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Authors have extended the Classical Continuum Mechanics modeling to Relativistic continuous media,

@ for the modeling of the solid crust of neutron stars, at the astrophysics scale
(Souriau, 1958, 1964, Synge, 1959, Rayner, 1963, Bennoun, 1965, Carter and Quintana, 1972, Lamoureux-Brousse, 1989, Kijowski
and Magli, 1992, 1997, Beig and Schmidt, 2003, Epstein et al., 2006, Wernig-Pichler, 2006, Gundlach et al., 2011, Brown, 2021)

@ but also at a local scale for mechanical engineering applications
(Grot and Eringen, 1966, Maugin, 1978, Panicaud and Rouhaud, 2013, 2015)

@ Let us formulate Relativistic Hyperelasticity and associated mechanical strains and stresses within
the Variational Relativity framework.

@ Let us obtain Netwon-Cartan classical limit ¢ — co  with gravity.
N——

infinite light speed

1. B. Kolev and R. Desmorat, J. Mech. Phys. Solids, 181, 105463, 2023.
B. Kolev and R. D Relativistic hyperelasticity ICTAM2024, Daegu (Korea), August 28th 2024




VARIATIONAL RELATIVITY (SOURIAU, 1958, 1960, 1964)

The Variational Relativity geometric framework, introduced by Souriau,
extremalizing the Lagrangian (i.e. Action)

2o, = Al + L™ V) //// Uy ) volg
S~~~ ~~—~ Uyp= ——
fields Relativity Matter jets of fields

is radically different from the ones

@ by Lamoureux-Brousse (1989) (see also Rouhaud et al., 2013) which considers a
perturbation of 4D universes,

@ by Grot and Eringen (1966), Maugin (1972) and Epstein et al. (2006), which
introduce an imbedding of a body-time (the Cartesian product I x Z of a time
interval I = [t;, t;] and the 3D body %) into the Universe.

Variational Relativity does not assume a priori the definition of a (space)time.
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OUTLINE

0 (Gauge Theory) 4D General Covariant formulation of Hyperelasticity
e Spacetimes : introduction of an observer/orthogonal decompositions
9 Relativistic Hyperelasticity in (curved) Schwarzschild spacetime

e Galilean limit of Relativistic Hyperelasticity
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OUTLINE

0 (Gauge Theory) 4D General Covariant formulation of Hyperelasticity
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4D FORMALISM FOR CONTINUUM MECHANICS
(SOURIAU, 1958, 1960, 1964)

Souriau’s modeling of perfect matter is inspired by Gauge Theory, where
matter fields are described by sections of vector bundles (here trivial).

o A perfect matter field is a vector-valued function
U4 — V=R,
where .7, the Universe, is a manifold of dimension 4, equipped with a

Lorentzian metric g of signature (—, +, +, +).

@ The notation ¥ for the matter field is on purpose,
as usually used for the wave function in Quantuum Mechanics.
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THE BODY %, THE MASS MEASURE 1 AND THE WORLD TUBE #/

@ Matter is described by a compact orientable submanifold with border, of
dimension 3, the body % C R3, which labels the particles.

@ The body # is endowed with a volume form, the mass measure
(or particle density).

e W is assumed to be a submersion, so that % := ¥~1(4%) is fibered by
the World lines of the particles ¥~!(X), X € 4.

e W is called the matter tube or World tube.

particle World line
vH(X)
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A REVERSE VIEW OF THE 3D FORMALISM

@ In the classic 3D formalism, a configuration is an embedding
p: B — &, X — x = p(X),

of the body 4 in (Euclidean) space &.

@ In the present 4D formalism, a configuration is an application
V: A — B, m— X = ¥(m),
from the 4D Universe .# to the 3D body .

An essential difference is that, in classical theory, the embedding p and its
differential (the so-called deformation gradient)

F=Tp: TA — T&, 0X — 0x = FoX,

are invertible, whereas in Variational Relativity ¥ and 77U = dW¥ are not.

v
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CURRENT OF MATTER P

@ The pullback ¥*p of mass measure (4 is a 3-form on the Universe .7 .
As U is a submersion, there exists a (quadri-)vector P which does not
vanish on %/, such as

U* 1 = ipvol, = P - vol,.

