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Mathematical tools

® £ three dimensional affine space.
® [ associated vector space.

® To each affine map A: £ — &, a linear part A: E — E is usually
associated, such that:

Vabe& A(b) = A(a)+ A(ab)

® (&) group of Euclidean displacements and D(&) the associated Lie
algebra.

e D(E) = {X:E& — E,3wx € E/X(b) = X(a)+wx xab Vabeé&)
where X is the standard cross product in E.
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Mathematical tools

& three dimensional affine space.
E associated vector space.

To each affine map A: & — &, a linear part A: E — E is usually
associated, such that:

Vabe& A(b) = A(a)+ A(ab)

D(E) group of Euclidean displacements and ©(E) the associated Lie
algebra.

D(E) = (X : € — E,Bwx € E/X(b) = X(a)+wx xab Va,be &)
where X is the standard cross product in E.
The Lie bracket is defined in ©(&) by

Vae& [X,Y](a) =wx x Y(a) —wy x X(a)
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[L]: D) xD(€) — R
(X,Y) — [X[Y]l=wx- Y +wy X

where - scalar product in E.
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Klein form

The Klein form [[-]-]] on ©(&) is the map defined by:

[L]: D) xD(€) — R
(X,Y) — [X[Y]l=wx- Y +wy X

where - scalar product in E.

e [[-|]] is a bilinear, symmetric and nondegenerate form on D(&). Its
signature is (3,3).

® [[-|]] is invariant by applying the adjoint map.

® [[-]]] plays a crucial role in energy-related aspects.
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Kinematics

Internal motion

g:[0,Lg] xR — RxRT
(S0, ) —> (5(2), 1)

So € [0, Lo] initial configuration and S € [0, L(t)] deformed configuration.
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Kinematics

Internal motion

g:[0,Lg] xR — RxRT
(S0, ) —> (5(2), 1)

So € [0, Lo] initial configuration and S € [0, L(t)] deformed configuration.

Configuration

|

p(S,t) = D(So, t) ® po(So),

D(So, t) displacement.
po(So) reference configuration.
e free and transitive left-action of ID on the configuration space.
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Kinematics

Internal motion

g:[0,Lg] xR — RxRT
(S0, ) —> (5(2), 1)

So € [0, Lo] initial configuration and S € [0, L(t)] deformed configuration.

|

Configuration
p(s, t) = D(507 t) O Po(So),

D(So, t) displacement.
po(So) reference configuration.
e free and transitive left-action of ID on the configuration space.

|

€ : [0, Lo] xRt — @(5)
(So0.t) — eo(So,t) = D(22E:) = D(Sp, £) 0 2421

Where D linear part of D.
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Dynamics

pT force distribution.

Deformed configuration (S, t)

V velocity

pT + % = % (pH(V)) © Internal actions

pH inertia

® p(S,t)dS = p(So)dSo
o U(S, t) = Ad(D(So, £))U(So, t) ¥ U € D(E)
® [AdDX,AdDY| = AdD[X, Y]
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Dynamics

. - e T force distribution.
Deformed configuration (S, t) _
® V velocity
pT + % = % (pH(V)) ® O Internal actions
[ ]

pH inertia

® p(S,t)dS = p(So)dSo
o U(S,t) = Ad(D(So, £))U(So, t) ¥ U € D(E)
e [AdDX,AdDY] = AdD[X, Y]

Initial configuration (So, t)

poTo+ 522 + [e0, O] = Po(Ho(%l) +[Vo, Ho(Vo)])




Preliminaries Level one Level two Level three Constitutive laws a ons Conclusion and perspectives

e0

Kinematics

® X ¢ semi-direct product
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Kinematics

® X ¢ semi-direct product
Displacement decomposition e C center of mass depends on Sy
D(E) =T(E) xc R(E)c e T(&) translation group

® R(&) rotation group
Lie algebra e T={XeD()|lwx =0}
D(E)=FTDRc * Re={X €D(&)|X(C) =0}
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e0

Kinematics

® X ¢ semi-direct product
Displacement decomposition e C center of mass depends on Sy
D(E) =T(E) xc R(E)c e T(&) translation group

® R(&) rotation group
Lie algebra e T={XeD()|lwx =0}
D(E)=FTDRc * Re={X €D(&)|X(C) =0}

30(50, t) = 60(50, t) I K,0(50, t)

EY ENRc
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Statics

Forces and moments
@0(50, t) = Mo(SQ, t) + Fo(So, t)
—_——— ——
(S% ERc
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Statics

(S% ERc

—<c— t[ko,Fol+q = 0

dc(s,)Mo

5 +[€0,F0]+[R0,M0]+m = 0
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(e1,e,e3) basis in T J (&1,&2,&3) basis in Re J
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Statics

(e1,e,e3) basis in T ) (&1,&2,&3) basis in Re )

Deformation|Force Curvature | Moment
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Statics

(e1,e,e3) basis in T J (&1,&2,&3) basis in Re J
Deformation|Force
3 3 3 3
g0 =) eie ) Fo=)_ Fi& Ko = Y Ki&i ) Mo = > Mie;
i=1 i=1 i=1 i=1
dc(sy)Fo dc(s)Mo
2 Fol+q=0 | )72 F M =
T [0, Fo] +q =10 J a5, + [€0, Fo] + [Ko, Mo] + m OJ
JlStraight beam JlStraight beam

