

Analysis of one-dimensional structure using Lie groups approach

Marwan Hariz

Joint work with Loïc Le Marrec and Jean Lerbet

November 21, 2024

• \mathcal{E} three dimensional affine space.

- \mathcal{E} three dimensional affine space.
- *E* associated vector space.

- \mathcal{E} three dimensional affine space.
- *E* associated vector space.
- To each affine map $A : \mathcal{E} \longrightarrow \mathcal{E}$, a linear part $\mathbf{A} : E \longrightarrow E$ is usually associated, such that:

$$\forall a, b \in \mathcal{E}$$
 $A(b) = A(a) + \mathbf{A}(\overrightarrow{ab})$

- ${\mathcal E}$ three dimensional affine space.
- *E* associated vector space.
- To each affine map $A : \mathcal{E} \longrightarrow \mathcal{E}$, a linear part $\mathbf{A} : E \longrightarrow E$ is usually associated, such that:

$$orall \, a,b \in \mathcal{E} \quad A(b) = A(a) + \mathbf{A}(\overrightarrow{ab})$$

• $\mathbb{D}(\mathcal{E})$ group of Euclidean displacements and $\mathfrak{D}(\mathcal{E})$ the associated Lie algebra.

- \mathcal{E} three dimensional affine space.
- *E* associated vector space.
- To each affine map $A : \mathcal{E} \longrightarrow \mathcal{E}$, a linear part $\mathbf{A} : E \longrightarrow E$ is usually associated, such that:

$$orall \, a,b \in \mathcal{E} \qquad A(b) = A(a) + \mathbf{A}(\overrightarrow{ab})$$

- $\mathbb{D}(\mathcal{E})$ group of Euclidean displacements and $\mathfrak{D}(\mathcal{E})$ the associated Lie algebra.
- D(E) = {X : E → E, ∃ω_X ∈ E/X(b) = X(a)+ω_X×ab ∀ a, b ∈ E} where × is the standard cross product in E.

- \mathcal{E} three dimensional affine space.
- *E* associated vector space.
- To each affine map $A : \mathcal{E} \longrightarrow \mathcal{E}$, a linear part $\mathbf{A} : E \longrightarrow E$ is usually associated, such that:

$$orall \, a,b \in \mathcal{E} \qquad A(b) = A(a) + \mathbf{A}(\overrightarrow{ab})$$

- $\mathbb{D}(\mathcal{E})$ group of Euclidean displacements and $\mathfrak{D}(\mathcal{E})$ the associated Lie algebra.
- D(E) = {X : E → E, ∃ω_X ∈ E/X(b) = X(a)+ω_X×ab ∀ a, b ∈ E} where × is the standard cross product in E.
- The Lie bracket is defined in $\mathfrak{D}(\mathcal{E})$ by

$$\forall a \in \mathcal{E}$$
 $[X, Y](a) = \omega_X \times Y(a) - \omega_Y \times X(a)$

$$\begin{array}{cccc} [[\cdot|\cdot]]: & \mathfrak{D}(\mathcal{E}) \times \mathfrak{D}(\mathcal{E}) & \longrightarrow & \mathbb{R} \\ & & (X,Y) & \longrightarrow & [[X|Y]] = \omega_X \cdot Y + \omega_Y \cdot X \end{array}$$

where \cdot scalar product in *E*.

$$\begin{array}{cccc} [[\cdot|\cdot]]: & \mathfrak{D}(\mathcal{E}) \times \mathfrak{D}(\mathcal{E}) & \longrightarrow & \mathbb{R} \\ & & (X,Y) & \longrightarrow & [[X|Y]] = \omega_X \cdot Y + \omega_Y \cdot X \end{array}$$

where \cdot scalar product in *E*.

[[·|·]] is a bilinear, symmetric and nondegenerate form on D(E). Its signature is (3, 3).

$$\begin{array}{cccc} [[\cdot|\cdot]]: & \mathfrak{D}(\mathcal{E}) \times \mathfrak{D}(\mathcal{E}) & \longrightarrow & \mathbb{R} \\ & & (X,Y) & \longrightarrow & [[X|Y]] = \omega_X \cdot Y + \omega_Y \cdot X \end{array}$$

where \cdot scalar product in E.

