Port-Hamiltonian Systems in musical acoustics

Thomas Hélie, CNRS

S3AM Team
Laboratory of Sciences and Technologies of Music and Sound IRCAM - CNRS - Sorbonne Université - Ministère de la Culture Paris, France

- PHS 2022 -

Spring School on Theory and Applications of Port-Hamiltonian Systems 21 March 2022

Frauenchiemsee, Bavaria, Germany

MODELLING: Input-State-Output representations

Port-Hamiltonian Systems
with
a component-based approach

(finite-dimensional case \equiv ODEs)

A physical system is made of. . .

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

(ii) Memoryless passive components

$$
P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0 \text { (dissipative) or }=0 \text { (conservative) }
$$

(iii) External components

$$
P_{\text {ext }}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections

A physical system is made of. . .

(i) Energy-storing components $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

(i) Energy-storing components \rightarrow store energy $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero $P_{\text {stored }}+\underbrace{P_{\text {diss }}}_{\geq 0}+P_{\text {ext }}=0$ with $P_{\text {stored }}=\dot{E} \quad$ (power balance)

(i) Energy-storing components \rightarrow store energy $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero $P_{\text {stored }}+\underbrace{P_{\text {diss }}}_{\geq 0}+P_{\text {ext }}=0$ with $P_{\text {stored }}=\dot{E} \quad$ (power balance)

A physical system is made of. . .
© receiver convention

(i) Energy-storing components
\rightarrow store energy
$E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power
$P_{\text {ext }}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}$

+ Conservative connections \rightarrow sum of received powers is zero $\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0$

A physical system is made of. . .

(i) Energy-storing components
\rightarrow store energy

$$
E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathrm{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\left.\underbrace{\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{cc}
\nabla H(\mathbf{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \begin{array}{l}
\text { (i) }
\end{array} \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) }
\end{array} \\
& \text { memoryless } \rightarrow \text { algebraic eq. } \\
& \text { ports } \rightarrow \text { physical signals }
\end{aligned} \right\rvert\,
$$

A physical system is made of. ..

(i) Energy-storing components
\rightarrow store energy
$E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=z(w)^{\top} w=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0 \quad \text { (power balance) }
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\left.\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \text { (i) } \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) }
\end{array} \\
& \text { memoryless } \rightarrow \text { algebraic eq. } \\
& \text { ports } \rightarrow \text { physical signals }
\end{aligned} \right\rvert\,
$$

Power balance: $\mathbf{e}^{\top} \stackrel{(1)}{=} \mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}=0$ as $\boldsymbol{S}=-\boldsymbol{S}^{\boldsymbol{\top}} \Rightarrow \mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}=\left(\mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}\right)^{\top}=-\left(\mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}\right)$

A physical system is made of. . .

(i) Energy-storing components
\rightarrow store energy

$$
E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=z(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{P} y_{P}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathrm{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\left.\underbrace{\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{cc}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \begin{array}{l}
\text { (i) }
\end{array} \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) }
\end{array} \\
& \text { memoryless } \rightarrow \text { algebraic eq. } \\
& \text { ports } \rightarrow \text { physical signals }
\end{aligned} \right\rvert\,
$$

\rightarrow Differential-Algebraic Formulation

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$ (no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),
(i_{2}) spring sp of elongation ξ
(ii) damper dp of velocity V_{dp}
(iii) actuator ext applying a force $F_{\text {ext }}$ (\rightarrow your finger experiences $-F_{\text {ext }}$)

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

- assembled with rigid connections
- internal forces are balanced $F_{\mathrm{m}}+F_{\mathrm{sp}}+F_{\mathrm{dp}}+\left(-F_{\text {ext }}\right)=0$
- all velocities are equal $V_{\mathrm{m}}=V_{\mathrm{sp}}=V_{\mathrm{dp}}=V_{\mathrm{ext}}$

\rightarrow Formulation (1) with $H(\mathbf{x})=H_{1}\left(x_{1}\right)+H_{2}\left(x_{2}\right)$
$\rightarrow \boldsymbol{S}=-\boldsymbol{S}^{\boldsymbol{\top}}$ is canonical (no mechanical coefficients)

