-jacente est donnée par la structure d'interconnexion du système.
- Le réseau fournit par la modélisation par ports est décrit mathématiquement par une structure de Dirac⁴, qui peut être vue comme une généralisation des lois de Krichhoff en électronique.
- Cette construction très générale permet de traiter les systèmes ouverts et dissipatifs.
- Une propriété importante est que la composition de deux structures de Dirac est une structure de Dirac.
- Permet de modéliser des systèmes complexes en connectant des systèmes élémentaires décrits dans ce formalisme.

^{4.} Theodore James COURANT. "Dirac manifolds". In : <u>Transactions of the American Mathematical Society</u> 319.2 (1990), p. 631-661.

Paradigme 3 : Théorie du contrôle

- Emphase la possibilité de contrôler des systèmes dynamique via des entrées/sorties.
- Nombreux développement depuis les fondements en électronique jusqu'à sa forme moderne, géométrique.
- Les propriétés physiques du système contrôlé (symétries, lois de conservations) doivent être préservées et exploitées.
- Une classe importante de méthodes exploite la passivité (passivity based control).
- Par construction, la théorie des SHP fournit un cadre systèmatique pour le développement de tels contrôleurs/observateurs via l'approche <u>Interconnection and Damping Assignment for Passivity Based</u> Control (IDA-PBC⁵).

Romeo ORTEGA et al. "Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems". In : Automatica 38.4 (2002), p. 585-596.

Exemple introductif : Système masses/ressorts

$$\begin{array}{c|c} & & \ell_{1,0} & & \ell_{2,0} \\ \hline & & & & \ell_{3,0} \\ \hline & & & \ell_{3,0} \\ \hline & & \ell_{3,0} \\ \hline & & \ell_{3,0}$$

Configurations:
$$q(t) = \begin{pmatrix} q_1(t) \\ q_2(t) \end{pmatrix}$$

Vitesses: $\dot{q}(t) = \frac{dq}{dt}(t)$
Paramètres: $M = diag(m_1, m_2)$ et $K = diag(k_1, k_2, k_3)$
Quantités de mvt.: $p(t) = M \dot{q}(t)$

Elongations :

$$\ell(q) = \begin{pmatrix} q_1 - \ell_{1,0} \\ q_2 - q_1 - \ell_{2,0} \\ L - q_2 - \ell_{3,0} \end{pmatrix} = \underbrace{\begin{pmatrix} +1 & 0 \\ -1 & +1 \\ 0 & -1 \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} q_1 \\ q_2 \end{pmatrix}}_{q} - \underbrace{\begin{pmatrix} \ell_{1,0} \\ \ell_{2,0} \\ -\ell_{1,0} - \ell_{2,0} \end{pmatrix}}_{\ell_0}$$

Exemple introductif : Système masses/ressorts

 $\begin{array}{l} \mbox{Configurations:} & q(t) = \left(q_1(t), q_2(t)\right) \\ & \mbox{Vitesses:} & \dot{q}(t) = \frac{\mathrm{d}q}{\mathrm{d}t}(t) \\ \mbox{Quantités de mvt.:} & p(t) = M \, \dot{q}(t) \\ & \mbox{Élongations:} & \ell(q) = C \, q - \ell_0 \\ & \mbox{M} = \mbox{diag}(m_1, m_2) \, \mathrm{et} \, K = \mbox{diag}(k_1, k_2, k_3) \end{array}$

Approche par la mécanique analytique

- 1. Énergies : cinétique $E_c(\dot{q}) = \frac{\dot{q} T M \dot{q}}{2}$ et potentielle $E_p(q) = \frac{1}{2} \ell^T(q) K \ell(q)$
- 2. Lagrangien : $\mathcal{L}(q, \dot{q}) = E_c(\dot{q}) E_p(q)$ et principe de moindre action $\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \frac{\partial \mathcal{L}}{\partial q} = 0$ (E-L)
- 3. Tr. de Legendre : $p = \frac{\partial \mathcal{L}}{\partial \dot{q}}, \text{ Hamiltonien } \mathcal{H}(p,q) = p^{\mathsf{T}} \dot{q}(p) \mathcal{L}(q,\dot{q}(p)) = \frac{1}{2} p^{\mathsf{T}} \mathsf{M}^{-1} p + \frac{1}{2} \ell(q)^{\mathsf{T}} \mathsf{K} \ell(q)$
- 4. Équations du mouvement (PFD) : $\frac{dp}{dt} = -\nabla_q \mathcal{H}(p,q) = -C^T K \ell(q)$
- 5. Par construction $\frac{\mathrm{d}q}{\mathrm{d}t} = \nabla_p \mathcal{H}(p,q) = \dot{q}$