- [[·|·]] is a bilinear, symmetric and nondegenerate form on 𝔅(𝔅). Its signature is (3, 3).
- $[[\cdot|\cdot]]$ is invariant by applying the adjoint map.

$$\begin{array}{cccc} [[\cdot|\cdot]]: & \mathfrak{D}(\mathcal{E}) \times \mathfrak{D}(\mathcal{E}) & \longrightarrow & \mathbb{R} \\ & & (X,Y) & \longrightarrow & [[X|Y]] = \omega_X \cdot Y + \omega_Y \cdot X \end{array}$$

where \cdot scalar product in E.

- [[·|·]] is a bilinear, symmetric and nondegenerate form on 𝔅(𝔅). Its signature is (3, 3).
- [[·|·]] is invariant by applying the adjoint map.
- $[[\cdot|\cdot]]$ plays a crucial role in energy-related aspects.

Preliminaries 00	Level one ●0	Level two 00			Linear free vibrations	
Kinem	atics					
Internal	motio	n				
		σ	$\cdot \begin{bmatrix} 0 & I_0 \end{bmatrix}$	$\times \mathbb{R}^+ \longrightarrow$	$\mathbb{R} \times \mathbb{R}^+$	

$$(S_0,t) \longrightarrow (S(t),t)$$

 $S_0 \in [0, L_0]$ initial configuration and $S \in [0, L(t)]$ deformed configuration.

Preliminaries 00	Level one ●0	Level two 00	Constitutive laws O	Linear free vibrations	
Kinem	atics				

Internal motion

$$g: [0, L_0] imes \mathbb{R}^+ \longrightarrow \mathbb{R} imes \mathbb{R}^+ \ (S_0, t) \longrightarrow (S(t), t)$$

 $S_0 \in [0, L_0]$ initial configuration and $S \in [0, L(t)]$ deformed configuration.

Configuration

$$p(S,t)=D(S_0,t)\bullet p_0(S_0),$$

 $D(S_0, t)$ displacement.

 $p_0(S_0)$ reference configuration.

 \bullet free and transitive left-action of $\mathbb D$ on the configuration space.

Preliminaries 00	Level one ●0	Level two 00	Constitutive laws O	Linear free vibrations	
Kinem	atics				

Internal motion

$$\begin{array}{cccc} g: [0, L_0] \times \mathbb{R}^+ & \longrightarrow & \mathbb{R} \times \mathbb{R}^+ \\ (S_0, t) & \longrightarrow & (S(t), t) \end{array}$$

 $S_0 \in [0, L_0]$ initial configuration and $S \in [0, L(t)]$ deformed configuration.

Configuration

$$p(S,t)=D(S_0,t)\bullet p_0(S_0),$$

 $D(S_0, t)$ displacement.

 $p_0(S_0)$ reference configuration.

 \bullet free and transitive left-action of $\mathbb D$ on the configuration space.

Strain

$$\begin{array}{cccc} \mathbf{e}_0 : [0, L_0] \times \mathbb{R}^+ & \longrightarrow & \mathfrak{D}(\mathcal{E}) \\ (S_0, t) & \longrightarrow & \mathbf{e}_0(S_0, t) = \vartheta(\frac{\partial D(S_0, t)}{\partial S_0}) = \mathbf{D}^{-1}(S_0, t) \circ \frac{\partial D(S_0, t)}{\partial S_0} \end{array}$$

Where **D** linear part of *D*.

Deformed configuration
$$(S, t)$$

 $\rho T + \frac{\partial \Theta}{\partial S} = \frac{\partial}{\partial t} (\rho H(V))$

- ρT force distribution.
- V velocity
- Θ Internal actions
- ρH inertia

Deformed configuration
$$(S, t)$$

 $\rho T + \frac{\partial \Theta}{\partial S} = \frac{\partial}{\partial t} (\rho H(V))$

- ρT force distribution.
- V velocity
- Θ Internal actions
- ρH inertia

•
$$\rho(S,t)dS = \rho(S_0)dS_0$$

•
$$U(S,t) = Ad(D(S_0,t))U(S_0,t) \ \forall \ U \in \mathfrak{D}(\mathcal{E})$$

• [AdDX, AdDY] = AdD[X, Y]

Deformed configuration
$$(S, t)$$

 $\rho T + \frac{\partial \Theta}{\partial S} = \frac{\partial}{\partial t} (\rho H(V))$

- ρT force distribution.
- V velocity
- Θ Internal actions
- ρH inertia

•
$$\rho(S,t)dS = \rho(S_0)dS_0$$

•
$$U(S,t) = Ad(D(S_0,t))U(S_0,t) \ \forall \ U \in \mathfrak{D}(\mathcal{E})$$

•
$$[AdDX, AdDY] = AdD[X, Y]$$

Initial configuration (S_0, t)