F{—F2K3+F3K,2—|—q1:0 M{—M2I€3+M3/€2—F2(83+1)+F362—|—m1:0
F2/—|-F1l€3—F3I£1+Q2:0 Mé—M3I£1+M11£3—F3€1+F1(E3+1)+m2:0
Fé—F1I€2+F2I€1+Q3:0 M:/,,—M1H2+M21€1—F1€2+F251+m3:0
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Constitutive laws

Linear constitutive law|Level one Elastic energy|Level one

1
O = E(eg),  €:D(E) = D(E), linear | Eer = 5[€(e0)leo]]
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Constitutive laws

Linear constitutive law|Level one Elastic energy|Level one

1
©0 = &(eo), €:9(€) = D(E), linear Ee = 5[[€(eo)|90]]
Assume that & is symmetric with respect to the Klein form:

[[E(u)[v]] = [[ul&(v)]], Vu,veD.

Elastic energy|Level two

o = 5 ([1€(=o)leall + 2[[e(eo) mol] + [[E(o)loll)
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Constitutive laws

Linear constitutive law|Level one Elastic energy|Level one

1
©0 = &(eo), €:9(€) = D(E), linear Ee = 5[[€(eo)|90]]
Assume that & is symmetric with respect to the Klein form:

[[E(u)[v]] = [[ul&(v)]], Vu,veD.

Elastic energy|Level two

o = 5 ([1€(=o)leall + 2[[e(eo) mol] + [[E(o)loll)

Using a normalized basis B = (e1, ey, e3,&1,&2,&3) that diagonalizes the
symmetrical operator

Elastic energy|Level three

1
Ee = 5(15/153 + Ehs} + Glsel + El i} + Ehr3 + Glak3)
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Problem statement

® Beam at an equilibrium and subjected to linear perturbation.
® [ evel one equation.
® D(So,t) = exp X(So, t) o Do(So) where
® Dy(Sp) solution of the equilibrium equation
® X(So,t) € D(E) the unknown kinematic of the vibration problem.
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Problem statement

® Beam at an equilibrium and subjected to linear perturbation.
® | evel one equation.
® D(So,t) = exp X(So, t) o Do(So) where
® Dy(Sp) solution of the equilibrium equation
® X(So,t) € D(E) the unknown kinematic of the vibration problem.

equilibrium

00,
2(S0) + [ee,0(S0); Oe.0(So)] = 0
05

poTo(So) +

® e.0(So0) Lagrangian deformation at equilibrium.
® O.0(S0) Lagrangian internal actions at equilibrium
® To(So) Lagrangian external actions at the equilibrium
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Problem statement

® Beam at an equilibrium and subjected to linear perturbation.
® | evel one equation.
® D(So,t) = exp X(So, t) o Do(So) where
® Dy(Sp) solution of the equilibrium equation
® X(So,t) € D(E) the unknown kinematic of the vibration problem.

equilibrium

00,
2(S0) + [ee,0(S0); Oe.0(So)] = 0
05

poTo(So) +

® e.0(So0) Lagrangian deformation at equilibrium.
® O.0(S0) Lagrangian internal actions at equilibrium
® To(So) Lagrangian external actions at the equilibrium

No additional perturbation is added to 7o(Sp).
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Linear approximation calculation

poTo + 522 + [eo, Oo] = PO(HO(%) + [V, HO(VO)]) J
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Linear approximation calculation

poTo + 528 + [eo, @] = po(Ho(52) + [Vo, Ho(Vo)])

%
>
o
X
g
_l’_
Q)
=
£

eo(So, t)
©0(S0,t) = ©c0(So0)+ x0(S0, t)
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60(50, t) ~ Ad DO_ (5 ) 5, + ee70(50)
©0(S0,t) = ©c0(S0) + x0(S0, t)

Vo(So.t) ~ Ad Dol(so)w
OVo(So, t) 9?X(So, t)

Ad Dy *(So)

Q

ot Oot?
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Linear approximation calculation

poTo + 522 + [eo, €] = po(Ho(%2) + [Vo, Ho(Vo)])

eO(So,t)
©0(S0,t) = ©c0(S0) + x0(S0, t)

2
>
o

X

»

_ 0X(Sp, t
Vo(So,t) ~ AdD, 1(50)#
(9\/0(50, t) - 1 32X(50, t)

Perturbated equation

|
QO
]
g |
\,

2% + [Ad Dy (S0} (25), ©c.o(So)] + [ec.o(So). xo = poHo(Ad D5 (S0) 55

v
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Dynamic equation

Linear elastic contitutive law

_ 0X (S0, t
xo(So0, t) = € <Ad Dy 1(5@&)
950
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Dynamic equation

Linear elastic contitutive law

— OX(So, t
xo(So, t) = & (Ad D; 1(50)%>

e Applying the left action of Ad Dy(So) on perturbated equation.
® Forall Y € ©(E), we let

