Port-Hamiltonian Systems in musical acoustics

Thomas Hélie, CNRS

S3AM Team

Laboratory of Sciences and Technologies of Music and Sound IRCAM – CNRS – Sorbonne Université – Ministère de la Culture Paris, France

- PHS 2022 -

Spring School on Theory and Applications of Port-Hamiltonian Systems 21 March 2022

MODELLING: Input-State-Output representations

Port-Hamiltonian Systems with a component-based approach

 $\textit{(finite-dimensional\ case} \equiv \textit{ODEs})$

(i) Energy-storing components $E = \sum_{n=1}^{N} e_n \ge 0$

(i) Energy-storing components

$$E = \sum_{n=1}^{N} e_n \ge 0$$

(ii) Memoryless passive components

$$P_{ ext{diss}} = \sum_{m=1}^{M} d_m > 0$$
 (dissipative) or $= 0$ (conservative)

(i) Energy-storing components

$$E = \sum_{n=1}^{N} e_n \ge 0$$

(ii) Memoryless passive components

$$P_{
m diss} = \sum_{m=1}^{M} d_m > 0$$
 (dissipative) or $= 0$ (conservative)

(iii) External components

$$P_{\mathsf{ext}} = \sum_{p=1}^{P} s_p$$

(i) Energy-storing components

$$E = \sum_{n=1}^{N} e_n \ge 0$$

(ii) Memoryless passive components

$$P_{
m diss} = \sum_{m=1}^{M} d_m > 0$$
 (dissipative) or $= 0$ (conservative)

(iii) External components

$$P_{\mathsf{ext}} = \sum_{p=1}^{P} s_p$$

+ Conservative connections

(i) Energy-storing components

$$E = \sum_{n=1}^{N} e_n \geq 0$$

(ii) Memoryless passive components

$$P_{
m diss} = \sum_{m=1}^{M} d_m > 0$$
 (dissipative) or $= 0$ (conservative)

(iii) External components

$$P_{\mathsf{ext}} = \sum_{p=1}^{P} s_p$$

+ Conservative connections \rightarrow sum of received powers is zero

neceiver convention

→ receive power

- (i) Energy-storing components \rightarrow store energy $E = \sum_{n=1}^{N} e_n \ge 0$
- (ii) Memoryless passive components $o receive\ power$ $P_{\text{diss}} = \sum_{m=1}^M d_m > 0\ (\textit{dissipative})\ \textit{or} = 0\ (\textit{conservative})$

(iii) External components

 $\begin{aligned} & \underset{p=1}{\overset{P}{\text{ext}}} = \sum_{p=1}^{P} s_{p} \\ & + \text{ Conservative connections} \rightarrow \textit{sum of received powers is zero} \\ & \underset{p\text{-stored}}{\overset{P}{\text{-total}}} + \underset{p\text{-diss}}{\overset{P}{\text{-loss}}} + \underset{p\text{-ext}}{\overset{P}{\text{-ext}}} = 0 \text{ with } P_{\text{stored}} = \dot{E} \text{ (power balance)} \end{aligned}$

neceiver convention

→ receive power

- (i) Energy-storing components \rightarrow store energy $E = \sum_{n=1}^{N} e_n \ge 0$
- (ii) Memoryless passive components $o receive\ power$ $P_{\text{diss}} = \sum_{m=1}^M d_m > 0\ (\textit{dissipative})\ \textit{or} = 0\ (\textit{conservative})$

(iii) External components

 $\begin{aligned} & \underset{p=1}{\overset{P}{\text{ext}}} = \sum_{p=1}^{P} s_{p} \\ & + \text{ Conservative connections} \rightarrow \textit{sum of received powers is zero} \\ & \underset{p\text{-stored}}{\overset{P}{\text{-total}}} + \underset{p\text{-diss}}{\overset{P}{\text{-loss}}} + \underset{p\text{-ext}}{\overset{P}{\text{-ext}}} = 0 \text{ with } P_{\text{stored}} = \dot{E} \text{ (power balance)} \end{aligned}$

- (i) Energy-storing components \to store energy $E = H(x) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- (ii) Memoryless passive components \rightarrow receive power $P_{\mathrm{diss}} = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) \ w_m \geq \mathbf{0}$ (effort \times flow : force \times velocity, voltage \times current, etc)
- (iii) External components \rightarrow receive power $P_{\mathsf{ext}} = \mathbf{u}^\mathsf{T} \mathbf{y} = \sum_{p=1}^P u_p y_p$
 - + Conservative connections \rightarrow sum of received powers is zero $\nabla H(\mathbf{x})^{\mathsf{T}} \dot{\mathbf{x}} + \mathbf{z}(\mathbf{w})^{\mathsf{T}} \mathbf{w} + \mathbf{u}^{\mathsf{T}} \mathbf{y} = 0$ (power balance)