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = \rho_0 \Big(H_0(\frac{\partial V_0}{\partial t}) + [V_0, H_0(V_0)] \Big)$$

Displacement decomposition

 $\mathbb{D}(\mathcal{E}) = \mathbb{T}(\mathcal{E}) \times_C \mathbb{R}(\mathcal{E})_C$

- \times_C semi-direct product
- C center of mass depends on S_0
- $\mathbb{T}(\mathcal{E})$ translation group
- $\mathbb{R}(\mathcal{E})$ rotation group

Displacement decomposition

$$\mathbb{D}(\mathcal{E}) = \mathbb{T}(\mathcal{E}) \times_{\mathcal{C}} \mathbb{R}(\mathcal{E})_{\mathcal{C}}$$

Lie algebra

 $\mathfrak{D}(\mathcal{E}) = \mathfrak{T} \oplus \mathfrak{R}_{\mathcal{C}}$

- \times_C semi-direct product
- C center of mass depends on S_0
- $\mathbb{T}(\mathcal{E})$ translation group
- $\mathbb{R}(\mathcal{E})$ rotation group

•
$$\mathfrak{T} = \{X \in \mathfrak{D}(\mathcal{E}) | \omega_X = 0\}$$

•
$$\mathfrak{R}_{\mathcal{C}} = \{X \in \mathfrak{D}(\mathcal{E}) | X(\mathcal{C}) = 0\}$$

Displacement decomposition

$$\mathbb{D}(\mathcal{E}) = \mathbb{T}(\mathcal{E}) \times_{\mathcal{C}} \mathbb{R}(\mathcal{E})_{\mathcal{C}}$$

Lie algebra

 $\mathfrak{D}(\mathcal{E}) = \mathfrak{T} \oplus \mathfrak{R}_{\mathcal{C}}$

Strain

$$\mathbf{e}_{0}(S_{0},t) = \underbrace{\varepsilon_{0}(S_{0},t)}_{\in \mathfrak{T}} + \underbrace{\kappa_{0}(S_{0},t)}_{\in \mathfrak{R}_{C}}$$

- \times_C semi-direct product
- C center of mass depends on S_0
- $\mathbb{T}(\mathcal{E})$ translation group
- $\mathbb{R}(\mathcal{E})$ rotation group

•
$$\mathfrak{T} = \{X \in \mathfrak{D}(\mathcal{E}) | \omega_X = 0\}$$

•
$$\mathfrak{R}_{C} = \{X \in \mathfrak{D}(\mathcal{E}) | X(C) = 0\}$$

Preliminaries 00	Level one 00	Level two ○●	Constitutive laws O	Linear free vibrations	Conclusion and perspectives O
Statics	}				

Forces and moments $\Theta_0(S_0, t) = \underbrace{\mathsf{M}_0(S_0, t)}_{\in \mathfrak{T}} + \underbrace{\mathsf{F}_0(S_0, t)}_{\in \mathfrak{R}_C}$

Preliminaries 00	Level one 00	Level two ○●	Constitutive laws O	Linear free vibrations	Conclusion and perspectives O
Statics					

Forces and moments

$$\Theta_0(S_0,t) = \underbrace{\mathsf{M}_0(S_0,t)}_{\in\mathfrak{T}} + \underbrace{\mathsf{F}_0(S_0,t)}_{\in\mathfrak{R}_C}$$

Statics-level one

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = 0$$

$$\rho_0 \mathcal{T}_0 = \underbrace{\mathbf{m}}_{\in \mathfrak{T}} + \underbrace{\mathbf{q}}_{\in \mathfrak{R}_C}$$

Statics-level two $\begin{cases}
\frac{d_{C(S_0)}\mathbf{F}_0}{dS_0} + [\mathbf{\kappa}_0, \mathbf{F}_0] + \mathbf{q} = 0 \\
\frac{d_{C(S_0)}\mathbf{M}_0}{dS_0} + [\mathbf{\varepsilon}_0, \mathbf{F}_0] + [\mathbf{\kappa}_0, \mathbf{M}_0] + \mathbf{m} = 0
\end{cases}$

Preliminaries 00	Level one	Level two 00	Level three	Constitutive laws O	Linear free vibrations 00000	Conclusion and perspectives O
(e_1, e_2)	e, e 3) ba	isis in ${\mathfrak T}$		(ξ1,	$\xi_2,\xi_3)$ basis in	R _C