ée,O(SO) = Ad DO(SO)(ee,O(SO)) J /:I()(Y) = Ad Do(So)OHOOAd DO_I(S())(Y)J

©e.0(S0) = Ad Do(S0)(e.0(50)) | Eo(Y) = Ad Do(S0)oEooAd Dy (So)(Y) |

Ro(Y) =[Y.©¢e0(S0)] + [€c0(S0), Eo( V)] + Eo([Y, €c0(S0)]) )
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Dynamic equation

Linear elastic contitutive law

— OX(So, t
xo(So, t) = & (Ad D; 1(50)%>

e Applying the left action of Ad Dy(So) on perturbated equation.
® Forall Y € ©(E), we let

ée,O(SO) = Ad DO(SO)(ee,O(SO))J /:Io(Y) = Ad Do(So)OHOOAd DO_I(SO)(Y)J

©e.0(S0) = Ad Do(S0)(e 0(50)) | Eo(Y) = Ad Do(S0) 0 Eo0Ad Dy (So)(Y) |

Ro(Y) =[Y.©¢e0(S0)] + [€c0(S0), Eo( V)] + Eo([Y, €c0(S0)]) )

Perturbated equation
Y _ 92
9 X(SOa t) + a)<(505 t) — onH. 0 X(507 t)

& 952 ) + Ro( 25, ) = ro O(T)
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Variational formulation

® Boundary conditions should be given to define a well-posed problem.

® Symmetry is essential in mechanical problems and could be
guaranteed by imposing a convenient boundary condition.
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Variational formulation

® Boundary conditions should be given to define a well-posed problem.

e Symmetry is essential in mechanical problems and could be
guaranteed by imposing a convenient boundary condition.

* Suppose that & is a symmetric operator w.r.t to the Klein form [[-|]].

® Dynamic properties imply that Ho is a symmetric operator with
respect to the Klein form.



Linear free vibrations Conclusion and perspectives
[ee]e] o] o]

Variational formulation

® Boundary conditions should be given to define a well-posed problem.

e Symmetry is essential in mechanical problems and could be
guaranteed by imposing a convenient boundary condition.

e Suppose that & is a symmetric operator w.r.t to the Klein form [[-|-]].

® Dynamic properties imply that Ho is a symmetric operator with
respect to the Klein form.

~ 0?X(So,t), = ,0X(So,t)

Replace X(So, t) by U(So)

Eo(U"(S0)) + Ro(U'(S0))
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Variational formulation

® Boundary conditions should be given to define a well-posed problem.

e Symmetry is essential in mechanical problems and could be
guaranteed by imposing a convenient boundary condition.

e Suppose that & is a symmetric operator w.r.t to the Klein form [[-|-]].

® Dynamic properties imply that Ho is a symmetric operator with
respect to the Klein form.

é (82X(50, t)) NR (ax(so’ t)) Replace X(So t) by U(So)
a2 0% €o(U"(S0)) + Ro(U'(S0))

Integrate along the beam

Wo(U,V) = /OLO[[@O(U"(SO)) + Ro(U'(S0)) | V(S0)lldSo
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Variational formulation

Integration by parts

Wo(U, V) / [[(E(U))) | V]1dSo +

Symmetrical operator

Lo ~ = 0
[ 11V &)l | VI]dso+ [[[@o() | VI,

0

B(U,V) Boundary condition

e Symmetry of B(U, V) = symmetry of Wo(U, V).
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Variational formulation

Integration by parts

Wo(U, V) / [[(E(U))) | V]1dSo +

Symmetrical operator

Lo ~ = 0
[ 110 Eo@eo)1 | VIJdSo + [[1(Ea(U)) | V1],

B(U,V) Boundary condition

e Symmetry of B(U, V) = symmetry of Wo(U, V).

Lo . ~ Lo
%(U’ V)_%(Vv U) = _/O [[[Uv V] | eO(Ee,O)I]]dSO""[[[[Uv V] | QO(Aée,O))H]O J
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Variational formulation

Integration by parts

Wo(U, V) / [[(E(U))) | V]1dSo +

Symmetrical operator

Lo ~ = 0
[ 11V &)l | VI]dso+ [[[@o() | VI,

0

B(U,V) Boundary condition

e Symmetry of B(U, V) = symmetry of Wo(U, V).

Lo . ~ Lo
%(U’ V)_%(Vv U) = _/O [[[Uv V] | eO(Ee,O)I]]dSO""[[[[Uv V] | eO(Aée,O))]]]o J

Examples : B(U, V) is symmetric if

éo(ée,o) =0 J Clamped-Clamped beam and a uniform éo(ée,o) J
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Conclusion and perspectives

® Exploration of one-dimensional structures through the application of
Lie group structures.
® Three levels of equation setting
e First level = a single equation within the Lie algebra of the
displacement group D(&).
o Second level = semi-direct product D(£) = T(E) xc R(E)c.
® The third level = introduction of an appropriate basis.
® Perturbation of linear dynamics around an arbitrary equilibrium
position :strong and week formulations.
[ ]

Perspectives :

® Boundary conditions investigations.
® Deformed cross sections.
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