Thermodynamique pentadimensionnelle des milieux continus

Géry de Saxcé

LaMcube UMR CNRS 9013

Université Lille

GDR-GDM 2024 Paris IRCAM

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thermodynamique 5D

Bicentenary of the Thermodynamics

Géry de Saxcé (LaMcube UMR 9013)

GDR-GDM 2024 IRCAM 2 / 31

<ロト <部ト <きト <きト = 目

Relativity and Thermodynamics

Géry de Saxcé (LaMcube UMR 9013)

Thermodynamique 5D

GDR-GDM 2024 IRCAM 3 / 31

Geometrization process

General Relativity

a model for the mechanics and physics of continua

• Temperature \longrightarrow vector W

- Entropy \longrightarrow vector S
- Energy \longrightarrow tensor T

• Gravitation \longrightarrow covariant derivative abla

イロト 不得 トイヨト イヨト 二日

State of the Art

Background

C Eckart, Phys. Rev. (1940) div T = 0 (1st principle)

Landau-Lifshitz, Fluid Mech. (1960) $T = T_R + T_I$, S = T W

• Inspiration sources JM Souriau, Lect. Notes Math. (1976) $div S \ge 0$ (2nd principle)

C Vallée, IJES (1981) constitutive laws

 The present contribution de Saxcé-Vallée, IJES (2012) Galilean version

de Saxcé-Vallée, Galilean Mechanics and Thermodynamics of Continua (2016) revisiting the relativistic version of the 2^{nd} principle

Geometric approach

Géry de Saxcé (LaMcube UMR 9013)

GDR-GDM 2024 IRCAM 6 / 31

3

(日)

Galilean transformations

• Event occuring at position x and at time t

$$X = \begin{pmatrix} t \\ x \end{pmatrix} \in$$
space-time \mathcal{M}

- Symmetry group : Lorentz-Poincaré group → Galileo's group
- The **Galilean transformations** are space-time transformations preserving **inertial motions**, **durations** and **distances**, then affine of the form X = PX' + C with :

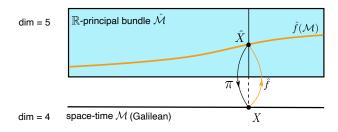
$$P = \left(\begin{array}{cc} 1 & 0 \\ v_t & R \end{array} \right), \qquad C = \left(\begin{array}{c} \tau_0 \\ k \end{array} \right)$$

where $v_t \in \mathbb{R}^3$ is the **Galilean boost** and *R* is a rotation

- Their set is Galileo's group, a Lie group of dimension 10
- Dimension 4 or 5?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bargmannian transformations



- We introduce a ℝ-principal bundle π : Â→ M
 and we consider a section f̂ : M → Â : X ↦ Â = f̂ (X)
- We built a group of affine transformations $\hat{X}' \mapsto \hat{X} = \hat{P} \hat{X}' + \hat{C}$ of \mathbb{R}^5 which are Galilean when acting onto the space-time hence :

$$\hat{P} = \left(egin{array}{cc} P & 0 \ \Phi & lpha \end{array}
ight) \; ,$$

where P is Galilean, Φ, α have a physical meaning linked to the energy

Bargmannian transformations

• Thus we know that, under the action of a boost v_t and a rotation R, the kinetic energy is transformed according to :

$$e = \frac{1}{2} m \parallel v_t + R v' \parallel^2 = \frac{1}{2} m \parallel v_t \parallel^2 + m v_t \cdot (R v') + \frac{1}{2} m \parallel v' \parallel^2$$

• We claim that the fifth dimension is linked to the energy by :

$$dz = \frac{e}{m} dt = \frac{1}{2} \parallel v_t \parallel^2 dt' + v_t^T R \, dx' + dz'$$

that leads to consider the Bargmannian transformations of \mathbb{R}^5

of which the linear part is :
$$\hat{P} = \begin{pmatrix} 1 & 0 & 0 \\ v_t & R & 0 \\ \frac{1}{2} \parallel v_t \parallel^2 & v_t^T R & 1 \end{pmatrix}$$

I heir set is the Bargmann's group, introduced in quantum mechanics for cohomologic reasons but which turns out very useful in Thermodynamics!

