Intégration de Simpson et schéma symplectique du quatrième ordre

François Dubois*[†] et Juan Antonio Rojas-Quintero^{‡§}

Fondements Géométriques de la Mécanique groupement de recherche "Géometrie Différentielle et Mécanique" IRCAM, Paris (France) 21 novembre 2024

- * Conservatoire National des Arts et Métiers, LMSSC, Paris, France
- [†] Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay, France
- [‡] CONAHCYT/Tecnológico Nacional de México/I.T. Ensenada, Mexico
- [§] associé en 2023-2024 à l'IMT Atlantique, LN2N, Nantes, France.

preliminaries : Newmark scheme (1959)

second order dynamical system $M \frac{d^2q}{dt^2} + C \frac{dq}{dt} + K q(t) = f(t)$ implicit scheme parameterized by γ and β :

see the book of Géradin and Rixen (2015)

$$\left(\frac{\mathrm{d}q}{\mathrm{d}t}\right)_{j+1} = \left(\frac{\mathrm{d}q}{\mathrm{d}t}\right)_j + h\left[\left(1-\gamma\right)\left(\frac{\mathrm{d}^2q}{\mathrm{d}t^2}\right)_j + \gamma\left(\frac{\mathrm{d}^2q}{\mathrm{d}t^2}\right)_{j+1}\right]$$

$$q_{j+1} = q_j + h\left(\frac{\mathrm{d}q}{\mathrm{d}t}\right)_j + h^2\left[\left(\frac{1}{2}-\beta\right)\left(\frac{\mathrm{d}^2q}{\mathrm{d}t^2}\right)_j + \beta\left(\frac{\mathrm{d}^2q}{\mathrm{d}t^2}\right)_{j+1}\right]$$

take C = 0, f(t) = 0introduce the momentum $p \equiv M \frac{dq}{dt}$: $\frac{dp}{dt} + K q(t) = 0$ special case $\gamma = \frac{1}{2}$, and $\beta = \frac{1}{4}$: $p_{j+1} = p_j + \frac{h}{2} (-K) (q_{j+1} + q_j)$ $M (q_{j+1} - q_j) = h p_j - \frac{h^2}{4} K (q_{j+1} + q_j)$ $= h p_i + \frac{h}{2} (p_{i+1} - p_i) = \frac{h}{2} (p_{i+1} + p_i)$

Newmark scheme for a linear oscillator :

 $rac{p_{j+1}-p_j}{h}+rac{1}{2}\,K\,(q_{j+1}+q_j)=0,\ M\,rac{q_{j+1}-q_j}{h}-rac{1}{2}\,(p_{j+1}+p_j)=0$

principle of least action

discrete symplecticity

 P_2 interpolation and Simpson quadrature

test for a nonlinear scalar case

two by two system: coupled linear pendula

system of dimension 3: top (preliminary result)

conclusion

annex: nonlinear pendulum

principle of least action

starting point for establishing evolution equations action $S_c = \int_0^T L(\frac{\mathrm{d}q}{\mathrm{d}t}, q(t)) \,\mathrm{d}t$, state q(t): unknown function variation of the action in an infinitesimal displacement $\delta q(t)$

$$\begin{split} \delta S_c &= \left[\left(\frac{\partial L}{\partial \dot{q}} \right) \delta q(t) \right]_0^T + \int_0^T \left[\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) \right] \delta q(t) \, \mathrm{d}t \\ \text{Euler-Lagrange equations} \quad \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) &= \frac{\partial L}{\partial q} \\ \text{classical Lagrangian} \quad L \left(\frac{\mathrm{d}q}{\mathrm{d}t}, q \right) &= \frac{m}{2} \left(\frac{\mathrm{d}q}{\mathrm{d}t} \right)^2 - V(q) \\ \text{momentum} \quad p &\equiv \frac{\partial L}{\partial \dot{q}} \\ \text{Hamiltonian} \end{split}$$

$$H(p, q) \equiv p \frac{\mathrm{d}q}{\mathrm{d}t} - L\left(\frac{\mathrm{d}q}{\mathrm{d}t}, q(t)\right) = \frac{p^2}{2m} + V(q)$$