This vector field P is the current of matter.
o To describe perfect matter, Souriau also assumes that P is of type time,

HP||§, = g(P,P) <0 on the World tube #

@ We then define the rest mass density and the (unit norm) quadrivelocity U
pri=1/— P>, sothat P=pU, where [U|}=-1.
Since ¥* i, = ipvol, we get
Lemma (Relativistic version of mass conservation)

divé P = divé(p,U) = 0.
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MASS CONSERVATION

Lemma (Souriau, 1958)

Let q be a fixed Riemannian metric on the body 9. Then, the rest mass
density p, can be expressed as

pr = pg(¥)/ det [K(q o W],

where WV is the matter field, K is the conformation and pq = %.
q

Mass conservation in (Classical) Continuum Mechanics (on )

po=(po@)J,  J:=/det(g~'C),

¢: Qo — Q is the deformation and C := ¢*g, is right Cauchy—Green tensor.

v
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THE CONFORMATION K

The conformation, denoted K, is the cornerstone of the formulation of
large-scale Relativistic Hyperelasticity

> as in the large (astrophysics) scale modeling of neutron stars (with a solid crust).
Definition (Souriau, 1958)

The conformation is the vector-valued function

K:= (TV) g {(TV)*.

@ Atany point m € %', K(m) is a positive definite quadratic form on V*
(since U is of type time).

@ Since U : # — 2 is not invertible, K is not the pushforward by U of g~
To be compared to the (3D) definition of right Cauchy-Green tensor

C=¢'g=FgF=F g 'F ", F:=ro
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GENERAL COVARIANCE

The fundamental postulate of general relativity is that
the laws of physics are independent of the choice of coordinates. J

@ More precisely, this means that the Lagrangian . is invariant by any
(local) diffeomorphism of the Universe ¢ € Diff(.#), i.e.,

Lp*s, " V] = ZLg, V],
where ¢* means the pull-back by ¢,
g =(Te) (gop)(Tp), and ¥ =Voop.

@ General covariance is meaningful before the introduction of a spacetime.
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GENERAL COVARIANCE

The fundamental postulate of general relativity is that
the laws of physics are independent of the choice of coordinates. J

@ More precisely, this means that the Lagrangian .Z is invariant by any
(local) diffeomorphism of the Universe ¢ € Diff(.#), i.e.,

ZLp*g, V] = ZL[g, V],
where ¢* means the pull-back by ¢,

g =(Tp)" (gop)(Typ), and "W =Voop.
@ General covariance is meaningful before the introduction of a spacetime.

@ The infinitesimal version of General Covariance (using Lie derivative)
was formulated by Noether in 1918.

The (General Relativity) Hilbert-Einstein functional .7# is general covariant,
ie.,

Hp*g| = Hgl.

B. Kolev and R. Desmorat (LMPS) Relativistic hyperelasticity ICTAM2024, Daegu (Korea), August 28th 2024



AS OBSERVED BY EINSTEIN : “div® T = 0, THIS IS MECHANICS !”
@ The extremalization (w.r.t. g) of the Lagrangian . = ¢ + gmatter

0.7 07 . matter 1
2—=0= 2— + 2—— =—-Gi—T
og og 0g k¢
—— N——
 Einstein tensor Gg opposite of stress—energy tensor T
. . . # . 81G
gives back Einstein equation Gz = T (with matter), = —.
c
@ A direct consequence of general covariance is the fundamental property
07
divé G, =0, Gg =2k——
0g

and thus the stress—energy(—-momentum) tensor T satisfies

Theorem
63"’[(1”6"

dive T = 0, T:= -2
og
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GENERAL COVARIANCE OF MATTER LAGRANGIAN

Theorem (Souriau, 1958)
Suppose that the Lagrangian

gmater[g W] = /Lo(gm,\Il(m),Tm\Il)Volg
is general covariant. Then, its Lagrangian density can be written as
Lo(g, U, TV) = L(V,K),

or some function where K = (TV) ¢~ (TW)* is the conformation.
8

In Classical Continuum Mechanics, for a Hyperelasticity law that satisfies the
material indifference (objectivity) principle, the energy density depends on
the deformation ¢ only through the right Cauchy—Green tensor C = ¢*q.
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GENERAL COVARIANCE OF MATTER LAGRANGIAN

Theorem (Souriau, 1958)
Suppose that the Lagrangian

Lo Y| = /Lo(gm, U(m), T,,¥) volg
is general covariant. Then, its Lagrangian density can be written as

LO(galljvT\Ij) :L( \\IJ/ ) \IS/ )7
non homogeneity same role as C~!

for some function where K = (TW) g~ (TV)* is the conformation.

In Classical Continuum Mechanics, for a Hyperelasticity law that satisfies the
material indifference (objectivity) principle, the energy density depends on
the deformation ¢ only through the right Cauchy—Green tensor C = ¢*g.
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STRESS-ENERGY TENSOR FOR PERFECT MATTER

Let us assume the standard decomposition (Souriau, 1958, De Witt, 1962)
L(V,K) = p,? + E(¥,K) = p,* + pe(¥,K),
where p, is the rest mass density and E is the internal energy density. Then,

matter
T = —2% =LU®U-3, where
8

e

= _2pr g_l(T\Ij)*aK

(TV)g™!, XU =0,

which define X as a relativistic (mechanical) stress tensor.
Remark

The stress tensor X can be interpreted as a 3D object since X.U” = 0. J
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OUTLINE

© Spacetimes : introduction of an observer/orthogonal decompositions
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OBSERVER AS A TIME FUNCTION #(x*) ON #/

(ARNOWITT ET AL, 1962, YORK, 1979, GOURGOULHON, 2012)
20 = et
W
o

e
o

, *

2t 2%, a?

