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@ Janowsky and Spandéck
showed curvature of rays
above absorbing surfaces

in 1937
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Figure: Bending of wave front
above absorbing surface.



Introduction

Cremer and Miiller confirmed it in 1978
@ pressure above surface (x = 0) of reduced admittance
B=€&—io:
o p(x,y) =2poe
@ wavefront equation: y — yg = k&x for small x

—i(kyy—arctan %)



Introduction

Dujourdy et al. (2017, 2019) compute energy in corridors and
open spaces:

@ using energy-stress tensor formalism

@ ad hoc boundary conditions:

e absorption: incident intensity proportional to total energy
e scattering: grazing intensity reduced by tangential stress

= find the natural boundary conditions

o
—
o



Wave equation in Riemann space

Riemann space

Consider a 4-dimensional time-space with metric tensor gj;
e distance element: ds® = g,-jdx"dxf
o volume element: dV = /|g|dx?...dx3 with g = detg; <0

@ wave equation: |J® = V,-gUVJ-CD =0

e ® velocity potential
o g inverse matrix of gj
@ V; covariant derivation with respect to x’
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Wave equation in Riemann space
°

Covariant derivation

Covariant derivation differs from partial derivation
@ takes in account changes of basis vector orientation
@ depends on tensor rank
o for function ®: V;® = 0, = @;
o for covariant tensor (vector) ®;: V;®; = 9;®; — I‘J’-‘i¢k
o for contravariant tensor g': v;g’k = 9,g’ + FJ’:,g”‘ + ij,g"’

iji are Christoffel symbols: rf,. = %gkl (0811 + Oigij — 0igji)

covariant derivations do not commute
e but (V,'Vj - VJ'V,')(D = (V;E)j - VJ-@,)(D =0

covariant derivations commute with metric tensor

contravariant derivation equals: v/ = giv; = v;g¥



Conservation equations
.

Conservation of stress-energy tensor

Consider product V,®*[1o. Differentiation rules lead to:

Vi 00 = v, 0*vg7v ;0 = v;g7 [V 07 V;0] — [V, v, 0] gl v;0
= V,'gij [qu)*qu)] — [vkv;¢*]g’fvj¢
=V [V ®*V;0] — [V,V; 0] glv;0 =0

o then: ¥ (V;0*V,® + V;0V,d*) = v (V;0* gl v;®)
e is the contravariant conservation of symmetrical stress-energy

- Vi®TV;04V;0V,0" 1. DF i
tensor T,J = — 38j (V,CD g VJCD)

e that is: Vi7',-J- =0
o with elements (Morse & Ingard 1968):

reduction T = T;g¥ = (v;®*g¥v;®) = 2L, | L Lagrangian

the total energy density Too;
the active acoustic intensity T, or Tos, a € [1,2,3];
the symmetrical wave-stress tensor Tap, (3, b) € [1,2,3]




Examples
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Propagation above constant absorbing plane

Sound propagation above horizontal absorbing plane x! = 0
@ boundary condition reduces to Vo®3° 4+ v;®p1 =0
o or B0y + Bld; =0

e with g—? = —¢ real admittance on the absorbing plane

@ outgoing 4-vector is n; = (0,—1,0,0)
o local metric must satisfy g/ln; = &
o thatis: g0 =gt #£0



Examples
0®000

@ metric tensor no longer diagonal:

—c b 0O —a b 0 0
i | b ao0o0 | b coo
=1 0o o010 ['%~| 0 010
0 00 1 0 00 1

a, b, and ¢ depend on coordinate x1 only

boundary condition given by b®g 4 a®; = 0, g =—£

a, b, and ¢ normalised by ac + b> =1
o thatis: g =det(gl) = —1, witha>0,b<0

Lagrangian:
L= 3 [—c|®of? + b(P5d1 + Do®]) + a| 1] + P2 + 03]
Christoffel symbols: all equal to 0 but for

o Mo =Tgo=—Tg1 = —Tlo = 3ba1

° |'81 = F(l’o = —r}l = %Cal, F?l = —cbh; + %bcl

(]
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Examples
00®00

Ray equation

Sound rays follow equation dxfg;jdxf =0
@ reduces to Monge equation:
2bx' + c(x')? + (') + ()* =

H : A 1 dx? 1 dx3
@ with notations: X" = 75, y' = 75, Z = o
Ray curvature:
; s dvi ik
@ generalized acceleration: 7~ = —[} v v

@ with 7 proper time defined by d72 = —g,-J-dxidxj

dx’
dr

@ and v/ =
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Ray curvature and acceleration

dv":idl": d?x’ ( 0)2_dXi|—0 Py
dr drdr  (dx0)?

= B (P )

(dx9)2 dx0 k') ,0 0

All calculations done:
o x'=1 5 [bay + 3barx’ + 3cay(x')? — (2chy — bay)(X')?]
°oy'=1 [bal + 2ca1x’ + —(2cby — ba)(X')?] !

o Z' =1 [bay + 2ca1x’ + —(2cby — bay)(x')?] 2/

@ a increases from boundary and b negative = ba; < 0

e rays parallel to absorbing plane (x’ = 0) bend down
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Examples
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Reflection coefficient for normal incidence

. . i 0_ 1
Plane wave at normal incidence: ® = e~ /(kox"—kix?)

o &g = —ikg®, ®1 = iki®, P =Pd3=0
o Lagrangian reduces to:
L= 3 [~cl®ol” + 2bR(Po®7) + a| 1] =
3 [—ckd — 2bkoky + ak?]
@ plane wave solution: L =0, that is
o kyj="ko, k=2 ko
o and & = e~ kX’ {e"kl)’xl + re*"kl”xl}, r reflection coefficient
@ at boundary x = 0:

o &y = —iko(l + r)e—ikOXO, d; = iko (1+r)b;r(1fr) e—ikgxo
e and b®y+ ad; =0onlyifr=1

= Hypothesis leads to total reflection, not to absorption
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Examples
°

Lorentz transformation

o dx0 = OBt 1 dx—Bdx"

V1-32 O V/1-p

o [3 varies with x* with 3(0) =
@ boundary condition reduces to 3(0) = &, boundary admittance
o then:
0 2% _ 2585
ax'T \/ﬁ
e with 8’9;,’1 = Ba s = 0 on the absorbing plane
@ metric tensor remains dlagonal and constant

= No ray curvature, but elongation of space
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Conclusion

Conclusion: beyond curvature

@ ray curvature due to non-vanishing Lagrangian
e creates volume forces next to boundaries
@ time-space does not curve at boundaries
o except at "hinges" of co-dim 2 (Regge calculus)

@ amounts to generalizing paving
of space

e to rooms of arbitrary shapes
e beyond Euclidean geometry

o for example, triangular room
@ space is not flat
e sum of angles # 27 around

hinges
Still to do:
@ characterize edges with absorption and scattering properties
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