Statics	
$(\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3)$ basis in $\mathfrak T$	(ξ_1,ξ_2,ξ_3) basis in \mathfrak{R}_C
Deformation Force	Curvature Moment
$\varepsilon_0 = \sum_{i=1}^3 \varepsilon_i \mathbf{e}_i \mathbf{F}_0 = \sum_{i=1}^3 F_i \xi_i$	$\boldsymbol{\kappa}_0 = \sum_{i=1}^3 \kappa_i \xi_i \Big \mathbf{M}_0 = \sum_{i=1}^3 M_i \mathbf{e}_i \Big $

Statics	
$(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ basis in \mathfrak{T}	(ξ_1,ξ_2,ξ_3) basis in $\mathfrak{R}_{\mathcal{C}}$
Deformation Force	Curvature Moment
$\boldsymbol{\varepsilon}_0 = \sum_{i=1}^3 \varepsilon_i \mathbf{e}_i \Big \mathbf{F}_0 = \sum_{i=1}^3 F_i \xi_i \Big $	$\boldsymbol{\kappa}_0 = \sum_{i=1}^3 \kappa_i \xi_i \Big \mathbf{M}_0 = \sum_{i=1}^3 M_i \mathbf{e}_i \Big $
$\frac{d_{C(S_0)}\mathbf{F}_0}{dS_0} + [\kappa_0, \mathbf{F}_0] + \mathbf{q} = 0 \qquad \frac{d_{C(S_0)}\mathbf{F}_0}{dS_0} = 0$	$\mathbf{S}_{0}\mathbf{M}_{0}$ + $[\mathbf{\varepsilon}_{0}, \mathbf{F}_{0}] + [\mathbf{\kappa}_{0}, \mathbf{M}_{0}] + \mathbf{m} = 0$
Straight beam	Straight beam
$ \begin{array}{c c} F_1' - F_2 \kappa_3 + F_3 \kappa_2 + q_1 = 0 \\ F_2' + F_1 \kappa_3 - F_3 \kappa_1 + q_2 = 0 \\ F_3' - F_1 \kappa_2 + F_2 \kappa_1 + q_3 = 0 \end{array} \begin{array}{c} M_1' - M_2 \kappa_1 \\ M_2' - M_3 \kappa_2 \\ M_3' \end{array} $	$\kappa_{3} + M_{3}\kappa_{2} - F_{2}(\varepsilon_{3} + 1) + F_{3}\varepsilon_{2} + m_{1} = 0$ $\kappa_{1} + M_{1}\kappa_{3} - F_{3}\varepsilon_{1} + F_{1}(\varepsilon_{3} + 1) + m_{2} = 0$ $- M_{1}\kappa_{2} + M_{2}\kappa_{1} - F_{1}\varepsilon_{2} + F_{2}\varepsilon_{1} + m_{3} = 0$

Preliminaries 00	Level one 00	Level two 00		Constitutiv •	ve laws	Linear 00000		
Consti	tutive	laws						
Linear c	onstitu	tive lav	v Level c	one			Elastic e	energy Level one
$\Theta_0 = 0$	$\mathfrak{E}(\mathbf{e}_0),$	E : I	$\mathbb{D}(\mathcal{E}) ightarrow \mathbb{C}$	$\mathfrak{D}(\mathcal{E}),$	linea	ar	$E_{el} = \frac{1}{2}$	$[[\mathfrak{E}(\mathbf{e}_0) \mathbf{e}_0]]$

Preliminaries 00	Level one 00	Level two 00		Constitutive laws ●	Linear 00000		
Consti	tutive	laws					
Linear c	onstitu	tive law	v Level c	one		Elastic energy Level on	е

$$\Theta_0 = \mathfrak{E}(\mathbf{e}_0), \qquad \mathfrak{E}: \mathfrak{D}(\mathcal{E}) \to \mathfrak{D}(\mathcal{E}), \quad \text{linear} \quad \left[\mathsf{E}_{el} = \frac{1}{2} [[\mathfrak{E}(\mathbf{e}_0)|\mathbf{e}_0]] \right]$$

Assume that \mathfrak{E} is symmetric with respect to the Klein form:

 $[[\mathfrak{E}(u)|v]] = [[u|\mathfrak{E}(v)]], \quad \forall u, v \in \mathfrak{D}.$

Elastic energy|Level two

1

$$\mathsf{E}_{el} = \frac{1}{2} \Big([[\mathfrak{E}(\varepsilon_0) | \varepsilon_0]] + 2[[\mathfrak{E}(\varepsilon_0) | \kappa_0]] + [[\mathfrak{E}(\kappa_0) | \kappa_0]] \Big)$$