- (i) Energy-storing components \rightarrow store energy $E = H(x) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- (ii) Memoryless passive components \rightarrow receive power $P_{\mathrm{diss}} = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) \ w_m \geq 0$ (effort \times flow : force \times velocity, voltage \times current, etc)
- (iii) External components \rightarrow receive power $P_{\text{ext}} = \mathbf{u}^{\mathsf{T}}\mathbf{y} = \sum_{p=1}^{P} u_p y_p$ + Conservative connections \rightarrow sum of received powers is zero

PHS: Input-State-Output representation (S: interconnection matrix) $\underbrace{\begin{bmatrix} \dot{x} \\ w \\ y \end{bmatrix}}_{f} = \underbrace{\begin{bmatrix} S_{xx} & S_{xw} & S_{xu} \\ * & S_{ww} & S_{wu} \\ * & * & S_{yu} \end{bmatrix}}_{with S = -S^{T}} \underbrace{\begin{bmatrix} \nabla H(x) \\ z(w) \\ u \end{bmatrix}}_{e} \underbrace{(i) \text{ storage} \rightarrow \text{ differential eq.}}_{(ii) \text{ memoryless} \rightarrow \text{ algebraic eq.}}_{(iii) \text{ ports} \rightarrow \text{ physical signals}}$ (1)

neceiver convention

- (i) Energy-storing components \rightarrow store energy $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(x_n) \ge 0$
- (ii) Memoryless passive components \rightarrow receive power $P_{\mathrm{diss}} = \mathbf{z}(\mathbf{w})^{\mathsf{T}}\mathbf{w} = \sum_{m=1}^{M} z_m(w_m) \ w_m \geq \mathbf{0}$ (effort \times flow : force \times velocity, voltage \times current, etc)
- (iii) External components \rightarrow receive power $P_{\mathsf{ext}} = \mathbf{u}^\mathsf{T} \mathbf{y} = \sum_{p=1}^P u_p y_p$
 - + Conservative connections \rightarrow sum of received powers is zero $\underbrace{\nabla H(\mathbf{x})^\mathsf{T} \dot{\mathbf{x}}}_{P_{\mathrm{stored}} = \mathrm{d}E/\mathrm{d}t} + \underbrace{\mathbf{z}(\mathbf{w})^\mathsf{T} \mathbf{w}}_{\geq 0} + \mathbf{u}^\mathsf{T} \mathbf{y} = 0$ (power balance)

PHS: Input-State-Output representation

(S: interconnection matrix)

$$\underbrace{\begin{bmatrix} \dot{\mathbf{x}} \\ \mathbf{w} \\ \mathbf{y} \end{bmatrix}}_{\mathbf{f}} = \underbrace{\begin{bmatrix} \mathbf{S}_{\mathbf{xx}} & \mathbf{S}_{\mathbf{xw}} & \mathbf{S}_{\mathbf{xu}} \\ * & \mathbf{S}_{\mathbf{ww}} & \mathbf{S}_{\mathbf{wu}} \\ * & * & \mathbf{S}_{\mathbf{yu}} \end{bmatrix}}_{\mathbf{with}} \underbrace{\begin{bmatrix} \nabla H(\mathbf{x}) \\ \mathbf{z}(\mathbf{w}) \\ \mathbf{u} \\ \mathbf{e} \end{bmatrix}}_{\mathbf{e}} \underbrace{\begin{bmatrix} i) & \text{storage} \to \text{differential eq.} \\ (ii) & \text{memoryless} \to \text{algebraic eq.} \\ (iii) & \text{ports} \to \text{physical signals} \end{bmatrix} (1)$$

Power balance:
$$\mathbf{e}^{\mathsf{T}} \mathbf{f} \stackrel{(1)}{=} \mathbf{e}^{\mathsf{T}} \mathbf{S} \mathbf{e} = 0$$
 as $\mathbf{S} = -\mathbf{S}^{\mathsf{T}} \Rightarrow \mathbf{e}^{\mathsf{T}} \mathbf{S} \mathbf{e} = (\mathbf{e}^{\mathsf{T}} \mathbf{S} \mathbf{e})^{\mathsf{T}} = -(\mathbf{e}^{\mathsf{T}} \mathbf{S} \mathbf{e})$