Système dynamique :

$$\left(\begin{array}{c} \frac{\mathrm{d}p}{\mathrm{d}t} \\ \frac{\mathrm{d}q}{\mathrm{d}t} \end{array}\right) = \left(\begin{array}{c} 0 & -\mathrm{Id} \\ +\mathrm{Id} & 0 \end{array}\right) \left(\begin{array}{c} \nabla_{\mathsf{p}}\mathcal{H}(\mathsf{p},\mathsf{q}) \\ \nabla_{\mathsf{q}}\mathcal{H}(\mathsf{p},\mathsf{q}) \end{array}\right) \Rightarrow \frac{\mathrm{d}H}{\mathrm{d}t} = 0 \text{ (et forme symplectique)}$$

Exemple introductif : Système masses/ressorts

Approche par les systèmes Hamiltoniens à Ports

Composants	État	Énergie	Port vitesse	Port force
2 Masses	$x_m(t) = p$	$h_m(\mathbf{x}_m) = \frac{1}{2} \mathbf{x}_m^{T} M^{-1} \mathbf{x}_m$	$v_m = \dot{q} = \nabla h_m(x_m)$	$f_m = M \frac{\mathrm{d}^2 q}{\mathrm{d}t^2} = \frac{\mathrm{d}x_m}{\mathrm{d}t}$
3 Ressorts	$\times_k(t) = \ell$	$h_k(\mathbf{x}_k) = \frac{1}{2} \mathbf{x}_k^T K \mathbf{x}_k$	$v_k = \frac{\mathrm{d}\ell}{\mathrm{d}t}$	$\mathbf{f}_k = \mathbf{K} \mathbf{x}_k = \nabla h_k(\mathbf{x}_k)$

1. Inventaire des composants :

- 2. État (variables d'énergie) : $x = (x_m, x_k) \in \mathbb{R}^5$
- 3. Fonction de stockage (Hamiltonien) : $\mathbb{H} : x \mapsto h_m(x_m) + h_k(x_k) \in \mathbb{R}_+$
- 4. Équations du mouvement (PFD) : $f_m = -C^T f_k = -C\nabla_{x_k} H(x)$
- 5. Par construction : $v_k = Cv_m = C\nabla_{x_m}H(x)$

Système dynamique :

$$\begin{pmatrix} \frac{\mathrm{d} x_m}{\mathrm{d} t} \\ \frac{\mathrm{d} x_k}{\mathrm{d} t} \end{pmatrix} = \begin{pmatrix} 0 & -\mathsf{C}^\mathsf{T} \\ +\mathsf{C} & 0 \end{pmatrix} \begin{pmatrix} \nabla_{\mathsf{x}_m} \operatorname{H}(\mathsf{x}) \\ \nabla_{\mathsf{x}_k} \operatorname{H}(\mathsf{x}) \end{pmatrix} \Rightarrow \frac{\mathrm{d} H}{\mathrm{d} t} = 0 \text{ (et forme dégénérée \neq symplectique).}$$

Systèmes Hamiltoniens à Ports

Bilan de puissance $\frac{dE}{dt} + P_{\rm D} + P_{\rm S} = 0$

- Énergie stockée E (J),
- Puissance dissipée P_D (W),
- Puissance échangée via les entrées/sorties P_S (W),
- Structure de Dirac \mathcal{D} .

Systèmes Hamiltoniens à Ports en dimension finie

Structure de Dirac (définition)

- \mathcal{F} un e.v. de dimension N finie (espace des flux) et $\mathcal{E} = \mathcal{F}^*$ sont dual (espace des efforts),
- Espace des puissances $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ muni du crochet de dualité

$$\langle \cdot, \cdot \rangle : \left\{ \begin{array}{ccc} \mathcal{B} = \mathcal{F} \times \mathcal{E} & \to & \mathbb{R}, \\ (\mathfrak{f}, \mathfrak{e}) & \mapsto & \langle \mathfrak{f}, \mathfrak{e} \rangle \end{array} \right.$$

