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Mathematical tools

• E three dimensional affine space.

• E associated vector space.
• To each affine map A : E −→ E , a linear part A : E −→ E is usually

associated, such that:

∀ a, b ∈ E A(b) = A(a) + A(
−→
ab)

• D(E) group of Euclidean displacements and D(E) the associated Lie
algebra.

• D(E) = {X : E −→ E , ∃ ωX ∈ E/X (b) = X (a)+ωX ×
−→
ab ∀ a, b ∈ E}

where × is the standard cross product in E .
• The Lie bracket is defined in D(E) by

∀ a ∈ E [X , Y ](a) = ωX × Y (a) − ωY × X (a)
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Klein form

The Klein form [[·|·]] on D(E) is the map defined by:

[[·|·]] : D(E) × D(E) −→ R
(X , Y ) −→ [[X |Y ]] = ωX · Y + ωY · X

where · scalar product in E .

• [[·|·]] is a bilinear, symmetric and nondegenerate form on D(E). Its
signature is (3, 3).

• [[·|·]] is invariant by applying the adjoint map.

• [[·|·]] plays a crucial role in energy-related aspects.
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Kinematics
Internal motion

g : [0, L0] × R+ −→ R × R+

(S0, t) −→ (S(t), t)

S0 ∈ [0, L0] initial configuration and S ∈ [0, L(t)] deformed configuration.

Configuration

p(S, t) = D(S0, t) • p0(S0),

D(S0, t) displacement.
p0(S0) reference configuration.
• free and transitive left-action of D on the configuration space.

Strain
e0 : [0, L0] × R+ −→ D(E)

(S0, t) −→ e0(S0, t) = ϑ(∂D(S0,t)
∂S0

) = D−1(S0, t) ◦ ∂D(S0,t)
∂S0

Where D linear part of D.
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Dynamics

Deformed configuration (S, t)

ρ T + ∂Θ
∂S = ∂

∂t (ρ H(V ))

• ρT force distribution.
• V velocity
• Θ Internal actions
• ρH inertia

• ρ(S, t)dS = ρ(S0)dS0
• U(S, t) = Ad(D(S0, t))U(S0, t) ∀ U ∈ D(E)
• [AdDX , AdDY ] = AdD[X , Y ]

Initial configuration (S0, t)

ρ0T0 + ∂Θ0
∂S0

+ [e0, Θ0] = ρ0
(
H0(∂V0

∂t ) + [V0, H0(V0)]
)
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Kinematics

Displacement decomposition
D(E) = T(E) ×C R(E)C

• ×C semi-direct product
• C center of mass depends on S0
• T(E) translation group
• R(E) rotation group

Lie algebra
D(E) = T ⊕ RC

• T = {X ∈ D(E)|ωX = 0}
• RC = {X ∈ D(E)|X (C) = 0}

Strain
e0(S0, t) = ε0(S0, t)︸ ︷︷ ︸

∈T

+ κ0(S0, t)︸ ︷︷ ︸
∈RC
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Statics

Forces and moments
Θ0(S0, t) = M0(S0, t)︸ ︷︷ ︸

∈T

+ F0(S0, t)︸ ︷︷ ︸
∈RC

Statics-level one

ρ0T0 + ∂Θ0
∂S0

+ [e0, Θ0] = 0

ρ0T0 = m︸︷︷︸
∈T

+ q︸︷︷︸
∈RC

Statics-level two
dC(S0)F0

dS0
+ [κ0, F0] + q = 0

dC(S0)M0

dS0
+ [ε0, F0] + [κ0, M0] + m = 0
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Statics
(e1, e2, e3) basis in T (ξ1, ξ2, ξ3) basis in RC