@ The World tube # is foliated by the (3D) hypersurfaces €2, which play the role
of configurations © = ),y of Classical Continuum Mechanics.

Definition (Unit normal to €2, oriented towards future, as U = P/p,)

grad® ¢

N:=— . (U,N), <0.

— ngad iH

2
8

Relativistic hyperelasticity
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ORTHOGONAL DECOMPOSITION OF QUADRIVELOCITY U

A spacetime structure is given on %, with unit normal N, which is assumed
oriented in the same way as U, i.e. (with g not necessarily the Minskowski metric)

v :=—(U,N); >0 (Generalized Lorentz factor).
which allows us to define the mass density p := vp,.

Orthogonal decomposition of U with respect to N

Normal component : UY = N,
U=U"+U", , - u
Spatial (3D) component : U' = 7;.

Then, by ||U||> = —1:

u interpreted as the spatial (3D, Eulerian, relativistic) velocity

v=a(N+2),  y=1/y- B
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ORTHOGONAL DECOMPOSITION OF T

Orthogonal decomposition of the stress energy tensor T w.r.t. N
1
T=EsN®N+ E(N®p+p®N) +s.
o FEi is the total energy density,
@ p is the relativistic linear momentum,

@ sis the spatial part of T (related to the mechanical stress field).

Definition (Relativistic Cauchy stress tensor o)

It is defined as the spatial part o := 3T of

>=-T+LU®U, .U =0.

Eot = V2L — cizub o-u,

p=7*Lu—o-u’, where L = p,¢* + E.
2

s=5ZLlu®u—o,
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OUTLINE

© Relativistic Hyperelasticity in (curved) Schwarzschild spacetime
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(CURVED) SCHWARZSCHILD SPACETIME (1916)

@ The Schwarzschild metric g is a static solution to Einstein vacuum
equation G, = 0, around a spherical body of mass M and radius r.

0 = ct,x%), for 7 > ry >> 7, (planet),

@ In cartesian isotropic coordinates (x
¢ = — N2 + g0,
1—7/F

Q/Vz —_ -_——
80 = T 7 /7

et ¢P =kg=ko;dr'dy

where k and g3P are function of the radius 7,

s\ 4 _ y _ GM
k= (1 + ?) , Fi= /0 x¥, Foi= oy

» 7 = 0 at Earth center, ¥ = r at its surface,
» The Minkowski metric n = —c?d#* + g corresponds to vanishing mass
M = 0 (and vanishing Schwarzschild radius 7, = 0).
B. Kolev and R. Desmorat (LMPS)
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EVALUATION IN SCHWARZSCHILD SPACETIME

@ Spatial velocity and generalized Lorentz factor :

" 1 Fa\p 1
= a, V=
N Ot 1_,(,;;

2. : 7o\ 4
where u?> = |||l is square Euclidean norm and k = (1+2)"

@ Conformation :

@ Stress—energy tensor (coordinates (z,x'))

1 1
E *
T — cz,/il/2 tot CZJVP
czﬂ/p S

ICTAM2024, Daegu (Korea), August 28th 2024

Relativistic hyperelasticity

B. Kolev and R. Desmorat (LMPS)




COMPONENTS OF THE STRESS-ENERGY-MOMENTUM TENSOR T
DEFINITION OF THE MECHANICAL STRESS 0 AS THE SPATIAL PART OF 3

o Energy density :
2 2’ L b
Eor = ypc” + E(1 + ky —2) - Su o,
c c

@ Linear momentum :

2
u
p= (vpc2 +E(1 -I—k'yzc—z))u — o--ub,

o Stress (Relativistic Hyperelasticity constitutive equation) :

1 u?
= —E(1 k2—> _o,
s ('YP+C2 (+’yc2) uRu—o
2 | Oe
— _ —F—* F—l —1‘
7= e oK ¢

where p := 7yp, is the mass density.
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CONSERVATION LAWS IN (CURVED) SCHWARZSCHILD SPACETIME

@ Conservation of current of matter P

1
divs P = 7% + dive” (pu) + pu - dIn A = 0.

where p := 7p, is the mass density.

