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Bicentenary of the Thermodynamics
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Relativity and Thermodynamics
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Geometrization process

General Relativity

a model for the mechanics and physics of continua

Temperature −→ vector W

Entropy −→ vector S

Energy −→ tensor T

Gravitation −→ covariant derivative ∇
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State of the Art

Background
C Eckart, Phys. Rev. (1940) div T = 0 (1st principle)

Landau-Lifshitz, Fluid Mech. (1960) T = TR + TI , S = T W

Inspiration sources
JM Souriau, Lect. Notes Math. (1976) div S ≥ 0 (2nd principle)

C Vallée, IJES (1981) constitutive laws

The present contribution
de Saxcé-Vallée, IJES (2012) Galilean version

de Saxcé-Vallée, Galilean Mechanics and Thermodynamics of
Continua (2016) revisiting the relativistic version of the 2nd principle
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Geometric approach
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Galilean and Bargmannian transformations

Galilean transformations

Event occuring at position x and at time t

X =

(
t
x

)
∈ space-timeM

Symmetry group : Lorentz-Poincaré group −→ Galileo’s group

The Galilean transformations are space-time transformations
preserving inertial motions, durations and distances, then affine of
the form X = P X ′ + C with :

P =

(
1 0
vt R

)
, C =

(
τ0

k

)
where vt ∈ R3 is the Galilean boost and R is a rotation

Their set is Galileo’s group, a Lie group of dimension 10

Dimension 4 or 5 ?

Géry de Saxcé (LaMcube UMR 9013) Thermodynamique 5D GDR-GDM 2024 IRCAM 7 / 31



Galilean and Bargmannian transformations

Bargmannian transformations

-principal bundle

space-time (Galilean)dim = 4

dim = 5

We introduce a R-principal bundle π : M̂ →M
and we consider a section f̂ :M→ M̂ : X 7→ X̂ = f̂ (X )

We built a group of affine transformations X̂ ′ 7→ X̂ = P̂ X̂ ′ + Ĉ of R5

which are Galilean when acting onto the space-time hence :

P̂ =

(
P 0
Φ α

)
,

where P is Galilean, Φ, α have a physical meaning linked to the energy
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Galilean and Bargmannian transformations

Bargmannian transformations

Thus we know that, under the action of a boost vt and a rotation R,
the kinetic energy is transformed according to :

e =
1

2
m ‖ vt + R v ′ ‖2=

1

2
m ‖ vt ‖2 +mvt · (R v ′) +

1

2
m ‖ v ′ ‖2 .

We claim that the fifth dimension is linked to the energy by :

dz =
e

m
dt =

1

2
‖ vt ‖2 dt ′ + vTt R dx ′ + dz ′

that leads to consider the Bargmannian transformations of R5

of which the linear part is : P̂ =

 1 0 0
vt R 0

1
2 ‖ vt ‖

2 vTt R 1


Their set is the Bargmann’s group,
introduced in quantum mechanics for cohomologic reasons
but which turns out very useful in Thermodynamics !
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Temperature 5-vector and friction tensor

Temperature, friction and momentum tensor

Géry de Saxcé (LaMcube UMR 9013) Thermodynamique 5D GDR-GDM 2024 IRCAM 10 / 31



Temperature 5-vector and friction tensor

Temperature 5-vector

The reciprocal temperature β = 1
θ = 1

kBT
is generalized as a Bargmannian

5-vector :

Ŵ =

(
W
ζ

)
=

 β
w
ζ

 ,

Step 1 :

The transformation law Ŵ ′ = P̂−1Ŵ leads to :

β′ = β , w ′ = RT (w − βvt), ζ ′ = ζ − w · vt +
β

2
‖ vt ‖2

Picking up vt = w / β, we obtain the reduced form

Ŵ ′ =

 β
0
ζint


interpreted as the temperature vector of a volume element at rest

Géry de Saxcé (LaMcube UMR 9013) Thermodynamique 5D GDR-GDM 2024 IRCAM 11 / 31



Temperature 5-vector and friction tensor

Temperature 5-vector

Step 2 : Starting from the reduced form, we apply the Galilean
transformation of boost v , that gives :

Ŵ =

 β
w
ζ

 =

 β
β v

ζint + β
2 ‖ v ‖

2

 .

where ζ is Planck’s potential

This is the covariant form of the temperature vector,
i.e. remaining the same under all Galilean transformation