Preliminaries 00	Level one 00	Level two 00		Constitutive laws	Linear 00000		
Consti	tutive	laws					
Linear c	onstitu	tive lav	v Level c	one		Elastic	energy Level one
						_ 1	

$$\Theta_0 = \mathfrak{E}(\mathbf{e}_0), \qquad \mathfrak{E}: \mathfrak{D}(\mathcal{E}) \to \mathfrak{D}(\mathcal{E}), \quad \text{linear} \qquad \mathsf{E}_{el} = \frac{1}{2} [[\mathfrak{E}(\mathbf{e}_0)|\mathbf{e}_0]]$$

Assume that \mathfrak{E} is symmetric with respect to the Klein form:

 $[[\mathfrak{E}(u)|v]] = [[u|\mathfrak{E}(v)]], \quad \forall u, v \in \mathfrak{D}.$

Elastic energy Level two

1

$$\mathsf{E}_{el} = \frac{1}{2} \Big([[\mathfrak{E}(\varepsilon_0) | \varepsilon_0]] + 2[[\mathfrak{E}(\varepsilon_0) | \kappa_0]] + [[\mathfrak{E}(\kappa_0) | \kappa_0]] \Big)$$

Using a normalized basis $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \xi_1, \xi_2, \xi_3)$ that diagonalizes the symmetrical operator

Elastic energy|Level three

$$\mathsf{E}_{el} = \frac{1}{2} \Big(\mathsf{E} I_1 \varepsilon_1^2 + \mathsf{E} I_2 \varepsilon_2^2 + \mathsf{G} I_3 \varepsilon_3^3 + \mathsf{E} I_1 \kappa_1^2 + \mathsf{E} I_2 \kappa_2^2 + \mathsf{G} I_3 \kappa_3^2 \Big)$$

- Beam at an equilibrium and subjected to linear perturbation.
- Level one equation.
- $D(S_0, t) = \exp X(S_0, t) \circ D_0(S_0)$ where
 - $D_0(S_0)$ solution of the equilibrium equation
 - $X(S_0, t) \in \mathfrak{D}(\mathcal{E})$ the unknown kinematic of the vibration problem.

Preliminaries Level one Level two Level three Constitutive laws Linear free vibrations Conclusion and perspectives •oooo Problem statement

- Beam at an equilibrium and subjected to linear perturbation.
- Level one equation.
- $D(S_0, t) = \exp X(S_0, t) \circ D_0(S_0)$ where
 - $D_0(S_0)$ solution of the equilibrium equation
 - $X(S_0,t) \in \mathfrak{D}(\mathcal{E})$ the unknown kinematic of the vibration problem.

equilibrium

$$\rho_0 \mathcal{T}_0(S_0) + \frac{\partial \Theta_{e,0}}{\partial S_0}(S_0) + [\mathbf{e}_{e,0}(S_0), \Theta_{e,0}(S_0)] = 0$$

- $\mathbf{e}_{e,0}(S_0)$ Lagrangian deformation at equilibrium.
- $\Theta_{e,0}(S_0)$ Lagrangian internal actions at equilibrium
- $\mathcal{T}_0(S_0)$ Lagrangian external actions at the equilibrium

Preliminaries Level one Level two Level three Constitutive laws Linear free vibrations Conclusion and perspectives •ooooo Problem statement

- Beam at an equilibrium and subjected to linear perturbation.
- Level one equation.
- $D(S_0, t) = \exp X(S_0, t) \circ D_0(S_0)$ where
 - $D_0(S_0)$ solution of the equilibrium equation
 - $X(S_0,t) \in \mathfrak{D}(\mathcal{E})$ the unknown kinematic of the vibration problem.

equilibrium

$$\rho_0 \mathcal{T}_0(S_0) + \frac{\partial \Theta_{e,0}}{\partial S_0}(S_0) + [\mathbf{e}_{e,0}(S_0), \Theta_{e,0}(S_0)] = 0$$

- $\mathbf{e}_{e,0}(S_0)$ Lagrangian deformation at equilibrium.
- $\Theta_{e,0}(S_0)$ Lagrangian internal actions at equilibrium
- $\mathcal{T}_0(S_0)$ Lagrangian external actions at the equilibrium

Note that

No additional perturbation is added to $\mathcal{T}_0(S_0)$.