Deformation|Force

ε0 =
3∑

i=1
εiei

∣∣∣ F0 =
3∑

i=1
Fiξi

Curvature | Moment

κ0 =
3∑

i=1
κiξi

∣∣∣ M0 =
3∑

i=1
Miei

dC(S0)F0

dS0
+ [κ0, F0] + q = 0

dC(S0)M0

dS0
+ [ε0, F0] + [κ0, M0] + m = 0

Straight beam Straight beam

F ′
1 − F2κ3 + F3κ2 + q1 = 0

F ′
2 + F1κ3 − F3κ1 + q2 = 0

F ′
3 − F1κ2 + F2κ1 + q3 = 0

M ′
1 − M2κ3 + M3κ2 − F2(ε3 + 1) + F3ε2 + m1 = 0

M ′
2 − M3κ1 + M1κ3 − F3ε1 + F1(ε3 + 1) + m2 = 0

M ′
3 − M1κ2 + M2κ1 − F1ε2 + F2ε1 + m3 = 0
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Constitutive laws
Linear constitutive law|Level one

Θ0 = E(e0), E : D(E) → D(E), linear

Elastic energy|Level one

Eel = 1
2[[E(e0)|e0]]

Assume that E is symmetric with respect to the Klein form:

[[E(u)|v ]] = [[u|E(v)]], ∀u, v ∈ D.

Elastic energy|Level two

Eel = 1
2

(
[[E(ε0)|ε0]] + 2[[E(ε0)|κ0]] + [[E(κ0)|κ0]]

)
Using a normalized basis B = (e1, e2, e3, ξ1, ξ2, ξ3) that diagonalizes the
symmetrical operator

Elastic energy|Level three

Eel = 1
2

(
EI1ε2

1 + EI2ε2
2 + GI3ε3

3 + EI1κ2
1 + EI2κ2

2 + GI3κ2
3

)
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Problem statement
• Beam at an equilibrium and subjected to linear perturbation.
• Level one equation.
• D(S0, t) = exp X (S0, t) ◦ D0(S0) where

• D0(S0) solution of the equilibrium equation
• X (S0, t) ∈ D(E) the unknown kinematic of the vibration problem.

equilibrium

ρ0T0(S0) + ∂Θe,0
∂S0

(S0) + [ee,0(S0), Θe,0(S0)] = 0

• ee,0(S0) Lagrangian deformation at equilibrium.
• Θe,0(S0) Lagrangian internal actions at equilibrium
• T0(S0) Lagrangian external actions at the equilibrium

Note that
No additional perturbation is added to T0(S0).
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Linear approximation calculation

ρ0T0 + ∂Θ0
∂S0

+ [e0, Θ0] = ρ0
(
H0(∂V0

∂t ) + [V0, H0(V0)]
)

e0(S0, t) ≈ Ad D−1
0 (S0)∂X (S0, t)

∂S0
+ ee,0(S0)

Θ0(S0, t) = Θe,0(S0) + χ0(S0, t)

V0(S0, t) ≈ Ad D−1
0 (S0)∂X (S0, t)

∂t
∂V0(S0, t)

∂t ≈ Ad D−1
0 (S0)∂2X (S0, t)

∂t2

Perturbated equation
∂χ0
∂S0

+ [Ad D−1
0 (S0)( ∂X

∂S0
), Θe,0(S0)] + [ee,0(S0), χ0] = ρ0

(
H0(Ad D−1

0 (S0)∂2X
∂t2 )

)
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∂V0(S0, t)

∂t ≈ Ad D−1
0 (S0)∂2X (S0, t)

∂t2

Perturbated equation
∂χ0
∂S0

+ [Ad D−1
0 (S0)( ∂X

∂S0
), Θe,0(S0)] + [ee,0(S0), χ0] = ρ0

(
H0(Ad D−1

0 (S0)∂2X
∂t2 )

)
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Dynamic equation
Linear elastic contitutive law

χ0(S0, t) = E0

(
Ad D−1

0 (S0)∂X (S0, t)
∂S0

)