On définit l'appariement symétrique

$$\left\langle \left\langle \cdot, \cdot \right\rangle \right\rangle : \left\{ \begin{array}{ccc} \mathcal{B} \times \mathcal{B} & \rightarrow & \mathbb{R} \\ \left((\mathfrak{f}_1, \mathfrak{e}_1), (\mathfrak{f}_2, \mathfrak{e}_2) \right) & \mapsto & \left\langle \mathfrak{f}_2, \mathfrak{e}_1 \right\rangle + \left\langle \mathfrak{f}_1, \mathfrak{e}_2 \right\rangle \end{array} \right.$$

Définition : Structure de Dirac

Une structure de Dirac sur $\mathcal{B}=\mathcal{F}\times\mathcal{E}$ est un sous-espace linéaire $\mathcal{D}\subset\mathcal{B}$ tel que $\mathcal{D}=\mathcal{D}^{\perp}$ où

$$\mathcal{D}^{\perp} = \left\{ (\mathfrak{f}, \mathfrak{e}) \in \mathcal{B}, \ \langle \langle (\mathfrak{f}, \mathfrak{e}), (\widetilde{\mathfrak{f}}, \widetilde{\mathfrak{e}}) \rangle \rangle = 0, \ \forall (\widetilde{\mathfrak{f}}, \widetilde{\mathfrak{e}}) \in \mathcal{D} \right\}$$

Structure de Dirac (représentations)

Soient $\mathcal{F}, \mathcal{E} \subset \mathbb{R}^N$, $\langle \mathfrak{f}, \mathfrak{e} \rangle = \sum_{i=1}^N \mathfrak{f}_i \mathfrak{e}_i$ le produit scalaire usuel, et deux matrices E, $F \in \mathbb{R}^{N \times N}$. Alors

$$\begin{split} & \text{Représentation image} \quad \mathcal{D} = \left\{ (\mathfrak{f}, \mathfrak{e}) \in \mathcal{B}, \ \exists \lambda \in \mathbb{R}^N \ \mathfrak{f} = \mathsf{F}^\intercal \lambda, \mathfrak{e} = \mathsf{E}^\intercal \lambda \right\} \\ & \text{Représentation noyau} \quad \widetilde{\mathcal{D}} = \{ (\mathfrak{f}, \mathfrak{e}) \in \mathcal{B}, \ \mathsf{F}\mathfrak{f} + \mathsf{E}\mathfrak{e} = 0 \} \end{split}$$

sont des structures de Dirac si et seulement si

- 1. EFT est antisymétrique pour le produit scalaire $\langle \cdot, \cdot \rangle$,
- 2. rang[E F] = dim \mathcal{F} avec [E F] la concaténation horizontale.

Généralement en pratique

- F est symétrique définie positive,
- E est antisymétrique.

Une conséquence pratique : $\langle \mathfrak{f}, \mathfrak{e} \rangle = 0, \ \forall (\mathfrak{f}, \mathfrak{e}) \in \mathcal{D}.$

Composants stockants (définitions)

Relation constitutive pour le composant s

Fonction de stockage (Hamiltonien) H_s de l'état x_s .

Énergie stockée $E_s(t) = H_s(x_s(t)) \ge 0.$

Puissance reçue $\frac{dE_s}{dt} = H'_s(x_s) \frac{dx_s}{dt}$

Variables de port pour le composant s

 $\begin{array}{lll} \mbox{Puissance reçue} & \frac{\mathrm{d} E_s}{\mathrm{d} t} = f_s \ v_s.\\ \mbox{contrôle } v & v_s = \frac{\mathrm{d} x_s}{\mathrm{d} t} \Longrightarrow f_s = \mathrm{H}_s'(x_s).\\ \mbox{contrôle } f & f_s = \frac{\mathrm{d} x_s}{\mathrm{d} t} \Longrightarrow v_s = \mathrm{H}_s'(x_s). \end{array}$

Énergie totale dans les $n_{\rm E}$ composants stockants

- $\mathbf{x} = (x_1, \cdots, x_{n_{\mathbf{E}}}).$
- $\mathbf{E} = \mathbf{H}(\mathbf{x}) = \sum_{s=1}^{n_{\mathbf{E}}} \mathbf{H}_s(\mathbf{x}_s) \ge 0.$
- $\frac{\mathrm{dE}}{\mathrm{dt}} = \nabla \mathrm{H}^{\mathsf{T}} \frac{\mathrm{dx}}{\mathrm{dt}} = \sum_{s=1}^{n_{\mathrm{E}}} \frac{\mathrm{dH}_{s}}{\mathrm{dx}_{s}} \frac{\mathrm{dx}_{s}}{\mathrm{dt}}$

Composants stockants (exemples)

Masse

État : Qtté de mvt. $x_m = m v_m$. Hamiltonien : Énergie cinétique $H_m(x_m) = \frac{x_m^2}{2m}$. Vitesse : $v_m = H'_m(x_m) = \frac{x_m}{m}$ (effort). Force : Force d'inertie $f_m = \frac{dx_m}{dt} = m \frac{dv_m}{dt}$ (flux).