Preliminaries

ne Level two 00

wo Level

Constitut

Linear free vibrations

Conclusion and perspectives

Linear approximation calculation

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = \rho_0 \Big(H_0(\frac{\partial V_0}{\partial t}) + [V_0, H_0(V_0)] \Big)$$

Linear free vibrations

Linear approximation calculation

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = \rho_0 \Big(H_0(\frac{\partial V_0}{\partial t}) + [V_0, H_0(V_0)] \Big)$$

$$\begin{array}{lll} \mathbf{e}_{0}(S_{0},t) &\approx & \operatorname{Ad} D_{0}^{-1}(S_{0}) \frac{\partial X(S_{0},t)}{\partial S_{0}} + \mathbf{e}_{e,0}(S_{0}) \\ \Theta_{0}(S_{0},t) &= & \Theta_{e,0}(S_{0}) + \chi_{0}(S_{0},t) \end{array}$$

Linear free vibrations

Linear approximation calculation

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = \rho_0 \Big(H_0(\frac{\partial V_0}{\partial t}) + [V_0, H_0(V_0)] \Big)$$

$$\begin{array}{rcl} V_0(S_0,t) &\approx & \operatorname{Ad} D_0^{-1}(S_0) \frac{\partial X(S_0,t)}{\partial t} \\ \frac{\partial V_0(S_0,t)}{\partial t} &\approx & \operatorname{Ad} D_0^{-1}(S_0) \frac{\partial^2 X(S_0,t)}{\partial t^2} \end{array}$$

liminaries Level one L 00 C

E Level two

Level three

itive laws Linear 1

Linear free vibrations

Conclusion and perspectives

- **^ .** .

Linear approximation calculation

$$\rho_0 \mathcal{T}_0 + \frac{\partial \Theta_0}{\partial S_0} + [\mathbf{e}_0, \Theta_0] = \rho_0 \Big(\mathcal{H}_0(\frac{\partial V_0}{\partial t}) + [V_0, \mathcal{H}_0(V_0)] \Big)$$

$$\begin{array}{rcl} V_0(S_0,t) &\approx & \operatorname{Ad} D_0^{-1}(S_0) \frac{\partial X(S_0,t)}{\partial t} \\ \frac{\partial V_0(S_0,t)}{\partial t} &\approx & \operatorname{Ad} D_0^{-1}(S_0) \frac{\partial^2 X(S_0,t)}{\partial t^2} \end{array}$$

Perturbated equation

$$\frac{\partial \chi_0}{\partial S_0} + [\operatorname{Ad} D_0^{-1}(S_0)(\frac{\partial X}{\partial S_0}), \Theta_{e,0}(S_0)] + [\mathbf{e}_{e,0}(S_0), \chi_0] = \rho_0 \Big(H_0(\operatorname{Ad} D_0^{-1}(S_0)\frac{\partial^2 X}{\partial t^2}) \Big)$$

Preliminaries 00	Level one 00	Level two 00			Linear free vibrations 00●00				
Dynam	Dynamic equation								
Linear e	elastic d	contitut	ive law						

$$\chi_0(S_0,t) = \mathfrak{E}_0\left(\operatorname{Ad} D_0^{-1}(S_0)\frac{\partial X(S_0,t)}{\partial S_0}\right)$$

Preliminaries 00	Level one 00	Level two 00		Constitutive laws O	Linear free vibrations 00●00					
Dynamic equation										

Linear elastic contitutive law

$$\chi_0(S_0,t) = \mathfrak{E}_0\left(\operatorname{Ad} D_0^{-1}(S_0)\frac{\partial X(S_0,t)}{\partial S_0}\right)$$

- Applying the left action of Ad $D_0(S_0)$ on perturbated equation.
- For all $Y \in \mathfrak{D}(\mathcal{E})$, we let

$$\widetilde{\mathbf{e}}_{e,0}(S_0) = \operatorname{Ad} D_0(S_0)(\mathbf{e}_{e,0}(S_0)) \ | \ \widetilde{H}_0(Y) = \operatorname{Ad} D_0(S_0) \circ H_0 \circ \operatorname{Ad} D_0^{-1}(S_0)(Y)$$

 $\widetilde{\Theta}_{e,0}(S_0) = \operatorname{Ad} D_0(S_0)(\Theta_{e,0}(S_0)) \ \big| \ \widetilde{\mathfrak{E}}_0(Y) = \operatorname{Ad} D_0(S_0) \circ \mathfrak{E}_0 \circ \operatorname{Ad} D_0^{-1}(S_0)(Y) \big|$

 $\widetilde{R}_0(Y) = [Y, \widetilde{\Theta}_{e,0}(S_0)] + [\widetilde{\mathbf{e}}_{e,0}(S_0), \widetilde{\mathfrak{E}}_0(Y)] + \widetilde{\mathfrak{E}}_0([Y, \widetilde{\mathbf{e}}_{e,0}(S_0)])$