- (i) Energy-storing components \rightarrow store energy $E = H(\mathbf{x}) = \sum_{n=1}^{N} H_n(\mathbf{x}_n) \geq 0$
- (ii) Memoryless passive components \rightarrow receive power $P_{\text{diss}} = \mathbf{z}(\mathbf{w})^{\mathsf{T}} \mathbf{w} = \sum_{m=1}^{M} z_m(w_m) w_m \ge 0$ (effort × flow: force × velocity, voltage × current, etc)
- (iii) External components \rightarrow receive power $P_{\text{ext}} = \mathbf{u}^{\mathsf{T}} \mathbf{y} = \sum_{p=1}^{P} u_p y_p$
 - + Conservative connections → sum of received powers is zero $\underbrace{\nabla H(\mathbf{x})^{\mathsf{T}} \dot{\mathbf{x}}}_{P_{\mathrm{stored}} = \mathrm{d}E/\mathrm{d}t} + \underbrace{\mathbf{z}(\mathbf{w})^{\mathsf{T}} \mathbf{w}}_{\geq 0} + \mathbf{u}^{\mathsf{T}} \mathbf{y} = \mathbf{0}$ (power balance)

PHS: Input-State-Output representation (5: interconnection matrix)

$$\begin{bmatrix}
\dot{\mathbf{x}} \\
\mathbf{w} \\
\mathbf{y}
\end{bmatrix} = \begin{bmatrix}
\mathbf{S}_{xx} & \mathbf{S}_{xw} & \mathbf{S}_{xu} \\
* & \mathbf{S}_{ww} & \mathbf{S}_{wu} \\
* & * & \mathbf{S}_{yu}
\end{bmatrix} \begin{bmatrix} \nabla H(\mathbf{x}) \\
\mathbf{z}(\mathbf{w}) \\
\mathbf{u}
\end{bmatrix} (i) \quad \text{storage} \rightarrow \text{differential eq.}$$

$$(ii) \quad \text{memoryless} \rightarrow \text{algebraic eq.}$$

$$(iii) \quad \text{memoryless} \rightarrow \text{algebraic eq.}$$

$$(iii) \quad \text{ports} \rightarrow \text{physical signals}$$

$$(1)$$

→ Differential-Algebraic Formulation (with no constraint: PH-DAE [Maschke, Schaft])

Example: damped mechanical oscillator excited by F_{ext} ($m\ddot{z} + r\dot{z} + kz = F_{\text{ext}}$)

• 4 separate components

- (i₁) mass m of momentum $\pi=mv$ (energy: $\frac{1}{2}mv^2=\frac{\pi^2}{2m}$),
- (i₂) spring sp of elongation ξ
- (ii) damper dp of velocity $V_{
 m dp}$
- (iii) actuator [ext] applying a force F_{ext} (\rightarrow your finger experiences $-F_{ext}$)

	state	energy H_n	flow f	effort e
m	$x_1 := \pi$	$\pi^2/(2m)$	$\dot{x}_1 = \dot{\pi}$	$H_1'(x_1) = x_1/m$
sp	$x_2 := \xi$	$k \xi^2/2$	$\dot{x}_2 = \dot{\xi}$	$H_2'(x_2) = k x_2$
dp	blu	ie : force	$w := V_{\mathrm{dp}}$	z(w) := r w
ext	rec	l : velocity	$y := V_{\text{ext}}$	$u := -F_{\text{ext}}$

Example: damped mechanical oscillator excited by F_{ext} $(m\ddot{z} + r\dot{z} + kz = F_{\text{ext}})$

4 separate components

	state	energy H_n	flow f	effort e
m	$x_1 := \pi$	$\pi^2/(2m)$	$\dot{x}_1 = \dot{\pi}$	$H_1'(x_1) = x_1/m$
sp	$x_2 := \xi$	$k \xi^2/2$	$\dot{x}_2 = \dot{\xi}$	$H_2'(x_2) = k x_2$
dp	blu	e : force	$w := V_{\mathrm{dp}}$	z(w) := r w
ext	rec	l : velocity	$y := V_{\text{ext}}$	$u := -F_{\text{ext}}$

• assembled with rigid connections

- internal forces are balanced $F_{\rm m} + F_{\rm sp} + F_{\rm dp} + (-F_{\rm ext}) = 0$
- ullet all velocities are equal $V_{
 m m} = V_{
 m sp} = V_{
 m dp} = V_{
 m ext}$

$$\frac{\dot{\pi} = F_{\rm m}}{\dot{\xi} = V_{\rm sp}} \begin{bmatrix} \dot{x}_1 \\ \dot{\xi} = V_{\rm sp} \\ V_{\rm dp} \\ V_{\rm ext} \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{S} = -\mathbf{S}^{\mathsf{T}}$$

- $V_{\mathrm{m}} = \frac{\pi/m}{\mu'_{1}(x_{1})}$ $V_{\mathrm{m}} = \frac{\pi/m}{F_{\mathrm{sp}}}$ $F_{\mathrm{sp}} = k\xi$ $F_{\mathrm{dp}} = rV_{\mathrm{dp}}$ $-F_{\mathrm{ext}}$
- \rightarrow Formulation (1) with $H(\mathbf{x}) = H_1(x_1) + H_2(x_2)$
- $o m{S} = -m{S}^\intercal$ is canonical (no mechanical coefficients)

(ODE: with $z = \xi$)