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Port-Hamiltonian systems.

Example: Electric circuit ( L1, Lz, C) with a controlled port u

L1, 1 L., o, Q = Sol/Ll - 902/L2
p— o1 =—-Q/C+u
c,Q n=Q/C.
2 2

204 2L2 2C
Port: input u, output e = ¢1/L;.

Port-Hamiltonian system: x = J( ax H 1 g(x)f with
Q 0 1 0 oy
x=e1| J=[-10 1 =
©2 1 0 0 €= Spl/Ll
PQ Q/C H= —el b= up1 /L1 &
for=—% e =[py|=|e/l1]- el f,+ef =0

Pes w2/ Lo = almost Dirac
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Professor Henry M, Pgynter will present a seminar on
the subject, "Ports, Energy and Thermodynamic Systems"

\t;ﬁ)‘dday, April 2L et 3:15 p.m, in Room B 103 of the
echanical Enginesring Building,

Dr. Paynter is Assistant Professor of Mechanicel
Enpineering at M.I.T. snd Director of the fmerican
Center for Analog Computing (a facility of Pl-Square
Engineering Company). He is prominently recognized
for his work in controls, dynamic systems, anslog
simulation and related fields. He is the author of
very many authoritative papers covering a wide range
of topies. Be has glso done extensive consulting
work in industry and government,

Dr. Paynter is a very interesting and stimlating
speaker. His viewpoints are novel and thoughte
provoking.
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— Henry M. Paynter,
Analysis and Design of
Engineering  Systems,
MIT Press, Cambridge,
Massachusetts, 1961.

— Jean U. Thoma,
Introduction to Bond
Graphs and  Their

Applications, Pergamon
Press, Oxford, 1975.
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Conjecture (VS): Everything is port-Hamiltonian.
Geometry:/(almost))Dirac structures




Philosophy

C ® QO B https://math.ucr.edu/home/baez/week292.html
displacement flow momentum
q q' p
Mechanics position velocity momentum
(translation)
Mechanics angle angular angular
(rotation) velocity momentum
Electronics charge current flux
linkage
Hydraulics volume flow pressure
momentum
Thermodynamics entropy entropy temperature
flow momentum
Chemistry moles molar chemical
flow momentum

J.-M. Souriau’s thermodynamics,

effort

p'

force

torque

voltage

pressure

temperature

chemical
potential

or better: C.-M. Marle https://arxiv.org/abs/1608.00103


https://arxiv.org/abs/1608.00103
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Almost Dirac

structures for
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Very classical story

Vorlet '6F
Yoshida (80s

Canonical case:
given H: T*Q — R

_OH . OH

Symplectic geometry
w= Z dpi A dg’
i

txyw =dH

AN
NS

More general case:
given H: M — R and
an antisymmetric J(x)

x—J(x o

Poisson geometry

{-,-} on:C®(M)
Xy =1{H,}

x ={H,x}
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Geometry behind: Courant algebroids, Dirac structures

On TM = TM & T*M (or more generally E & E*)
Symmetric pairing: < v @ n, v & n' >=n(v')+1'(v),
Dorfman bracket: [v @& n, v/ @ 7']p = [v, V']Lie ® (Lvn' — dn(V")).

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of TM closed w.r.t. [-,]p

-

"M TM
Dy D,
I#* a=w(v, . )
a
P ﬁ)h P
"D _--"'D
- ™ ST ™
v=IT"(a) v

Dn = graph(M¥) = {(Mfa, o)} D,, = graph(w’) = {(v, ,w)}



Dirac paths (CoSg( r='7{, [ e - @f-’“//’“"/ Yod oy
Ryvkin, L2)
Theorem 1. Let D ¢ TM be(a Dirac structureover M,
H € C*°(M) be a Hamiltonian function and ~y a path on M.

Assume that the basic 2-class [wp] vanishes, and let § € [(D*)"°r
be such that dpf = wp, then the following statements are

equivalent:

(i) The path v is a Hamiltonian curve, i.e. (¥(t), dH,)) € D for
all t.