Raideur cubique

État : Élongation ℓ_k .

Hamiltonien : Énergie potentielle $H_k(x_k) = \frac{\kappa x_k^2}{2} \left(1 + \epsilon \frac{x_k^2}{2} \right).$

$$\begin{split} \text{Vitesse}: \ \ v_k &= \frac{\mathrm{d} x_k}{\mathrm{d} t} = \frac{\mathrm{d} \ell_k}{\mathrm{d} t} \ (\text{flux}).\\ \text{Force}: \ \ \text{Rappel} \ f_k &= \mathrm{H}'_k(x_k) = \mathcal{K} \ \ell_k(1 + \epsilon \ell_k^2) \ (\text{effort}). \end{split}$$

Relation constitutive du composant d

Fonction de dissipation z_d de la variable w_d .

Puissance reçue (dissipée) $P_{Dd}(t) = z_d(w_d(t)) \ge 0.$

Variables de port pour le composant d

Puissance reçue $P_{Dd}(t) = e_d f_d \ge 0$ contrôle v $v_d = w_d \Longrightarrow f_d = z_d(w_d)$. contrôle f $f_d = w_d \Longrightarrow v_d = z_d(w_d)$.

Puissance dissipée au total dans n_D com-

posants dissipatifs

- $\mathbf{w} = (w_1, \cdots, w_{n_D})$.
- $z(w) = (z_1(w_1), \cdots, z_{n_D}(w_{n_D})).$
- $P_{\mathrm{D}} = \mathsf{z}(\mathsf{w})^{\mathsf{T}} \cdot \mathsf{w} = \sum_{d=1}^{n_{\mathrm{D}}} \mathsf{z}_{d}(w_{d}) w_{d} \ge \mathbf{0}.$

Composants dissipatifs (exemple)

Amortissement linéaire, contrôlé en vitesse

Variable : Vitesse d'élongation $w_a = \hat{\ell}_a$. Fonction : Force de résistance $z_a(w_a) = a w_a$, avec a > 0. Vitesse : $v_a = w_a$ (flux). Force : $f_a = z_a(w_a) = a v_a$ (effort). Puissance dissipée $P_D = f_a v_a = a \hat{\ell}_a^2$.

Amortissement linéaire, contrôlé en force

Variable : Force de résistance $w_a = f_a$. Fonction : Vitesse d'élongation $z_a(w_a) = w_a/a$, avec a > 0. Force : $f_a = w_a$ (flux). Vitesse : $v_a = z_a(w_a) = f_a/a$ (effort). Puissance dissipée $P_{D} = f_a v_a = f_a^2/a$.

Ports externes (definitions)

Entrée et sortie sur le port p

Qtté pilotée u (entrée) et qtté observée y (sortie) colocalisées.

Puissance reçue $P_{Sp}(t) = u_p(t) y_p(t).$

 P_{Sp} est la puissance qui sort du système sur le port p.

Variables de puissance sur le port p

Puissance reçue $P_{S,p}(t) = e_p f_p$ contrôle v $v_p = y_p \implies f_p = u_p$ (force appliquée). contrôle f $f_p = y_p \implies v_p = u_p$ (vitesse imposée).

Puissance totale sur *n*_S ports externes

- $\mathbf{u} = (u_1, \cdots, u_{n_S}).$
- $\mathbf{y} = (y_1, \cdots, y_{n_S}).$
- $P_{\mathrm{S}} = \mathbf{u}^{\mathsf{T}} \cdot \mathbf{y} = \sum_{p=1}^{n_{\mathrm{S}}} u_p \, y_p.$

Force imposée

Tout ça mis ensemble...