Hamilton equations

$$\frac{\mathrm{d}p}{\mathrm{d}t} + \frac{\partial H}{\partial q} = 0, \quad \frac{\mathrm{d}q}{\mathrm{d}t} - \frac{\partial H}{\partial p} = 0$$

anharmonic potential $V(q) = m\omega^2 (1 - \cos q)$ $\frac{d^2q}{dt^2} + \omega^2 \sin q = 0$

4

flow $\Phi: (p, q)(t = 0) \mapsto (p, q)(t)$

Liouville theorem: the volume is conserved in the phase space

discrete principle of least action

split the interval [0, T] into N elements, $h = \frac{T}{N}$, $q_i \simeq q(jh)$ discrete action $S_d = \sum_{i=1}^{N-1} L_d(q_i, q_{i+1})$ discrete Lagrangian $L_d(q_\ell, q_r) \simeq \int_t^{t+h} \left[\frac{m}{2} \left(\frac{\mathrm{d}q}{\mathrm{d}t}\right)^2 - V(q)\right] \mathrm{d}t$ **P**₁ internal interpolation between $q_{\ell} \simeq q(t)$ and $q_r \simeq q(t+h)$ centered finite difference approximation $\frac{dq}{dt} \simeq \frac{q_r - q_\ell}{b}$ midpoint quadrature formula $\int_{t}^{t+h} V(q(t)) dt \simeq h V(\frac{q_{\ell}+q_{r}}{2})$ $L_d(a_\ell, a_r) = \frac{mh}{2} \left(\frac{q_r - q_\ell}{h} \right)^2 - h V \left(\frac{q_\ell + q_r}{2} \right)$ discrete Euler Lagrange equation $\frac{\partial L_d}{\partial q_i}(q_{i-1}, q_i) + \frac{\partial L_d}{\partial q_i}(q_i, q_{i+1}) = 0$ the resulting scheme is the Newmark implicit scheme (1959) discrete moment $p_r \equiv \frac{\partial L_d}{\partial \sigma}$ discrete Hamilton equations

 $\frac{p_{j+1}-p_j}{h} + \frac{\partial V}{\partial q} \left(\frac{q_j+q_{j+1}}{2} \right) = 0, \quad \frac{q_{j+1}-q_j}{h} - \frac{1}{2m} \left(p_{j+1} + p_j \right) = 0$

Sanz-Serna (1992), Wendlandt, Marsden (1997), Hairer, Lubich, Wanner (2006)

anharmonic oscillator, 10 periods, 10 points per period 6

discrete symplecticity

7

Proposition 1 [Sanz-Serna (1992)] regular transformation $P = P(p, q), \ Q = Q(p, q)$ symplectic transformation: $dP \wedge dQ = dp \wedge dq$ Jacobian matrix $\alpha \equiv \frac{\partial(P,Q)}{\partial(p,q)} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$ "imaginary" matrix $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ classical symplecticity condition: $\alpha^{t} J \alpha = J$ that can be written

(i) $a^{t}c$ and $b^{t}d$ are symmetric: $a^{t}c = c^{t}a$, $b^{t}d = d^{t}b$ (ii) $a^{t}d - b^{t}c$ is the identity matrix: $a^{t}d - c^{t}b = I$.

discrete symplecticity (ii)

Proof of Proposition 1

$$dP_{i} = a_{i}^{j} dp_{j} + b_{ij} dq^{j}, \quad dQ^{i} = c^{i\ell} dp_{\ell} + d_{\ell}^{i} dq^{\ell}$$

$$dP \wedge dQ = (a_{i}^{j} dp_{j} + b_{ij} dq^{j}) \wedge (c^{i\ell} dp_{\ell} + d_{\ell}^{i} dq^{\ell})$$

$$= a_{i}^{j} c^{i\ell} dp_{j} \wedge dp_{\ell} + b_{ij} d_{\ell}^{i} dq^{j} \wedge dq^{\ell} + a_{i}^{j} d_{\ell}^{i} dp_{j} \wedge dq^{\ell} + b_{ij} c^{i\ell} dq^{j} \wedge dp_{\ell}$$

