Conclusion

Jean-Dominique Polack

Sorbonne Université, UMR CNRS 7190, Institut D'Alembert

5 novembre 2020

- Introduction
- Wave equation in Riemann space
 - Covariant derivation
- Conservation equations
 - Conservation of stress-energy tensor
- Examples
 - Propagation above constant absorbing plane
 - Lorentz transformation
- Conclusion

 Janowsky and Spandöck showed curvature of rays above absorbing surfaces in 1937

Figure: Bending of wave front above absorbing surface.

Conclusion

Cremer and Müller confirmed it in 1978

- pressure above surface (x = 0) of reduced admittance $\beta = \xi i\sigma$:
 - $p(x,y) = 2p_0e^{-i(k_yy \arctan\frac{k\xi x}{1 k\sigma x})}$
- wavefront equation: $y y_0 = k\xi x$ for small x

- using energy-stress tensor formalism
- ad hoc boundary conditions:
 - absorption: incident intensity proportional to total energy
 - scattering: grazing intensity reduced by tangential stress

⇒ find the *natural* boundary conditions

Consider a 4-dimensional time-space with metric tensor g_{ii}

- distance element: $ds^2 = g_{ii}dx^idx^j$
- ullet volume element: $dV=\sqrt{|g|}dx^0\dots dx^3$ with $g=\det g_{ij}<0$

Conservation equations

- wave equation: $\Box \Phi = \nabla_i g^{ij} \nabla_j \Phi = 0$
 - Φ velocity potential
 - g^{ij} inverse matrix of g_{ij}
 - ∇_i covariant derivation with respect to x^i

Covariant derivation

Covariant derivation differs from partial derivation

- takes in account changes of basis vector orientation
- depends on tensor rank
 - for function Φ : $\nabla_i \Phi = \partial_i \Phi = \Phi_i$
 - for covariant tensor (vector) Φ_i : $\nabla_i \Phi_i = \partial_i \Phi_i \Gamma_{ii}^k \Phi_k$
 - for contravariant tensor g^{ik} : $\nabla_j g^{ik} = \partial_j g^{ik} + \Gamma^i_{il} g^{lk} + \Gamma^k_{il} g^{il}$

Conservation equations

- Γ_{ii}^k are Christoffel symbols: $\Gamma_{ii}^k = \frac{1}{2}g^{kl}\left(\partial_j g_{il} + \partial_i g_{lj} \partial_l g_{ji}\right)$
- covariant derivations do not commute
 - but $(\nabla_i \nabla_i \nabla_i \nabla_i) \Phi = (\nabla_i \partial_i \nabla_i \partial_i) \Phi = 0$
- covariant derivations commute with metric tensor
- contravariant derivation equals: $\nabla^i = g^{ij} \nabla_i = \nabla_i g^{ij}$

Conservation of stress-energy tensor

Consider product $\nabla_k \Phi^* \Box \Phi$. Differentiation rules lead to:

$$\nabla_{k}\Phi^{*}\Box\Phi = \nabla_{k}\Phi^{*}\nabla_{i}g^{ij}\nabla_{j}\Phi = \nabla_{i}g^{ij}\left[\nabla_{k}\Phi^{*}\nabla_{j}\Phi\right] - \left[\nabla_{i}\nabla_{k}\Phi^{*}\right]g^{ij}\nabla_{j}\Phi$$

$$= \nabla_{i}g^{ij}\left[\nabla_{k}\Phi^{*}\nabla_{j}\Phi\right] - \left[\nabla_{k}\nabla_{i}\Phi^{*}\right]g^{ij}\nabla_{j}\Phi$$

$$= \nabla^{j}\left[\nabla_{k}\Phi^{*}\nabla_{j}\Phi\right] - \left[\nabla_{k}\nabla_{i}\Phi^{*}\right]g^{ij}\nabla_{j}\Phi = 0$$