Géry de Saxcé (LaMcube UMR 9013)

Thermodynamique 5D

Temperature, friction and momentum tensor

(日)

Temperature 5-vector

The reciprocal temperature $\beta = \frac{1}{\theta} = \frac{1}{k_B T}$ is generalized as a Bargmannian 5-vector :

$$\hat{W} = \left(\begin{array}{c} W \\ \zeta \end{array}\right) = \left(\begin{array}{c} \beta \\ w \\ \zeta \end{array}\right) \ ,$$

Step 1 :

• The transformation law $\hat{W}' = \hat{P}^{-1}\hat{W}$ leads to :

$$\beta' = \beta$$
, $w' = R^T (w - \beta v_t)$, $\zeta' = \zeta - w \cdot v_t + \frac{\beta}{2} \parallel v_t \parallel^2$

• Picking up $v_t = w / \beta$, we obtain the **reduced form**

$$\hat{W}' = \left(\begin{array}{c} \beta \\ 0 \\ \zeta_{int} \end{array}\right)$$

interpreted as the temperature vector of a volume element at rest

Temperature 5-vector

Step 2 : Starting from the reduced form, we apply the Galilean transformation of boost v, that gives :

$$\hat{W} = \begin{pmatrix} \beta \\ w \\ \zeta \end{pmatrix} = \begin{pmatrix} \beta \\ \beta v \\ \zeta_{int} + \frac{\beta}{2} \parallel v \parallel^2 \end{pmatrix}$$

where ζ is **Planck's potential**

This is the covariant form of the temperature vector, *i.e.* remaining the same under all Galilean transformation

Boost method :

- Step 1 : symmetry group action \longrightarrow reduced form
- Step 2 : boost covariant form

イロト 不得 トイヨト イヨト 二日

Friction tensor

Friction tensor

The friction tensor is a mixed 1-covariant and 1-contravariant tensor :

$$f = \nabla \vec{W}$$

represented by the 4 \times 4 matrix $f = \nabla W$

- This object introduced by Souriau merges the temperature gradient and the strain velocity
- In dimension 5, we can also introduce

$$\hat{f} = \nabla \hat{\vec{W}}$$

represented by a 5×4 matrix

$$\hat{f} = \nabla \hat{W} = \left(egin{array}{c} f \\
abla \zeta \end{array}
ight)$$

Momentum tensor

Method

Taking care to walk up and down the rough ground of the reality (Wittgenstein),

we want to work, in dimension 4 ou 5, with tensors of which the transformation law respects the physics

The meaning of the components is not given *a priori* but results, through the transformation law, from the choice of the symmetry group

Momentum tensor

Momentum tensor

Linear map from the tangent space to $\hat{\mathcal{M}}$ at $\hat{\mathbf{X}} = \hat{f}(\mathbf{X})$ into the tangent space to \mathcal{M} at \mathbf{X} , hence a **mixed tensor** $\hat{\mathbf{T}}$ of rank 2

• Galilean momentum tensors : represented by a 4×5 matrix

$$\hat{T} = \left(\begin{array}{cc} \mathcal{H} & -\boldsymbol{p}^{\mathsf{T}} & \rho \\ \boldsymbol{k} & \sigma_{\star} & \boldsymbol{p} \end{array}\right)$$

In matrix form, the transformation law is $\hat{T}' = P \hat{T} \hat{P}^{-1}$

• We let the symmetry group act, that leads to the reduced form :

$$\hat{\mathcal{T}}' = \left(egin{array}{ccc}
ho \, e_{int} & 0 &
ho \ h & \sigma & 0 \end{array}
ight) \; ,$$

interpreted as the momentum of a volume element **at rest**, where occur the **density** ρ , the **internal energy** e_{int} , the **heat flux** h, and **Cauchy's stresses** σ

Géry de Saxcé (LaMcube UMR 9013)