@ Conservation of Hilbert stress-energy(-momentum) tensor T,

1 Op Eio _1
g - P g’ —
(diveT)" N +div® s+s-dlnAf + — . 9 dlnA# =0.
1 8Emt 1 . 3D P
8 8 . —
(div8 T)" = 247 o + G divé p + =% 0.
Remark

The lapse function is .4#” = 1, so that dIn .4#" = 0, for Minkowski spacetime
g§=mn.8" =29
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OUTLINE

° Galilean limit of Relativistic Hyperelasticity
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NEWTON—CARTAN LIMIT A = 1/¢? — 0
We refer to Dixon (1975), Havas (1964), Kiinzle (1976), Duval-Kiinzle (1977), Duval (1985)
for Galilean Structures and Newton-Cartan limit.
© Atorder 0in )\ : the time component (div’\ T)' = 0 corresponds to the
expression of mass conservation of Classical Continuum Mechanics

a—lo)—i—div(ozoz)—O
ot prI="=

A
@ Atorder 0in ) : the spatial component (div T*)T = 0 corresponds to the
linear momentum balance of Classical Continuum Mechanics

8 00 . 0 0 0 0 0
8—t(pu)+d1v (pu@u—a) —pg=0. J

A A A
@ Atorder 1 in \ : the equation .4 (div T)" — div(cP) = 0 corresponds to
the internal energy balance in Classical Continuum Mechanics

1 0 1
O+ pu)+div((E+2;3;;2) 3.&b)_zg.a=o. }
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CONCLUSION

CLASSICAL CONSERVATION LAWS RECOVERED

@ is mass conservation
dp
ot

© is the equilibrium equation (with gravity)

+ div(pu) = 0.

7]
p (8—1: + V,,u) =divo + pg,

© is the first principle of thermodynamics with no heat transfert,

e — oy ._1 b by %
p(E—i—Vue)_o-.d, d._Z(Vu +(Vu)>,

e := E/p : specific internal energy and d : classical strain rate tensor.
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CONCLUSION

@ We have presented a relativistic formulation of Hyperelasticity,
within the (Souriau) framework of Variational Relativity.

@ The conformation K plays a fundamental role
(as a strain variable).

@ We have defined the stress of a continuous medium in this context.

o Although the complete theory is 4D, the constitutive laws of Relativistic
Hyperelasticity are 3D.

o Gravity has been taken into account (here in Schwarzschild spacetime).

@ The Newton-Cartan formulation of Galilean relativity is obtained
as the infinite light speed limit ¢ — oo.
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QU’EST CE QU’UNE FORME DIFFERENTIELLE ?

Une forme différentielle w de degré k sur RY (ou plus généralement une
variété différentielle) est un champ de tenseurs d’ordre k qui est alterné

Wryoroorior, = —Wrperiorioorg -

e une 1-forme sur R3 s’écrit : o = (o) = Pdx + Qdy + Rdz,
o une 2-forme sur R> s’écrit :

w = (wij) = wipdx Ady + wiz dx A dz 4+ w3 dy A dz,
@ une 3-forme sur R3 s’écrit : w = (wijk) = w2z dx A dy A dz.

Ici (dx, dy, dz) est la base duale de la base canonique sur R? et

dx Ady =dx®dy — dy ® dx,
dx Ady Adz = (dx ® dy ® dz)*,

est le produit tensoriel alterné.
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FORME VOLUME RIEMANNIEN

@ Une forme volume sur R¢ (ou une variété orientable de dimension d) est
une d-forme (degré maximal) qui ne s’annule nulle part,

p=fdx' A Adxd, where f(x', ..., x%) #0.

@ Sur toute variété riemannienne (orientable) (M, g) il existe une unique
forme volume, noté€e vol, qui est caractérisée par le fait qu’elle vaut 1 sur
toute base orthonormée directe.

e Exemple : Sur R? muni de la métrique euclidienne
g=g=d? +dy +d
dans les coordonnées canoniques (x,y, z), on a

volg = dx Ady Adz = (dx ® dy ® dz)*,

ICTAM2024, Daegu (Korea), August 28th 2024

Relativistic hyperelasticity

B. Kolev and R. Desmorat (LMPS)




PULL-BACK ET PUSH-FORWARD

DES VARTIABLES LAGRANGIENNES AU VARIABLES EULERIENNES ET INVERSEMENT

p:B—E=Rg) Tp: TB — TE
X —x 06X — 0x = F.0X

Ces notions étendent les opérations suivantes sur les fonctions
P)(X) = f(p(X)), feC™(Q,,R) (pull-back),
(p+F)(x) = Z(p~ ' (x)), F € C*(4A,R) (push-forward)

a tout type de champ de tenseurs.
@ Pour des champs de tenseurs d’ordre 2 covariants k = (k;;) et K = (kzy) :

p’k =F*(kop)F, k défini sur 2,  (pull-back),
pK=F*Kop H)F~!  Kdéfinisur B (push-forward)
S — _ ([ ox
ouF:=Tp= (a—;g,)
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