Boost method :

Step 1 : symmetry group action −→ reduced form

Step 2 : boost −→ covariant form
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Temperature 5-vector and friction tensor

Friction tensor

Friction tensor

The friction tensor is a mixed 1-covariant and 1-contravariant tensor :

f = ∇ ~W

represented by the 4× 4 matrix f = ∇W

This object introduced by Souriau merges the temperature gradient
and the strain velocity

In dimension 5, we can also introduce

f̂ = ∇ ~̂W

represented by a 5× 4 matrix

f̂ = ∇ Ŵ =

(
f
∇ ζ

)
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Momentum tensor

Momentum tensor

Method

Taking care to walk up and down the
rough ground of the reality (Wittgenstein),

we want to work, in dimension 4 ou 5,
with tensors of which the transformation law
respects the physics

The meaning of the components is not given a priori but results, through
the transformation law, from the choice of the symmetry group
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Momentum tensor

Momentum tensor

Momentum tensor

Linear map from the tangent space to M̂ at X̂ = f̂ (X ) into the tangent
space to M at X , hence a mixed tensor T̂ of rank 2

Galilean momentum tensors : represented by a 4× 5 matrix

T̂ =

(
H −pT ρ
k σ? p

)
In matrix form, the transformation law is T̂ ′ = P T̂ P̂−1

We let the symmetry group act, that leads to the reduced form :

T̂ ′ =

(
ρ eint 0 ρ
h σ 0

)
,

interpreted as the momentum of a volume element at rest,
where occur the density ρ, the internal energy eint ,
the heat flux h, and Cauchy’s stresses σ
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Momentum tensor

Momentum tensor

Hence the boost method reveals its covariant form

Galilean momentum tensor

Object where occurs

Hamiltonian (by volume unit) H = ρ
(
eint + 1

2 ‖ v ‖
2
)

linear momentum p = ρ v ,

represented by the matrix :

T̂ =

 H −pT ρ

h +H v − σ v σ − ρ v vT p



These particular quantities are gathered here in big tensors
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First and second principles

First and second principles
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First and second principles

First principle

Momentum divergence

5-row div T̂ such that, for all smooth 5-vector field Ŵ :

Div (T̂ Ŵ ) = (Div T̂ ) Ŵ + Tr
(
T̂ ∇ Ŵ

)

Covariant form of the 1st principle

Div T̂ = 0
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First and second principles

First principle

In absence of gravity, we recover the balance equations of :

mass :
∂ρ

∂t
+ div (ρ v) = 0

linear momentum : ρ

[
∂tv +

∂v

∂x
v

]
= (div σ)T

energy : ∂tH+ div (h +Hv − σv) = 0
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First and second principles

First principle

4-velocity U = dX
dt = d

dt

(
t
x

)
=

(
1
v

)
Reversible medium

if ζ is a function of
- the other components of Ŵ through W ,
- the right Cauchy strain C = FTF
- and the Lagrangean coordinates,

then the 4× 4 matrix TR = U ⊗ ΠR +

(
0 0

−σRv σR

)
with ΠR = −ρ ∂ζ

∂W σR = −2ρ
β F ∂ζ

∂C FT

is such that :

♥ T̂R =
(
TR N

)
with N = ρU represents a momentum tensor T̂R

♦ Tr
(
T̂R∇Ŵ

)
= 0
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First and second principles

First principle

ζ is the prototype of thermodynamic potentials :

the internal energy eint = −∂ζint
∂β

the specific entropy s = ζint − β
∂ζint
∂β

of which the 4-flux ~S = s ~N is the Galilean 4-vector

~S = T̂R
~̂W

the free energy ψ = − 1

β
ζint = −θ ζint allows to recover

−eint = θ ∂ψ
∂θ − ψ, −s = ∂ψ

∂θ

The interest of Planck’s potential ζ is that
it generates all the other ones
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First and second principles

Second principle

Additive decomposition of the momentum tensor

T̂ = T̂R + T̂I with

the reversible part T̂R represented by :

T̂R =

(
HR −pT ρ

HRv − σRv σR − vpT ρv

)
the irreversible one T̂I represented by :

T̂I =

(
HI 0 0

h +HI v − σI v σI 0

)
where σI are the dissipative stresses and HI = −ρqI is the
dissipative part of the energy due to the irreversible heat sources qI
(for instance of electrical, chemical or nuclear origin)
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First and second principles