Thermodynamique 5D

GDR-GDM 2024 IRCAM 15 / 31

Momentum tensor

Hence the boost method reveals its covariant form

Galilean momentum tensor

Object where occurs

- Hamiltonian (by volume unit) $\mathcal{H} = \rho \left(e_{int} + \frac{1}{2} \parallel v \parallel^2 \right)$
- linear momentum $p = \rho v$,

represented by the matrix :

$$\hat{T} = \begin{pmatrix} \mathcal{H} & -p^{T} & \rho \\ \\ h + \mathcal{H} & v - \sigma & v & \sigma - \rho & v & v^{T} & p \end{pmatrix}$$

These particular quantities are gathered here in big tensors

First and second principles

Géry de Saxcé (LaMcube UMR 9013)

э

Momentum divergence

5-row $div \ \hat{T}$ such that, for all smooth 5-vector field \hat{W} :

$$Div (\hat{T} \ \hat{W}) = (Div \ \hat{T}) \ \hat{W} + Tr \ (\hat{T} \ \nabla \hat{W})$$

Covariant form of the 1st principle

Div
$$\hat{T} = 0$$

Géry de Saxcé (LaMcube UMR 9013)

GDR-GDM 2024 IRCAM 18 / 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In absence of gravity, we recover the balance equations of :

• mass :
$$\frac{\partial \rho}{\partial t} + div (\rho v) = 0$$

• linear momentum : $\rho \left[\partial_t v + \frac{\partial v}{\partial x} v \right] = (div \sigma)^T$

• energy :
$$\partial_t \mathcal{H} + div \ (h + \mathcal{H}v - \sigma v) = 0$$

イロト 不得 トイヨト イヨト 二日

4-velocity
$$U = \frac{dX}{dt} = \frac{d}{dt} \begin{pmatrix} t \\ x \end{pmatrix} = \begin{pmatrix} 1 \\ v \end{pmatrix}$$

Reversible medium

- if $\boldsymbol{\zeta}$ is a function of
- the other components of \hat{W} through W,
- the right Cauchy strain $C = F^T F$
- and the Lagrangean coordinates,

then the 4 × 4 matrix
$$T_R = U \otimes \Pi_R + \begin{pmatrix} 0 & 0 \\ -\sigma_R v & \sigma_R \end{pmatrix}$$

with $\Pi_R = -\rho \frac{\partial \zeta}{\partial W}$ $\sigma_R = -\frac{2\rho}{\beta} F \frac{\partial \zeta}{\partial C} F^T$

is such that :

 $\boldsymbol{\zeta}$ is the prototype of thermodynamic potentials :

- the internal energy $e_{int} = -\frac{\partial \zeta_{int}}{\partial \beta}$
- the specific entropy $s = \zeta_{int} \beta \ \frac{\partial \zeta_{int}}{\partial \beta}$

of which the 4-flux $\vec{\pmb{S}} = s \, \vec{\pmb{N}}$ is the Galilean 4-vector

$$\vec{\boldsymbol{S}} = \hat{\mathsf{T}}_R \ \hat{\vec{\boldsymbol{\mathcal{W}}}}$$

• the free energy
$$\psi = -\frac{1}{\beta} \zeta_{int} = -\theta \zeta_{int}$$
 allows to recover
 $-e_{int} = \theta \frac{\partial \psi}{\partial \theta} - \psi, \qquad -s = \frac{\partial \psi}{\partial \theta}$

The interest of Planck's potential ζ is that it generates all the other ones

Géry de Saxcé (LaMcube UMR 9013)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Second principle

Additive decomposition of the momentum tensor

- $\hat{\mathsf{T}}=\hat{\mathsf{T}}_{\textit{R}}+\hat{\mathsf{T}}_{\textit{I}}$ with
 - the reversible part \hat{T}_R represented by :

$$\hat{T}_{R} = \left(\begin{array}{cc} \mathcal{H}_{R} & -p^{T} & \rho \\ \mathcal{H}_{R}v - \sigma_{R}v & \sigma_{R} - vp^{T} & \rho v \end{array}\right)$$