$$= (a^{t}c)^{j\ell} dp_{j} \wedge dp_{\ell} + (b^{t}d)_{j\ell} dq^{j} \wedge dq^{\ell} + [(a^{t}d)_{\ell}^{j} - (c^{t}b)_{\ell}^{j}] dp_{j} \wedge dq^{\ell}$$

$$\equiv dp_{j} \wedge dq^{j} \quad \text{if and only if}$$
(i) $a^{t}c$ and $b^{t}d$ are symmetric: $a^{t}c = c^{t}a, b^{t}d = d^{t}b$
(ii) $a^{t}d - b^{t}c$ is the identity matrix: $a^{t}d - c^{t}b = I$
then
 $\alpha^{t} J\alpha = \begin{pmatrix} a^{t} c^{t} \\ b^{t} d^{t} \end{pmatrix} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{t} c^{t} \\ b^{t} d^{t} \end{pmatrix} \begin{pmatrix} c & d \\ -a & -b \end{pmatrix}$

$$= \begin{pmatrix} a^{t}c - c^{t}a & a^{t}d - c^{t}b \\ b^{t}c - d^{t}a & b^{t}d - d^{t}b \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} = J$$

8

discrete symplecticity (iii)

Proposition 2 [Lewis & Simo (1995), Wendlandt & Marsden (1997)] A numerical scheme obtained with a discrete set of Euler-Lagrange equations is symplectic.

discrete action $S_d = ... + L_d(q_{i-1}, q_i) + L_d(q_i, q_{i+1}) + ...$ discrete Euler-Lagrange equations: $\frac{\partial L_d}{\partial q_r}(q_{j-1}, q_j) + \frac{\partial L_d}{\partial q_r}(q_j, q_{j+1}) = 0$ right momentum $p_r = \frac{\partial L_d}{\partial a_r}(q_\ell, q_r)$ or $p_j = \frac{\partial L_d}{\partial q_r}(q_{j-1}, q_j)$ discrete Euler-Lagrange equations: $p_i + \frac{\partial L_d}{\partial q_i}(q_i, q_{i+1}) = 0$ discrete Hamiltonian $H_d = p_r q_r - L_d(q_\ell, q_r)$ then $dH_d = dp_r q_r + p_r dq_r - \frac{\partial L_d}{\partial q_\ell} dq_\ell - p_r dq_r = -\frac{\partial L_d}{\partial q_\ell} dq_\ell + dp_r q_r$ $H_d = H_d(q_\ell, p_r), \ \frac{\partial H_d}{\partial q_\ell}(q_\ell, p_r) = -\frac{\partial L_d}{\partial q_\ell}(q_\ell, q_r), \ \frac{\partial H_d}{\partial p_\ell}(q_\ell, p_r) = q_r$ discrete Euler-Lagrange becomes discrete (implicit) Hamilton $p_j - \frac{\partial H_d}{\partial a_s}(q_j, p_{j+1}) = 0, \quad q_{j+1} = \frac{\partial H_d}{\partial p_r}(q_j, p_{j+1})$ (**a** an

Jacobian matrix
$$\alpha = \begin{pmatrix} \frac{\partial p_{j+1}}{\partial p_j} & \frac{\partial p_{j+1}}{\partial q_j} \\ \frac{\partial q_{j+1}}{\partial p_j} & \frac{\partial q_{j+1}}{\partial q_j} \end{pmatrix}$$
; $\alpha^{t} J \alpha = J$?

10

discrete symplecticity (iv)

differentiate the discrete Hamilton equations

the Hessian matrix is symmetric

$$H''_q \equiv \frac{\partial^2 H_d}{\partial q_\ell^2}$$
, $H''_p = \frac{\partial^2 H_d}{\partial p_r^2}$, $\gamma \equiv \frac{\partial^2 H_d}{\partial q_\ell \partial p_\ell}$ are symmetric matrices

hypothesis: the matrix γ is invertible. Then

$$\begin{aligned} \mathrm{d}p_{j+1} &= \gamma^{-1} \, \mathrm{d}p_j - \gamma^{-1} \, H_q'' \, \mathrm{d}q_j \\ &-H_p'' \, \mathrm{d}p_{j+1} + \, \mathrm{d}q_{j+1} = \gamma \, \mathrm{d}q_j \end{aligned}$$