Second principle

Clock form

Linear form τ = dt represented by an invariant row under Galilean trans-
formation :

τ =
(

1 0 0 0
)

Entropy 4-vector ~S = T̂ ~̂W = T̂R
~̂W + T̂I

~̂W = ~SR + ~SI

Covariant form of the second principle

The local production of entropy of a medium caracterized by a tempera-

ture vector ~̂W and a momentum tensor T̂ is non negative :

Φ = Div ~S −
(
τ (f ( ~U))

) (
τ (TI ( ~U))

)
≥ 0

and vanishes if and only if the process is reversible
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First and second principles

Second principle

The local production of entropy

Φ = Div ~S −
(
τ (f ( ~U))

) (
τ (TI ( ~U))

)
is a Galilean invariant !

After some manipulations, it can be put in the classical form of
Clausius-Duhem inequality

Φ = ρ
ds

dt
− ρ

θ

dqI
dt

+ div

(
h

θ

)
≥ 0

Figure – Pierre Duhem
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

(Bargmannian)

(Galilean)dim = 4

dim = 5

pullback

We consider the pullback bundle f̂ ∗TM̂

The space-time M is endowed with the pullback connection
(f̂ ∗∇̂)U(f̂ ∗Ŵ ) = f̂ ∗(∇̂(Tf )UŴ ) U ∈ TM, Ŵ ∈ T Û

Galileo’s group does not preserve space-time metrics

Bargmann’s group preserves the metrics ds2 =‖ dx ‖2 −2 dz dt,
then the space M̂ is a riemannian manifold
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

With the potentials of the Galilean gravitation φ,A generating
the gravity g = −grad φ− ∂tA and Coriolis effect Ω = 1

2 curl A,
the Lagrangian is L(t, x , v) = 1

2 m ‖ v ‖
2 −m φ+ mA · v

that suggests to introduce a base change
dz ′ = L

m dt = dz − φ dt + A · dx , dt ′ = dt, dx ′ = dx

In the new coordinates, the Bargmannian connection is

Γ̂(dX̂ ) =


0 0 0

j(Ω) dx − g dt j(Ω) dt 0

((∂tφ− A · g) dt ((grad φ− Ω× A) dt
+ (grad φ− Ω× A) · dx) −gradsAdx)T 0


As in electromagnetism, the potentials φ,A are defined modulo a
gauge transformation. It can be shown that it corresponds to a
change of section f̂ then the choice of the section does not
modify the equations of Thermodynamics.
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

The developments are similar to the ones in absence of gravitation but
with some exceptions :

Planck’s potential becomes ζ = ζint + β
2 ‖ v ‖

2 −β φ + A · w
the Hamiltonian becomes H = ρ

(
eint + 1

2 ‖ v ‖
2 +φ− qI

)
,

the linear momentum becomes p = ρ (v + A).

In presence of gravitation, the first principle provides in covariant form
the balance equations of the mass and of

the linear momentum : ρ
dv

dt
= (div σ)T + ρ (g − 2 Ω× v)

the energy : ∂tH+ div (h +Hv − σv) = ρ (∂tφ− ∂tA · v)
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

Espistemological reversal : we come back to the relativity
with Lorentz-Poincaré symmetry group

In this approach, the temperature is transformed according to

θ′ =
θ

γ
= θ

√
1− ‖ v ‖

2

c2

This the temperature contraction !

thanks to the space-time Minkowski’s metrics ds2 = c2dt2− ‖ dx ‖2,
we can associate to the 4-velocity ~U a unique linear form U∗

represented by

UTG =
(
γ, γ vT

) ( c2 0
0 −1R3

)
= c2

(
γ,− 1

c2
γ vT

)
,

which approaches c2τ when c approaches +∞
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

On this ground, we replace τ by U∗/ c2 in the Galilean expression of
Clausius-Duhem inequality, that lead to

Relativistic form of the 2nd principle

The local production of entropy of a medium characterized by a tempe-
rature vector ~W and a momentum tensor T̂ is non negative :

Φ = Div ~S − 1

c2

(
U∗(f ( ~U))

) 1

c2

(
U∗(TI ( ~U))

)
≥ 0 ,

and vanishes if and only if the process is reversible
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A smidgen of relativistic Thermodynamics

The scheme of General Relativity is still valid in classical Mechanics

Thank you !
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