• Applying the left action of Ad D0(S0) on perturbated equation.
• For all Y ∈ D(E), we let

ẽe,0(S0) = Ad D0(S0)(ee,0(S0)) H̃0(Y ) = Ad D0(S0)◦H0◦Ad D−1
0 (S0)(Y )

Θ̃e,0(S0) = Ad D0(S0)(Θe,0(S0)) Ẽ0(Y ) = Ad D0(S0)◦E0◦Ad D−1
0 (S0)(Y )

R̃0(Y ) = [Y , Θ̃e,0(S0)] + [ẽe,0(S0), Ẽ0(Y )] + Ẽ0([Y , ẽe,0(S0)])

Perturbated equation

Ẽ0(∂2X (S0, t)
∂S2

0
) + R̃0(∂X (S0, t)

∂S0
) = ρ0H̃0(∂2X (S0, t)

∂t2 )
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Ẽ0(∂2X (S0, t)
∂S2

0
) + R̃0(∂X (S0, t)

∂S0
) = ρ0H̃0(∂2X (S0, t)

∂t2 )



12

Preliminaries Level one Level two Level three Constitutive laws Linear free vibrations Conclusion and perspectives

Dynamic equation
Linear elastic contitutive law

χ0(S0, t) = E0

(
Ad D−1

0 (S0)∂X (S0, t)
∂S0

)
• Applying the left action of Ad D0(S0) on perturbated equation.
• For all Y ∈ D(E), we let
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Variational formulation
• Boundary conditions should be given to define a well-posed problem.

• Symmetry is essential in mechanical problems and could be
guaranteed by imposing a convenient boundary condition.

• Suppose that Ẽ0 is a symmetric operator w.r.t to the Klein form [[·|·]].

• Dynamic properties imply that H̃0 is a symmetric operator with
respect to the Klein form.

Ẽ0(∂2X (S0, t)
∂S2

0
) + R̃0(∂X (S0, t)

∂S0
)

Replace X (S0, t) by U(S0)
Ẽ0(U ′′(S0)) + R̃0(U ′(S0))

Integrate along the beam

Ψ0(U, V ) =
∫ L0

0
[[Ẽ0(U ′′(S0)) + R̃0(U ′(S0)) | V (S0)]]dS0
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Ẽ0(U ′′(S0)) + R̃0(U ′(S0))

Integrate along the beam

Ψ0(U, V ) =
∫ L0

0
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Variational formulation
Integration by parts

Ψ0(U, V ) = −
∫ L0

0
[[

(
Ẽ0(U ′)

)
| V ′]]dS0︸ ︷︷ ︸

Symmetrical operator

+

∫ L0

0

[[
[U ′, Ẽ0(ẽe,0))] | V

]]
dS0︸ ︷︷ ︸

B(U,V )

+
[
[[

(
Ẽ0(U ′)

)
| V ]]

]L0

0︸ ︷︷ ︸
Boundary condition

• Symmetry of B(U, V ) =⇒ symmetry of Ψ0(U, V ).

B(U, V )−B(V , U) = −
∫ L0

0

[[
[U, V ] | Ẽ0(ẽe,0)′]]dS0+

[[[
[U, V ] | Ẽ0(ẽe,0))

]]]L0

0

Examples : B(U, V ) is symmetric if

Ẽ0(ẽe,0) = 0 Clamped-Clamped beam and a uniform Ẽ0(ẽe,0)
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Conclusion and perspectives

• Exploration of one-dimensional structures through the application of
Lie group structures.

• Three levels of equation setting
• First level =⇒ a single equation within the Lie algebra of the

displacement group D(E).
• Second level =⇒ semi-direct product D(E) = T(E) ×C R(E)C .
• The third level =⇒ introduction of an appropriate basis.

• Perturbation of linear dynamics around an arbitrary equilibrium
position :strong and week formulations.

• Perspectives :
• Boundary conditions investigations.
• Deformed cross sections.
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