Composants

 $\begin{array}{lll} \mbox{Stockage} & f_x = \frac{dx}{dt}, \mbox{ } e_x = \nabla H(x) \\ \mbox{Dissipation} & f_w = w, \mbox{ } e_w = z(w) \\ \mbox{Ports} & f_y = y, \mbox{ } e_y = u \end{array}$

Encode le bilan de puissance $0 = e^{\tau} \cdot f$

$$= \underbrace{\nabla \mathbf{H}(\mathbf{x})^{\mathsf{T}} \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}}_{\frac{\mathrm{d}E}{\mathrm{d}t}} + \underbrace{\mathbf{z}(\mathbf{w}) \cdot \mathbf{w}}_{P_{\mathrm{D}}} + \underbrace{\mathbf{u}^{\mathsf{T}} \cdot \mathbf{y}}_{P_{\mathrm{S}}}$$

Réseau (structure de Dirac)

$$\begin{split} \mathfrak{f} &= \left(\begin{array}{c} \mathfrak{f}_{\mathsf{X}} \\ \mathfrak{f}_{\mathsf{W}} \\ \mathfrak{f}_{\mathsf{y}} \end{array} \right)^{\mathsf{et}} \mathfrak{e} \mathfrak{e} = \left(\begin{array}{c} \mathbf{e}_{\mathsf{X}} \\ \mathbf{e}_{\mathsf{W}} \\ \mathbf{e}_{\mathsf{y}} \end{array} \right) \\ \mathsf{avec} \left(\mathsf{generalement} \right) \mathfrak{f} = \mathsf{J} \cdot \mathfrak{e} \ \mathsf{et} \ \mathsf{J}^\mathsf{T} = -\mathsf{J}. \end{split}$$

Système Hamiltonien à ports en dimension finie

Les Jaa sont antisymétriques.

Contraction des dissipations linéaires

Dissipations linéaires (cas explicite)

- Si K une matrice symétrique définie positive et $z(w) = K \cdot w$,
- et J_{ww} = 0, J_{wy} = 0 (condition qui peut être relaxée),

Alors les dissipations peuvent être contractée dans la structure d'interconnexion.

SHP avec dissipation contractée

$$\begin{array}{lll} \frac{\mathrm{d}x}{\mathrm{d}t} & = & (J_{xx}-\mathsf{R})\cdot\nabla\mathrm{H}(x) & +J_{xy}\cdot u, \\ y & = & -J_{xy}{}^{\mathsf{T}}\cdot\nabla\mathrm{H}(x) & +J_{yy}\cdot u. \end{array}$$

Interprétation

- $\bullet \quad J_{xx} \, : \, interconnexion \, \, conservative,$
- $R = J_{xw}^{T} \cdot K \cdot J_{xw}$: interconnexion résistive (symétrique définie positive).

Schéma numérique préservant la structure SHP à temps discret

Schéma numérique préservant la structure SHP à temps discret

Objectif

Garantir un bilan de puissance à temps discret : $\frac{\delta E}{\delta T}[k] + P_{\rm D}[k] + P_{\rm S}[k] = 0$, avec $\delta E[k]$ l'accroissement d'énergie au pas de temps k.

Choix : schéma à un pas

- $\frac{\delta E[k]}{\delta T} = \frac{E[k+1] E[k]}{\delta T} = \frac{H(x[k+1]) H(x[k])}{\delta T}$
- On veut retrouver la chain rule à temps discret (ici pour un Hamiltonien séparé mais se généralise) :

$$\frac{\mathbf{E}[k+1] - \mathbf{E}[k]}{\delta T} = \sum_{n=1}^{n_{\rm E}} \frac{\mathbf{H}_n(x_n[k+1]) - \mathbf{H}_n(x_n[k])}{x_n[k+1] - x_n[k]} \cdot \frac{x_n[k+1] - x_n[k]}{\delta T}$$

Solution :

$$\begin{array}{ccc} \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} & \longrightarrow & \frac{\delta \mathbf{x}[k]}{\delta T} = \frac{\mathbf{x}[k+1] - \mathbf{x}[k]}{\delta T} \\ \nabla \mathbf{H}(\mathbf{x}) & \longrightarrow & \nabla^{d} \mathbf{H}(\mathbf{x}[k], \delta \mathbf{x}[k]) & \triangleq & \text{gradient discret}^{6} \end{array}$$

avec

$$\left[\nabla^{d} \mathbf{H}(\mathbf{x}, \delta \mathbf{x})\right]_{n} = \frac{\mathbf{H}_{n}\left([\mathbf{x} + \delta \mathbf{x}]_{n}\right) - \mathbf{H}_{n}\left([\mathbf{x}]_{n}\right)}{[\delta \mathbf{x}]_{n}} \xrightarrow{[\delta \mathbf{x}]_{n} \to \mathbf{0}} \frac{\mathbf{d}\mathbf{H}_{n}}{\mathbf{d}\mathbf{x}_{n}}(\mathbf{x}_{n}).$$

Las structure SHP est préservée à temps discret \Rightarrow passivité numérique garantie.