- then: $\nabla^{j} (\nabla_{j} \Phi^{*} \nabla_{k} \Phi + \nabla_{j} \Phi \nabla_{k} \Phi^{*}) = \nabla_{k} (\nabla_{i} \Phi^{*} g^{ij} \nabla_{j} \Phi)$
 - is the contravariant conservation of symmetrical stress-energy tensor $T_{ij} = \frac{\nabla_i \Phi^* \nabla_j \Phi + \nabla_i \Phi \nabla_j \Phi^*}{2} \frac{1}{2} g_{ij} \left(\nabla_i \Phi^* g^{ij} \nabla_j \Phi \right)$
 - that is: $\nabla^i T_{ij} = 0$
 - with elements (Morse & Ingard 1968):
 - reduction $T = T_{ij}g^{ij} = (\nabla_i \Phi^* g^{ij} \nabla_j \Phi) = 2L$, Lagrangian
 - the total energy density T_{00} ;
 - the active acoustic intensity T_{a0} or T_{0a} , $a \in [1,2,3]$;
 - the symmetrical wave-stress tensor $T_{ab}, (a, b) \in [1, 2, 3]$

Propagation above constant absorbing plane

Sound propagation above horizontal absorbing plane $x^1 = 0$

- boundary condition reduces to $\nabla_0 \Phi \beta^0 + \nabla_1 \Phi \beta^1 = 0$
 - or $\beta^0 \Phi_0 + \beta^1 \Phi_1 = 0$
 - with $\frac{\beta^0}{\beta^1} = -\xi$ real admittance on the absorbing plane

Conservation equations

- outgoing 4-vector is $n_i = (0, -1, 0, 0)$
- local metric must satisfy $g^{j1}n_1 = \xi^j$
 - that is: $g^{10} = g^{01} \neq 0$

Conclusion

• metric tensor no longer diagonal:

$$g^{ij} = \begin{pmatrix} -c & b & 0 & 0 \\ b & a & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ g_{ij} = \begin{pmatrix} -a & b & 0 & 0 \\ b & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- a, b, and c depend on coordinate x^1 only
- boundary condition given by $b\Phi_0 + a\Phi_1 = 0$, $\frac{b}{a} = -\xi$
- a, b, and c normalised by $ac + b^2 = 1$ • that is: $g = det(g^{ij}) = -1$, with a > 0, $b \le 0$
- Lagrangian:

$$L = \frac{1}{2} \left[-c|\Phi_0|^2 + b(\Phi_0^*\Phi_1 + \Phi_0\Phi_1^*) + a|\Phi_1|^2 + |\Phi_2|^2 + |\Phi_3|^2 \right]$$

- Christoffel symbols: all equal to 0 but for
 - $\Gamma_{00}^0 = \Gamma_{00}^1 = -\Gamma_{01}^1 = -\Gamma_{10}^1 = \frac{1}{2}ba_1$
 - $\Gamma_{01}^{00} = \Gamma_{10}^{00} = -\Gamma_{11}^{11} = \frac{1}{2}ca_1, \Gamma_{11}^{02} = -cb_1 + \frac{1}{2}bc_1$

Sound rays follow equation $dx^i g_{ii} dx^j = 0$

reduces to Monge equation:

$$2bx' + c(x')^2 + (y')^2 + (z')^2 = a$$

• with notations: $x' = \frac{dx^1}{dx^0}$, $y' = \frac{dx^2}{dx^0}$, $z' = \frac{dx^3}{dx^0}$

Ray curvature:

- generalized acceleration: $\frac{dv^i}{dx} = -\Gamma^i_{\nu i} v^k v^l$
- with τ proper time defined by $d\tau^2 = -g_{ii}dx^idx^j$
- and $v^i = \frac{dx^i}{dx}$

$$\frac{dv^{i}}{d\tau} = \frac{d}{d\tau} \frac{dx^{i}}{d\tau} = \frac{d^{2}x^{i}}{(dx^{0})^{2}} (v^{0})^{2} - \frac{dx^{i}}{dx^{0}} \Gamma^{0}_{kl} v^{k} v^{l}$$
$$(x^{i})'' = \frac{d^{2}x^{i}}{(dx^{0})^{2}} = \left(\frac{dx^{i}}{dx^{0}} \Gamma^{0}_{kl} - \Gamma^{i}_{kl}\right) \frac{v^{k}}{v^{0}} \frac{v^{l}}{v^{0}}$$

Conservation equations

All calculations done:

•
$$x'' = \frac{1}{2} \left[ba_1 + 3ba_1x' + 3ca_1(x')^2 - (2cb_1 - bc_1)(x')^3 \right]$$