(ii) All Dirac paths ¢ : I — D over v (i.e. p(¢) =) are critical
points among the Dirac paths with the same end points of the

following functional:

¢ /, (B0(C(8) + H(x(2))) dt (1)



Implicit Lagrangian systems with magnetic terms
Theorem 2. Let D C TQ be a Dirac structure and L : TQ — R a

Lagrangian. Assume that the 2-form wp € I'(A2D*)"°" admits a

basic primitive § € [(D*)°". Then for q : | — Q the following are
equivalent:

a) There exists a Dirac path ¢ : | — D such that p(¢) = ¢ which

is the critical point among Dirac paths with the same end
points of

J et + oot 2)
b) For all t € I, the following condition holds.
(gFL(q(t)),Dq(t)L> eD=e%'D. (3)

Dirac  in "[eg 2ator
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Port-Hamiltonian systems (PHS): definition and features

General form: | x = (J(x)~R(x)2H 1 wixyu. (1) 6‘\

X = F(X) (z

e Symplectic Hamiltonian systems are PHS

0 I
J=Jp= (—/ 0)
n

e Poisson Hamiltonian systems are PHS

(b 0
J_JW_<0 (y)

e PHS + PHS = PHS —

e PHS = PHS + PHS 77 (Not unique!



Conjecture in a reasonable form

Y

Dirac ﬂ'ﬂ?
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Port-Hamiltonian systems (PHS): definition and features

General form: x = (J(x)—R(x )) Ox +W (4)
X CA\

e Symplectic Hamiltonian systems are PHS

0 I
J=Jp= (—/ 0)
n

e Poisson Hamiltonian systems are PHS

J_JW_<JD 0

X = F(X) (z

0 &(y)

e PHS + PHS = PHS —

e PHS = PHS + PHS 77 (Not unique!



Episode 3: Notilus
aka intelligent
accounting



Reconstructing PHS

Input data: a system of differential equations of
form (2).

1. Reconstruct the connectivity graph of the PHS,
i.e., identify the nodes and their interconnections.

2. Label the graph, i.e., identify or select the sym-
plectic/Poisson structure and the corresponding
Hamiltonian.

3. Label the connections among the nodes, i.e.,
identify the ports.

Output data: the graph (set of PHS nodes and
ports) labeled in notation (1).



Recovering the PHS structure Il

Il. For each group:

1. Construct (or select from a catalog constructed in
advance) all the symplectic and Poisson structures of
suitable size.

2. From the internal variables select the maximal
combination of terms, preserving one of the structures
from the previous step.

3. If the cohomology of the selected structures is non-trivial,
check if the selected combination belongs to the trivial
class.

4. Construct the Hamiltonian, corresponding to the selected
combination of terms. If this step results in unreasonably
complicated symbolic computations, come back to steps
1.-2., dropping highly non-linear terms from the selection.

After that, for each group of variables the components of a
Hamiltonian flow are spelled-out.



Recovering PHS structure |: matrices




Port-Hamiltonian systems as decorated graphs
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Recovering the PHS structure |

Input data: a system of differential equations in the form x = f(x)

I. From the right hand sides, recover the structure of the graph
of the PHS.
After that, the variables x; are split into groups (vertixes of
the graph), and the terms in the right hand sides are
separated to internal ones (i.e. depending only on variables of
their “proper” group) and external ones (all the others).

C— Crrapr b pemt
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Recovering the PHS structure |lI

I1l. ldentify the ports:
1. The terms not selected in step I1.2. are declared internal
ports, associate “virtual” vertices to them.
2. To external terms for each group (responsible for
interactions) assign an edge in the resulting graph.

Details:

e V.Salnikov, A.Falaize, D.Loziienko. Learning port-Hamiltonian
systems - algorithms, Computational Mathematics and
Mathematical Physics, 2023.

e V. Salnikov, Port-Hamiltonian systems: structure recognition

and applications, Programming and Computer Software,
Volume 50, 2, 2024



Learning the PHS structure — some remarks

e First step — Machine Learning methods f \
Proof of concept — OK. —A/ze ol kot sols

Hamiltonian VS generic training ! Saccens cec -C’M‘t .

e Second step — “catalog” of symplectic / Poisson structures,
computation of cohomologies and compatible vector fields.

e Maybe a new way of defining
canonical forms of systems of differential equations.



Merci pour votre attention!