Toshiaki ITOH et Kanji ABE. "Hamiltonian-conserving discrete canonical equations based on variational difference quotients". In : Journal of Computational Physics 76.1 (1988), p. 85-102.

Exemple : $x \in \mathbb{R}^2$, $H(x) = \log(\cosh(x_1)) + \cosh(x_2)$

Erreur relative sur le bilan de puissance (fe : Fréquence d'échantillonnage)

 $f_e = 500 \text{Hz}$

 $f_{\rm e} = 5 {\rm Hz}$

Application : Couplage de deux poutres encastrées-libres

Application : Poutres B_1 et B_2

Modèle d'Euler-Bernoulli

- ξ_i ∈ Ω_i ⊂ ℝ₊ la variable spatiale le long de la poutre i.
- q_i(ξ, t) ∈ ℝ la déflexion de la poutre i.
- Le modèle d'Euler-Bernouilli est donné par

$$\rho_i \frac{\partial^2 q_i}{\partial t^2}(\xi_i, t) + \alpha_i \frac{\partial q_i}{\partial t}(\xi_i, t) + \kappa_i \frac{\partial^4 q_i}{\partial \xi}(\xi_i, t) = \gamma_i(\xi_i) f_i(t),$$

avec ρ_i la masse linéique, α_i le coefficient d'amortissement, κ_i la rigidité de flexion et $\gamma_i(\xi_i)f_i(t)$ la force distribuée.

Projection sur la base modale tronquée

- Base modale tronquée Ψ(ξ_i) = (ψ₁(ξ_i), · · · , ψ_m(ξ_i)).
- Déplacements modaux ℝ^m ∋ q_i(t) = ∫_{Ωi} Ψ(ξ_i)q(ξ_i, t)dξ_i.
- Forces modales ℝ^m ∋ F_i(t) = Γ_if_i(t), Γ_i = ∫_{Ω_i} Ψ(ξ_i)γ_i(ξ_i)dξ_i.
- Matrice des nombres d'onde L = diag (k_1, \dots, k_m) , $k_{i,j} = \sqrt[4]{\omega_{i,j} \frac{\rho_i}{\kappa_i}}$ avec $\omega_{i,j}$ les pulsations propres.

Modèle d'Euler-Bernoulli - SHP

- État $x_i = (q_i, \rho_i \frac{dq_i}{dt})^{\mathsf{T}} \in \mathbb{R}^{2m}$, énergie $H_i(x_i) = \frac{1}{2} \times_i^{\mathsf{T}} Q_i \times_i, Q_i = \text{diag}(\kappa_i \mathsf{L}, \rho_i^{-1} \mathrm{Id}).$
- Variable de dissipation w_i = dq_i/dt, fonction de dissipation z_i(w_i) = α_iw_i.
- Entrée $\mathbf{u}_i = f_i$ (force), sortie $y_i = -\Gamma_i^{\mathsf{T}} \frac{\mathrm{d}q_i}{\mathrm{d}t}$ (vitesse reconstruite).

$$\begin{pmatrix} \frac{\mathrm{d}x_i}{\mathrm{d}t} \\ \hline w_i \\ \hline y_i \end{pmatrix} = \begin{pmatrix} 0 & +\mathrm{Id} & 0 & 0 \\ -\mathrm{Id} & 0 & -\mathrm{Id} & +\Gamma_i \\ \hline 0 & +\mathrm{Id} & 0 & 0 \\ \hline 0 & -\Gamma_i^T & 0 & 0 \end{pmatrix} \begin{pmatrix} \nabla H_i(x_i) \\ z_i(w_i) \\ u_i \end{pmatrix}$$

Poutre 1 : ajout d'un deuxième port de connexion pour contrôle

$$\begin{pmatrix} \frac{\mathrm{d}x_1}{\mathrm{d}t} \\ \frac{\mathrm{d}x_1}{\mathrm{y}_1} \\ \frac{y_1}{\mathrm{y}_1} \end{pmatrix} = \begin{pmatrix} 0 & +\mathrm{Id} & 0 & 0 & 0 \\ -\mathrm{Id} & 0 & -\mathrm{Id} & +\Gamma_1 & +\overline{\Gamma}_1 \\ 0 & +\mathrm{Id} & 0 & 0 & 0 \\ 0 & -\Gamma_1^{\mathrm{T}} & 0 & 0 & 0 \\ 0 & -\Gamma_1^{\mathrm{T}} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \nabla \mathcal{H}_1(x_1) \\ z_1(v_1) \\ \frac{v_1}{\tilde{v}_1} \end{pmatrix}$$