•
$$y'' = \frac{1}{2} \left[ba_1 + 2ca_1x' + -(2cb_1 - bc_1)(x')^2 \right] y'$$

•
$$z'' = \frac{1}{2} \left[ba_1 + 2ca_1x' + -(2cb_1 - bc_1)(x')^2 \right] z'$$

- a increases from boundary and b negative $\Rightarrow ba_1 < 0$
- rays parallel to absorbing plane (x'=0) bend down

Reflection coefficient for normal incidence

Plane wave at normal incidence: $\Phi = e^{-i(k_0x^0 - k_1x^1)}$

•
$$\Phi_0 = -ik_0\Phi$$
, $\Phi_1 = ik_1\Phi$, $\Phi_2 = \Phi_3 = 0$

Lagrangian reduces to:

$$L = \frac{1}{2} \left[-c|\Phi_0|^2 + 2b\Re(\Phi_0\Phi_1^*) + a|\Phi_1|^2 \right] = \frac{1}{2} \left[-ck_0^2 - 2bk_0k_1 + ak_1^2 \right]$$

- plane wave solution: L = 0, that is
 - $k_{1,i} = \frac{b+1}{a}k_0$, $k_{1,r} = \frac{b-1}{a}k_0$
 - and $\Phi=e^{-ik_0x^0}\left\{e^{ik_{1,i}x^1}+re^{-ik_{1,r}x^1}\right\}$, r reflection coefficient
- at boundary x = 0:
 - $\Phi_0 = -ik_0(1+r)e^{-ik_0x^0}$, $\Phi_1 = ik_0\frac{(1+r)b+(1-r)}{a}e^{-ik_0x^0}$
 - and $b\Phi_0 + a\Phi_1 = 0$ only if r = 1
- ⇒ Hypothesis leads to total reflection, not to absorption

Conclusion

Lorentz transformation

•
$$dx^0 = \frac{dx'^0 - \beta dx'^1}{\sqrt{1-\beta^2}}$$
, $dx^1 = \frac{dx'^1 - \beta dx'^0}{\sqrt{1-\beta^2}}$

- β varies with x^1 with $\beta(0) = \xi$
- boundary condition reduces to $\beta(0) = \xi$, boundary admittance
- then:

$$\bullet \ \frac{\partial \Phi}{\partial x'^1} = \frac{\frac{\partial \Phi}{\partial x^1} - \beta \frac{\partial \Phi}{\partial x^0}}{\sqrt{1 - \beta^2}}$$

- with $\frac{\partial \Phi}{\partial x'^1} = 0$ if $\frac{\partial \Phi}{\partial x^1} \beta \frac{\partial \Phi}{\partial x^0} = 0$ on the absorbing plane
- metric tensor remains diagonal and constant
- ⇒ No ray curvature, but *elongation* of space

Conclusion

Conclusion: beyond curvature

- ray curvature due to non-vanishing Lagrangian
 - creates volume forces next to boundaries
- time-space does not curve at boundaries
 - except at "hinges" of co-dim 2 (Regge calculus)
- amounts to generalizing paving of space
 - to rooms of arbitrary shapes
 - beyond Euclidean geometry
- for example, triangular room
 - space is not flat
 - sum of angles $\neq 2\pi$ around hinges

Still to do:

Introduction

• characterize edges with absorption and scattering properties

- L. Cremer and H.A. Müller. Die wissenschaftlichen Grundlagen der Raumakustik, volume Band II. Hirzel Verlag, 1978.
- H. Dujourdy, B. Pialot, T. Toulemonde, and J.D. Polack. Acta Acustica, 103:480-491, 2017.
- H. Dujourdy, B. Pialot, T. Toulemonde, and J.D. Polack. Wave Motion, 87:193-212, 2019.
- W. Janowsky and F. Spandöck. Akust. Z., 2:322–331, 1937.
- Bernard Linet. Notes de cours de relativité générale, 2004-5. https://cel.archives-ouvertes.fr/cel-00092974/document
- Philip M. Morse and K. Uno Ingard. *Theoretical Acoustics*. McGraw-Hill Book Company, 1968.
- T. Regge. *Nuovo Cimento*, 19:558–571, 1961.
- J.D. Polack. https://hal.archives-ouvertes.fr/hal-02148492