 \bullet the irreversible one \hat{T}_{I} represented by :

$$\hat{T}_{I} = \left(\begin{array}{ccc} \mathcal{H}_{I} & 0 & 0\\ h + \mathcal{H}_{I} v - \sigma_{I} v & \sigma_{I} & 0 \end{array}\right)$$

where σ_I are the **dissipative stresses** and $\mathcal{H}_I = -\rho q_I$ is the dissipative part of the energy due to the **irreversible heat sources** q_I (for instance of electrical, chemical or nuclear origin)

Second principle

Clock form

Linear form au = dt represented by an invariant row under Galilean transformation :

$$au = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \end{array}
ight)$$

Entropy 4-vector
$$ec{m{S}}=\hat{m{T}}~~\hat{ec{m{W}}}=\hat{m{T}}_R\,\hat{ec{m{W}}}+\hat{m{T}}_I~~\hat{ec{m{W}}}=ec{m{S}}_R+ec{m{S}}_I$$

Covariant form of the second principle

The **local production of entropy** of a medium caracterized by a temperature vector $\hat{\vec{W}}$ and a momentum tensor \hat{T} is non negative :

$$\Phi = {oldsymbol Div}\,\, {oldsymbol S} - \left({oldsymbol au}({oldsymbol f}({oldsymbol U}))
ight)\,\, \left({oldsymbol au}({oldsymbol T}_l({oldsymbol U}))
ight) \ge 0$$

and vanishes if and only if the process is reversible

Second principle

• The local production of entropy

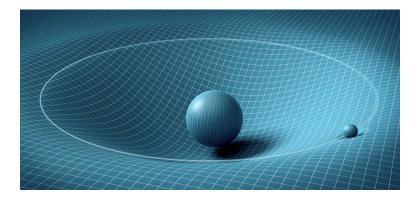
$$\Phi = oldsymbol{Div} \, oldsymbol{ar{S}} - \left(oldsymbol{ au}(oldsymbol{f}(oldsymbol{ar{U}}))
ight) \, \left(oldsymbol{ au}(oldsymbol{T}_l(oldsymbol{ar{U}}))
ight)$$

is a Galilean invariant !

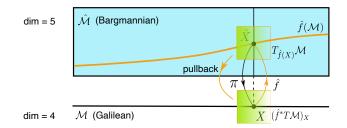
• After some manipulations, it can be put in the classical form of **Clausius-Duhem inequality**

$$\Phi = \rho \; \frac{ds}{dt} - \frac{\rho}{\theta} \; \frac{dq_I}{dt} + div \; \left(\frac{h}{\theta}\right) \ge 0$$

FIGURE - Pierre Duhem



(日)



• We consider the pullback bundle $\hat{f}^* T \hat{\mathcal{M}}$

- The space-time \mathcal{M} is endowed with the pullback connection $(\hat{f}^*\hat{\nabla})_{\boldsymbol{U}}(\hat{f}^*\hat{\boldsymbol{W}}) = \hat{f}^*(\hat{\nabla}_{(Tf)\boldsymbol{U}}\hat{\boldsymbol{W}}) \quad \boldsymbol{U} \in T\mathcal{M}, \quad \hat{\boldsymbol{W}} \in T\hat{\mathcal{U}}$
- Galileo's group does not preserve space-time metrics
- Bargmann's group preserves the metrics $ds^2 = \parallel dx \parallel^2 -2 dz dt$, then the space $\hat{\mathcal{M}}$ is a riemannian manifold

- With the **potentials of the Galilean gravitation** ϕ , A generating the gravity $g = -grad \phi \partial_t A$ and Coriolis effect $\Omega = \frac{1}{2} curl A$, the Lagrangian is $\mathcal{L}(t, x, v) = \frac{1}{2} m \parallel v \parallel^2 m \phi + m A \cdot v$
- that suggests to introduce a base change $dz' = \frac{\mathcal{L}}{m} dt = dz - \phi dt + A \cdot dx$, dt' = dt, dx' = dx
- In the new coordinates, the Bargmannian connection is

$$\hat{\Gamma}(d\hat{X}) = \begin{pmatrix} 0 & 0 & 0 \\ j(\Omega) \, dx - g \, dt & j(\Omega) \, dt & 0 \\ ((\partial_t \phi - A \cdot g) \, dt & ((grad \phi - \Omega \times A) \, dt \\ + (grad \phi - \Omega \times A) \cdot dx) & -grad_s A \, dx)^T & 0 \end{pmatrix}$$

As in electromagnetism, the potentials φ, A are defined modulo a gauge transformation. It can be shown that it corresponds to a change of section f̂ then the choice of the section does not modify the equations of Thermodynamics.

