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Context and motivation

1 Model input-output multi-physics systems for sound and musical
applications:

Phenomena: mechanical, acoustic, electronic, magnetic, etc
Realism: nonlinearities, non ideal dissipations, etc

2 Satisfy fundamental physical properties:
causality, stability, passivity and more precisely ...
the power balance structured into conservative/dissipative/source parts
other natural invariants and symmetries (if any)

3 Simulate such systems and preserve these properties in the discrete
time domain (+accuracy+sound quality/Shannon-Nyquist principle)

4 Design code generators from netlists for real-time applications

5 Design correctors and controllers to reach target behaviours
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Outline

1 Context

2 Framework: recalls, basics, and tools
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PREAMBULE [Khalil,2002: Nonlinear systems]

Stability and passivity in nonlinear dynamical systems

- Stability of an equilibrium point (autonomous system)

- Passivity of an input/output system (input/output system)

→ Lyapounov analysis



5/ 20

PREAMBULE [Khalil,2002: Nonlinear systems]

Stability and passivity in nonlinear dynamical systems

- Stability of an equilibrium point (autonomous system)

- Passivity of an input/output system (input/output system)

→ Lyapounov analysis



6/ 20

Preambule (1/4): autonomous systems

ẋ(t) = f
(
x(t)

)
, for t ≥ 0, with f : Rn → Rn (n ∈ N∗)

x(0) = x0 ∈ Rn

Cauchy-Lipschitz theorem: f locally Lipschitz ⇒ ∃!t #→ x(t)
x can be defined on Jx0 ⊆ R, an open maximal interval that contains 0,
or on interval J+

x0 := Jx0 ∩ R+, for its restriction to positive times.

Equilibrium point: x∗ ∈ Rn s.t. f (x∗) = 0
Rk: Jx∗ = R, J+

x∗ = R+

Stabilities of x∗ (L: local, A: asymptotic, G: global)
(LS) if: ∀R > 0, ∃r(R) > 0 such that ∀x0 ∈ Rn,

∥x0 − x∗∥ < r(R) ⇒ ∥x(t) − x∗∥ < R, ∀t ∈ J+
x0

Lemma: if ∥x0 − x∗∥ < r(R), then J+
x0 = R+

(LAS) if: (LS) and ∃r > 0 s.t. ∥x0 − x∗∥ < r ⇒ limt→+∞ x(t) = x∗

(GAS) if: (LAS) for all r > 0
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Preambule (2/4): the Duffing oscillator ÿ + αẏ + (1 + βy2)y = 0

ẋ(t) = f
(
x(t)

)
, with x = [y , ẏ ]T ,

and f (x) = [x2, −αx2 − (1 + βx2
1 )x1]T

LS (no damping: α = 0) LAS (damping: α > 0)

(LS) if: ∀R > 0, ∃r(R) > 0 such that ∀x0 ∈ Rn,
∥x0 − x∗∥ < r(R) ⇒ ∥x(t) − x∗∥ < R, ∀t ∈ J+

x0
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Preambule (3/4): Lyapounov analysis (of a system S : ẋ = f (x))

Definition (Hyp.: x∗ = 0 and Ω ⊆ Rn open set)
V : Ω −→ R is a Lyapounov function of S if:

(i) V is C1-regular on Ω
(ii) V (0) = 0 and V (x) > 0 for all x ̸= 0
(iii) d

dt V ◦ x(t) ≤ 0 for all trajectories of S in Ω
(⇔ ∇V (x)T f (x) ≤ 0, for all x in Ω)

If ∇V (x)T f (x) < 0, for all x in Ω \ {0}, V is called a strict Lyapounov fct.

Lyapounov theorem
If V is a Lyapounov fct. of S, then x∗ = 0 is LS.
If V is strict, then x∗ = 0 is LAS.
(GAS? For Ω = Rn, add the condition V (x) → +∞ as ∥x∥ → +∞)

Lasalle principle (a useful theorem!)
Let I be the largest subset of {x ∈ Ω s.t. ∇V (x)T f (x) = 0} (points leaving
V invariant) that is invariant under the flow in positive time.
Then, all the trajectories of S converge towards I.
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Preambule (4/4): Passivity (input/output systems)
Input/output system (u: input, y : output, dimu = dimy ≥ 1)

S : ẋ = f
(
x , u), y = h(x , u) and x(0) = x0

Recall (autonomous systems ẋ = f (x)): V is a Lyapounov fct. if
(i) V is C1-regular on Ω
(ii) V (0) = 0 and V (x) > 0 for all x ̸= 0
(iii) d

dt V ◦ x(t) ≤ 0 (⇔ ∇V (x)T f (x) ≤ 0, for all x)

Passivity: S is passive if V satisfies (i-ii) and if (iii) is replaced by
Passivity: d

dt V ◦ x(t) ≤ y(t)T u(t) (⇔ ∇V (x)T f (x , u) ≤ h
(
x , u

)T u)
Strict passivity: d

dt V ◦ x(t) ≤ y(t)T u(t) −ψ
(
x(t)

)

(⇔ ∇V (x)T f (x , u) ≤ h
(
x , u

)T u −ψ(x) for all x , u)
with ψ : Ω → R s.t. ψ(0) = 0 and ψ(x) > 0 for all x ̸= 0

→ Stability for u = 0
→ Stabilization for dissipative feedback-loop laws: (u = −Ry ⇒ yT u = −R∥y∥2 ≤ 0)
→ In physics, a natural Lyapounov function is the energy
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