Poutre 2 : c.f. slide précédent

Raideur : 2 ports de connexion (piloté en vitesse)

$$\begin{pmatrix} \frac{\mathrm{d}_{\mathsf{A}\mathsf{K}}}{\mathsf{M}_{\mathsf{K}}}\\ \frac{\mathrm{d}_{\mathsf{K}}}{\mathsf{M}_{\mathsf{K}}}\\ \mathsf{M}_{\mathsf{Y}_{\mathsf{K}}}^{\mathsf{K}} \end{pmatrix} = \begin{pmatrix} 0 & || +1 & -1\\ -1 & || & 0 & 0\\ +1 & || & 0 & 0 \end{pmatrix} \begin{pmatrix} \nabla \mathcal{H}_{\mathsf{K}}(\mathsf{x}_{\mathsf{K}})\\ u_{\mathsf{K}}^{\mathsf{K}}\\ u_{\mathsf{K}}^{\mathsf{K}} \end{pmatrix}$$

Connexion de B_i **avec** K $\begin{pmatrix} u_i^K \\ u_i \end{pmatrix} = \begin{pmatrix} 0 & +1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_i^K \\ y_i \end{pmatrix}$

Entrée de K = Sortie de B_i (égalité de vitesses) \Rightarrow Entrée de B_i = - Sortie de KAinsi la puissance reçue par K sur le port i est la puissance perdue par B_i :

$$\left(\begin{array}{c} y_i^K \\ y_i \end{array}\right) \left(\begin{array}{c} u_i^K \\ u_i \end{array}\right) = y_i^K u_i^K + y_i u_i = 0.$$

Système couplé

$$\begin{pmatrix} \frac{\mathrm{d}\mathbf{x}_{1}}{\mathrm{d}\mathbf{i}_{1}} \\ \frac{\mathrm{d}\mathbf{x}_{2}}{\mathrm{d}\mathbf{i}_{1}} \\ \frac{\mathrm{d}\mathbf{x}_{K}}{\mathrm{d}\mathbf{x}_{K}} \\ \frac{\mathrm{d}\mathbf{x}_{K}}{\mathrm{w}_{1}} \\ \frac{\mathrm{w}_{2}}{\mathrm{w}_{2}} \\ \hline & \\ \hline \end{pmatrix} = \begin{pmatrix} \mathsf{J}_{\{B_{1},B_{2},K\}} \\ \mathsf{J}_{\{B_{1},B_{2},K\}} \\ \mathsf{J}_{\{B_{1},B_{2},K\}} \\ \mathsf{J}_{\{B_{1},B_{2},K\}} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2}(\mathsf{w}_{1}) \\ \mathbf{w}_{2}(\mathsf{w}_{2}) \\ \mathbf{w}_{1} \\ \mathbf{w}_{1} \end{pmatrix}$$

Systèmes Hamiltoniens à Ports en dimension infinie Résultats

récents dans la thèse d'Anass Serhani⁷

^{7.} Anass SERHANI. "Systèmes couplés d'EDPs, vus comme des systèmes Hamiltoniens à ports avec dissipation : Analyse théorique et simulation numérique". Thèse de doct. Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Toulouse, 2020.

SHP en dimension infinie

- Systèmes à paramètres distribués régis par des EDP sur un domaine spatial Ω.
- Théorème de Stokes : lien entre la variation d'énergie dans Ω et le flux d'énergie sur le bord $\partial \Omega$.
- Structure de Dirac associée : structure de Stokes-Dirac⁸

AJ VAN DER SCHAFT et Bernhard M MASCHKE. "Hamiltonian formulation of distributed-parameter systems with boundary energy flow". In : Journal of Geometry and physics 42.1-2 (2002), p. 166-194.