id est $\begin{pmatrix} \mathrm{I} & 0 \\ -H_p'' & \mathrm{I} \end{pmatrix} \begin{pmatrix} \mathrm{d}p_{j+1} \\ \mathrm{d}q_{j+1} \end{pmatrix} = \begin{pmatrix} \gamma^{-1} & -\gamma^{-1} \, H_q'' \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} \mathrm{d}p_j \\ \mathrm{d}q_j \end{pmatrix}$
with $\begin{pmatrix} \mathrm{d}p_{j+1} \\ \mathrm{d}q_{j+1} \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mathrm{d}p_j \\ \mathrm{d}q_j \end{pmatrix} \equiv \alpha \begin{pmatrix} \mathrm{d}p_j \\ \mathrm{d}q_j \end{pmatrix}$, we have
we have $\begin{pmatrix} \mathrm{I} & 0 \\ -H_p'' & \mathrm{I} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \gamma^{-1} & -\gamma^{-1} \, H_q'' \\ 0 & \gamma \end{pmatrix}$

discrete symplecticity (v)

$$\begin{pmatrix} I & 0 \\ -H''_{p} & I \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \gamma^{-1} & -\gamma^{-1} H''_{q} \\ 0 & \gamma \end{pmatrix}$$
4 relations $a = \gamma^{-1}$
 $-H''_{p} a + c = 0$
 $b = -\gamma^{-1} H''_{q}$
 $-H''_{p} b + d = \gamma$

3 conditions to satisfy $a^{t}c = c^{t}a, \ b^{t}d = d^{t}b, \ a^{t}d - c^{t}b = I$

(i)
$$c = H_p'' a$$
 then $a^{t}c = a^{t} H_p'' a$ is symmetric

(ii)
$$d = \gamma + H''_p b$$

 $d^{t} = \gamma + b^{t} H''_p$ because γ and H''_p are symmetric
 $d^{t}b = \gamma b + b^{t} H''_p b = -H''_q + b^{t} H''_p b$ symmetric

(iii) $a^{t}d - c^{t}b = a^{t}(\gamma + H''_{p}b) - a^{t}H''_{p}b$ = $a^{t}\gamma = I$ because $a = \gamma^{-1}$.

finite elements with quadratic interpolation

basis function of the **P**₂ finite element $\varphi_0(\theta) = (1-\theta)(1-2\theta), \ \varphi_{1/2}(\theta) = 4\theta(1-\theta), \ \varphi_1(\theta) = \theta(2\theta-1)$ $0 < \theta < 1$

interpolating polynomial function

 $q(t) = \frac{q_{\ell}}{\varphi_0(\theta)} + q_m \varphi_{1/2}(\theta) + q_r \varphi_1(\theta)$

discrete derivatives

$$g_{\ell} = \frac{1}{h} \left(-3 \, q_{\ell} + 4 \, q_m - q_r \right), \quad g_m = \frac{q_r - q_{\ell}}{h}, \quad g_r = \frac{1}{h} \left(q_{\ell} - 4 \, q_m + 3 \, q_r \right)$$

C. William Gear (1971)

13

Simpson's quadrature for a discrete Lagrangian

numerical integration on the interval [0, 1] midpoint formula: $\int_{0}^{1} \psi(\theta) \, d\theta \simeq \psi(\frac{1}{2})$ exact for a polynomial ψ of degree ≤ 1 Thomas Simpson (1710-1761) quadrature: $\int_{0}^{1} \psi(\theta) \, d\theta \simeq \frac{1}{6} \left[\psi(0) + 4 \, \psi(\frac{1}{2}) + \psi(1) \right]$ exact for any polynomial ψ of degree ≤ 3

discrete Lagrangian with the Simpson quadrature formula $L_h(q_\ell, q_m, q_r) \simeq \int_t^{t+h} \left[\frac{1}{2} M\left(\frac{\mathrm{d}q}{\mathrm{d}t}\right)^2 - V(q)\right] \mathrm{d}t$ $L_h(q_\ell, q_m, q_r) = \frac{h}{12} M\left(\frac{g_\ell}{2} + 4g_m^2 + g_r^2\right) - \frac{h}{6} \left(V(q_\ell) + 4V(q_m) + V(q_r)\right)$ with