Géry de Saxcé (LaMcube UMR 9013)

27/31

The developments are similar to the ones in absence of gravitation but with some exceptions :

- Planck's potential becomes $\zeta = \zeta_{int} + \frac{\beta}{2} \parallel v \parallel^2 \beta \phi + A \cdot w$
- the Hamiltonian becomes $\mathcal{H} =
 ho \; \left(e_{\textit{int}} + rac{1}{2} \parallel v \parallel^2 + \phi q_I
 ight)$,
- the linear momentum becomes $p = \rho (v + A)$.

In presence of gravitation, the first principle provides **in covariant form** the balance equations of the mass and of

• the linear momentum :
$$ho \; rac{dv}{dt} = \left(\textit{div} \; \sigma
ight)^T +
ho \; \left(rac{g}{g} - 2 \, \Omega imes v
ight)$$

• the energy :
$$\partial_t \mathcal{H} + div \ (h + \mathcal{H}v - \sigma v) = \rho \left(\partial_t \phi - \partial_t A \cdot v \right)$$

イロト イポト イヨト イヨト 三日

A smidgen of relativistic Thermodynamics

- Espistemological reversal : we come back to the relativity with Lorentz-Poincaré symmetry group
- In this approach, the temperature is transformed according to

$$heta' = rac{ heta}{\gamma} = heta \sqrt{1 - rac{\parallel \mathbf{v} \parallel^2}{c^2}}$$

This the temperature contraction !

• thanks to the space-time Minkowski's metrics $ds^2 = c^2 dt^2 - || dx ||^2$, we can associate to the 4-velocity \vec{U} a unique linear form U^* represented by

$$U^{\mathsf{T}} \mathsf{G} = \begin{pmatrix} \gamma, \gamma \, \mathsf{v}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} c^2 & 0 \\ 0 & -1_{\mathbb{R}^3} \end{pmatrix} = c^2 \begin{pmatrix} \gamma, -\frac{1}{c^2} \, \gamma \, \mathsf{v}^{\mathsf{T}} \end{pmatrix} \,,$$

which approaches $c^2 au$ when c approaches $+\infty$

29/31

A smidgen of relativistic Thermodynamics

On this ground, we replace $\pmb{\tau}$ by $\pmb{U}^*/\ c^2$ in the Galilean expression of Clausius-Duhem inequality, that lead to

Relativistic form of the 2nd principle

The local production of entropy of a medium characterized by a temperature vector \vec{W} and a momentum tensor \hat{T} is non negative :

$$\Phi = {oldsymbol Div}\, ec{oldsymbol S} - rac{1}{c^2}\, \left(oldsymbol U^*(oldsymbol f(ec oldsymbol U))
ight)\, rac{1}{c^2}\, \left(oldsymbol U^*(oldsymbol T_l(ec oldsymbol U))
ight) \ge 0 \;,$$

and vanishes if and only if the process is reversible

$$\phi = \nabla_{a} S^{a} - \frac{1}{c^{2}} f_{\alpha \beta} U^{\alpha} U^{\beta} \cdot \frac{1}{c^{2}} T_{I\alpha \beta} U^{\alpha} U^{\beta} \ge 0$$

Géry de Saxcé (LaMcube UMR 9013)

The scheme of General Relativity is still valid in classical Mechanics

$$\phi = \nabla_{a} S^{\alpha} - \frac{1}{c^{2}} f_{\alpha \beta} U^{\alpha} U^{\beta} \cdot \frac{1}{c^{2}} T_{\pi \alpha \beta} U^{\alpha} U^{\beta} \ge 0$$

Thank you!

Géry de Saxcé (LaMcube UMR 9013)

Thermodynamique 5D

GDR-GDM 2024 IRCAM 31 / 31

э