Structure de Stokes-Dirac

Structure de Stokes-Dirac

- Soient \mathcal{X} un espace de Hilbert, $\mathcal{E} \subset \mathcal{X}$ et \mathcal{F} son dual topologique par rapport à l'espace pivot \mathcal{X} .
- Soit l'espace des puissances $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ muni du crochet de dualité

$$\langle \cdot, \cdot \rangle_{\mathcal{E}, \mathcal{F}} : \left\{ \begin{array}{ccc} \mathcal{B} = \mathcal{F} \times \mathcal{E} & \to & \mathbb{R}, \\ (\mathfrak{f}, \mathfrak{e}) & \mapsto & \langle \mathfrak{f}, \mathfrak{e} \rangle_{\mathcal{E}, \mathcal{F}} \end{array} \right.$$

On définit l'appariement symétrique

$$\langle \langle \cdot, \cdot \rangle \rangle_{\mathcal{E}, \mathcal{F}} \begin{cases} \mathcal{B} \times \mathcal{B} & \to & \mathbb{R} \\ \left((\mathfrak{f}_1, \mathfrak{e}_1), (\mathfrak{f}_2, \mathfrak{e}_2) \right) & \mapsto & \langle \mathfrak{f}_2, \mathfrak{e}_1 \rangle_{\mathcal{E}, \mathcal{F}} + \langle \mathfrak{f}_1, \mathfrak{e}_2 \rangle_{\mathcal{E}, \mathcal{F}} \end{cases}$$

Définition : Structure de Stokes-Dirac

Une structure de Dirac sur $\mathcal{B} = \mathcal{F} \times \mathcal{E}$ est un sous-espace linéaire $\mathcal{D} \subset \mathcal{B}$ tel que $\mathcal{D} = \mathcal{D}^{\perp}$ pour l'appariement $\langle \langle \cdot, \cdot \rangle \rangle_{\mathcal{E}, \mathcal{F}}$.

SHP en dimension infinie : Structure générique

- Soit $\Omega \subset \mathbb{R}^d$ un domaine spatial de bord $\partial \Omega$ régulier par morceaux.
- Une structure générique de SHP en dimension infinie est donnée par

$$\begin{cases} \frac{\partial x}{\partial t}(\xi,t) &= (\mathcal{J}-\mathcal{R}) \frac{\delta \mathcal{H}}{\delta \chi}(\chi(\xi,t)), \quad \xi \in \Omega, t \ge 0, \\ u_{\partial}(\xi,t) &= \mathcal{B} \frac{\delta \mathcal{H}}{\delta \chi}(\chi(\xi,t)), \quad \xi \in \partial\Omega, \\ y_{\partial}(\xi,t) &= \mathcal{C} \frac{\delta \mathcal{H}}{\delta \chi}(\chi(\xi,t)), \quad \xi \in \partial\Omega. \end{cases}$$

- x ∈ X est la variable d'énergie, dans l'espace de Hilbert X muni du produit scalaire (·, ·)_X.
- \mathcal{H} est le Hamiltonien du système, associé à l'énergie $\mathbb{E}(t) = \mathcal{H}(\mathsf{x}(\cdot, t)) = \int_{\Omega} h(\mathsf{x}(\xi, t)) d\xi$.
- mathcalJ est l'opérateur de structure, formellement anti-symétrique⁹.
- *R* = *GKG*^{*} est l'opérateur de dissipation borné symétrique positif¹⁰ où *K* est la loi constitutive et *G* un opérateur borné.
- u_∂ et y_∂ sont le contrôle et l'observation frontière colocalisés.
- B et C sont les opérateur de contrôle et d'observation frontière, non bornés, surjectifs et vérifiant

$$(\mathcal{J}v, \widetilde{v})_{\mathcal{X}} + (v, \mathcal{J}\widetilde{v})_{\mathcal{X}} = \langle \mathcal{B}v, \mathcal{C}\widetilde{v} \rangle_{\partial\Omega} + \langle \mathcal{B}\widetilde{v}, \mathcal{C}v \rangle_{\partial\Omega}, \quad \forall v, \widetilde{v} \in D(\mathcal{J}).$$

- 9. Opérateur linéaire fermé de domaine $D(\mathcal{J})$ dense dans \mathcal{X} tel que $(\mathcal{J}v, \tilde{v})_{\mathcal{X}} = -(v, \mathcal{J}\tilde{v})_{\mathcal{X}}$, $\forall v, \tilde{v} \in D(\mathcal{J}) \cap D(\mathcal{J}^*).$
- 10. Le cas non borné est étudié dans la thèse d'A. Serhani

Discrétisation spatiale préservant la structure

- La méthode des éléments finis partitionnés¹¹ (PFEM) permet de retrouver une structure de Dirac en dimension finie.
- La convergence est analysée en détail dans la thèse d'A. Serhani.

^{11.} cardoso2019partitioned.

Merci de votre attention.