Preliminaries	Level one	Level two		Constitutive laws	Linear free vibrations	Conclusion and perspectives				
00	00	00		O	00●00	O				
Dynamic equation										

Linear elastic contitutive law

$$\chi_0(S_0,t) = \mathfrak{E}_0\left(\operatorname{Ad} D_0^{-1}(S_0)\frac{\partial X(S_0,t)}{\partial S_0}\right)$$

- Applying the left action of Ad $D_0(S_0)$ on perturbated equation.
- For all $Y \in \mathfrak{D}(\mathcal{E})$, we let

$$\widetilde{\mathbf{e}}_{e,0}(S_0) = \operatorname{Ad} D_0(S_0)(\mathbf{e}_{e,0}(S_0)) \quad \widetilde{H}_0(Y) = \operatorname{Ad} D_0(S_0) \circ H_0 \circ \operatorname{Ad} D_0^{-1}(S_0)(Y)$$

 $\widetilde{\Theta}_{e,0}(S_0) = \operatorname{Ad} D_0(S_0)(\Theta_{e,0}(S_0)) \quad \exists \widetilde{\mathfrak{E}}_0(Y) = \operatorname{Ad} D_0(S_0) \circ \mathfrak{E}_0 \circ \operatorname{Ad} D_0^{-1}(S_0)(Y)$

$$\widetilde{R}_0(Y) = [Y, \widetilde{\Theta}_{e,0}(S_0)] + [\widetilde{\mathbf{e}}_{e,0}(S_0), \widetilde{\mathfrak{E}}_0(Y)] + \widetilde{\mathfrak{E}}_0([Y, \widetilde{\mathbf{e}}_{e,0}(S_0)])$$

Perturbated equation

$$\widetilde{\mathfrak{E}}_{0}(\frac{\partial^{2}X(S_{0},t)}{\partial S_{0}^{2}}) + \widetilde{R}_{0}(\frac{\partial X(S_{0},t)}{\partial S_{0}}) = \rho_{0}\widetilde{H}_{0}(\frac{\partial^{2}X(S_{0},t)}{\partial t^{2}})$$

Preliminaries Level one Level two Level three Constitutive laws Linear free vibrations Conclusion and perspectives

- Boundary conditions should be given to define a well-posed problem.
- Symmetry is essential in mechanical problems and could be guaranteed by imposing a convenient boundary condition.

• Boundary conditions should be given to define a well-posed problem.

Linear free vibrations

- Symmetry is essential in mechanical problems and could be guaranteed by imposing a convenient boundary condition.
- Suppose that $\widetilde{\mathfrak{E}}_0$ is a symmetric operator w.r.t to the Klein form $[[\cdot|\cdot]]$.
- Dynamic properties imply that \widetilde{H}_0 is a symmetric operator with respect to the Klein form.

• Boundary conditions should be given to define a well-posed problem.

Linear free vibrations

- Symmetry is essential in mechanical problems and could be guaranteed by imposing a convenient boundary condition.
- Suppose that $\widetilde{\mathfrak{E}}_0$ is a symmetric operator w.r.t to the Klein form $[[\cdot|\cdot]]$.
- Dynamic properties imply that \widetilde{H}_0 is a symmetric operator with respect to the Klein form.

$$\widetilde{\mathfrak{E}}_{0}(\frac{\partial^{2}X(S_{0},t)}{\partial S_{0}^{2}})+\widetilde{R}_{0}(\frac{\partial X(S_{0},t)}{\partial S_{0}})$$

Replace $X(S_0, t)$ by $U(S_0)$ $\widetilde{\mathfrak{E}}_0(U''(S_0)) + \widetilde{R}_0(U'(S_0))$

• Boundary conditions should be given to define a well-posed problem.

Linear free vibrations

- Symmetry is essential in mechanical problems and could be guaranteed by imposing a convenient boundary condition.
- Suppose that $\widetilde{\mathfrak{E}}_0$ is a symmetric operator w.r.t to the Klein form $[[\cdot|\cdot]]$.
- Dynamic properties imply that \widetilde{H}_0 is a symmetric operator with respect to the Klein form.

Integrate along the beam

$$\Psi_0(U,V) = \int_0^{L_0} [[\widetilde{\mathfrak{E}}_0(U''(S_0)) + \widetilde{R}_0(U'(S_0)) \mid V(S_0)]] dS_0$$

Integration by parts

$$\Psi_{0}(U, V) = -\underbrace{\int_{0}^{L_{0}} [[(\tilde{\mathfrak{E}}_{0}(U')) \mid V']] dS_{0}}_{\text{Symmetrical operator}} + \underbrace{\int_{0}^{L_{0}} [[[U', \tilde{\mathfrak{E}}_{0}(\tilde{\mathbf{e}}_{e,0}))] \mid V]] dS_{0}}_{\mathfrak{B}(U, V)} + \underbrace{\left[[[(\tilde{\mathfrak{E}}_{0}(U')) \mid V]]\right]_{0}^{L_{0}}}_{\text{Boundary condition}}$$

Linear free vibrations

• Symmetry of $\mathfrak{B}(U, V) \Longrightarrow$ symmetry of $\Psi_0(U, V)$.

Integration by parts

$$\Psi_{0}(U, V) = -\underbrace{\int_{0}^{L_{0}} [[(\tilde{\mathfrak{E}}_{0}(U')) \mid V']] dS_{0}}_{\text{Symmetrical operator}} + \underbrace{\int_{0}^{L_{0}} [[[U', \tilde{\mathfrak{E}}_{0}(\tilde{\mathbf{e}}_{e,0}))] \mid V]] dS_{0}}_{\mathfrak{B}(U,V)} + \underbrace{\left[[[(\tilde{\mathfrak{E}}_{0}(U')) \mid V]]\right]_{0}^{L_{0}}}_{\text{Boundary condition}}$$

Linear free vibrations

• Symmetry of $\mathfrak{B}(U, V) \Longrightarrow$ symmetry of $\Psi_0(U, V)$.

$$\mathfrak{B}(U,V) - \mathfrak{B}(V,U) = -\int_0^{L_0} \left[\left[[U,V] \mid \widetilde{\mathfrak{E}}_0(\widetilde{\mathbf{e}}_{e,0})' \right] \right] dS_0 + \left[\left[\left[[U,V] \mid \widetilde{\mathfrak{E}}_0(\widetilde{\mathbf{e}}_{e,0})) \right] \right]_0^{L_0} \right]$$

Integration by parts

$$\Psi_{0}(U, V) = -\underbrace{\int_{0}^{L_{0}} [[(\tilde{\mathfrak{E}}_{0}(U')) \mid V']] dS_{0}}_{\text{Symmetrical operator}} + \underbrace{\int_{0}^{L_{0}} [[[U', \tilde{\mathfrak{E}}_{0}(\tilde{\mathbf{e}}_{e,0}))] \mid V]] dS_{0}}_{\mathfrak{B}(U,V)} + \underbrace{\left[[[(\tilde{\mathfrak{E}}_{0}(U')) \mid V]]\right]_{0}^{L_{0}}}_{\text{Boundary condition}}$$

Linear free vibrations

• Symmetry of $\mathfrak{B}(U, V) \Longrightarrow$ symmetry of $\Psi_0(U, V)$.

$$\mathfrak{B}(U,V) - \mathfrak{B}(V,U) = -\int_0^{L_0} \left[\left[[U,V] \mid \widetilde{\mathfrak{E}}_0(\widetilde{\mathbf{e}}_{e,0})' \right] \right] dS_0 + \left[\left[\left[[U,V] \mid \widetilde{\mathfrak{E}}_0(\widetilde{\mathbf{e}}_{e,0})) \right] \right]_0^{L_0} \right]$$

Examples : $\mathfrak{B}(U, V)$ is symmetric if

 $\widetilde{\mathfrak{E}}_0(\widetilde{e}_{e,0})=0$ | Clamped-Clamped beam and a uniform $\widetilde{\mathfrak{E}}_0(\widetilde{e}_{e,0})$

Preliminaries Level one Level two Level three Constitutive laws Linear free vibrations Conclusion and perspectives

- Exploration of one-dimensional structures through the application of Lie group structures.
- Three levels of equation setting
 - First level \implies a single equation within the Lie algebra of the displacement group $\mathbb{D}(\mathcal{E})$.
 - Second level \Longrightarrow semi-direct product $\mathbb{D}(\mathcal{E}) = \mathbb{T}(\mathcal{E}) \times_{\mathcal{C}} \mathbb{R}(\mathcal{E})_{\mathcal{C}}$.
 - The third level \implies introduction of an appropriate basis.
- Perturbation of linear dynamics around an arbitrary equilibrium position :strong and week formulations.
- Perspectives :
 - Boundary conditions investigations.
 - Deformed cross sections.