$$g_{\ell} = \frac{1}{h} \left(-3 \, q_{\ell} + 4 \, q_m - q_r \right), \ g_m = \frac{q_r - q_{\ell}}{h}, \ g_r = \frac{1}{h} \left(q_{\ell} - 4 \, q_m + 3 \, q_r \right)$$

discrete Euler-Lagrange equations: middle point 14

N-1discrete action $\Sigma_d = \sum L_h(q_j, q_{j+1/2}, q_{j+1})$ Maupertuis's least-action principle $\delta \Sigma_d = 0$ for arbitrary variations δq_i and $\delta q_{i+1/2}$ $L_h(q_\ell, q_m, q_r) = \frac{h}{12} M(\frac{g_\ell^2}{g_\ell^2} + 4g_m^2 + \frac{g_r^2}{g_r^2}) - \frac{h}{6} (V(q_\ell) + 4V(q_m) + V(q_r))$ Euler-Lagrange equations first established for an arbitrary variation of the internal degree of freedom $\delta q_{i+1/2}$: $\frac{\partial L_s}{\partial q_i} = 0$ we have $\frac{\partial g_{\ell}}{\partial q_m} = \frac{4}{h}$, $\frac{\partial g_m}{\partial q_m} = 0$, $\frac{\partial g_r}{\partial q_m} = -\frac{4}{h}$, $V'_m \equiv \frac{\partial V}{\partial q}(q_m)$ $\frac{\partial L_{s}}{\partial q_{m}} = \frac{h}{6} M \left(g_{\ell} \frac{4}{h} + g_{\ell} \frac{4}{h} \right) - \frac{2}{3} h V'_{m} = \frac{16}{3h} M \left[q_{m} - \frac{1}{2} \left(q_{\ell} + q_{r} \right) - \frac{h^{2}}{8m} V'_{m} \right]$ $q_m - \frac{\hbar^2}{8} M^{-1} \frac{\partial V}{\partial q}(q_m) = \frac{1}{2} (q_\ell + q_r)$: defines implicitly the value q_m as a function of the extremities q_{ℓ} and q_r : $\frac{4}{h^2} M \left(q_{\ell} - 2 q_m + q_r \right) + \frac{\partial V}{\partial q} (q_m) = 0$ consistent with the differential equation $M \frac{d^2 q}{dt^2} + \frac{\partial V}{\partial q} = 0$ then the numerical scheme is symplectic !

discrete Euler-Lagrange equations: extremities

discrete action

$$\Sigma_d = \cdots + L_h(q_{j-1}, q_{j-1/2}, q_j) + L_h(q_j, q_{j+1/2}, q_{j+1}) + \ldots$$

variation relative to q_i equal to zero

discrete Euler-Lagrange equations:

$$\frac{\partial L_S}{\partial q_r}(q_{j-1}, q_{j-1/2}, q_j) + \frac{\partial L_S}{\partial q_\ell}(q_j, q_{j+1/2}, q_{j+1}) = 0$$

after some lines of elementary calculus

$$\frac{1}{h^2} \left(q_{j-1} - 2 \, q_j + q_{j+1} \right) + \frac{1}{3} \, M^{-1} \left(V'_{j-1/2} + V'_j + V'_{j+1/2} \right) = 0$$

consistent with the differential equation $M \frac{d^2q}{dt^2} + \frac{\partial V}{\partial q} = 0$

discrete momentum

right momentum $p_r \equiv \frac{\partial L_S}{\partial q}$ $p_r = \frac{h}{6} M \left[g_\ell \left(-\frac{1}{h} \right) + 4 g_m \left(\frac{1}{h} \right) + g_r \left(\frac{3}{h} \right) \right] - \frac{h}{6} V'_r$ $=\frac{1}{6}\left[\frac{2}{5}M\left(q_{\ell}-8\,q_{m}+7\,q_{r}\right)-h\,V_{r}'\right]$ with $q_m = \frac{1}{2} (q_\ell + q_r) + \frac{h^2}{8} M^{-1} \frac{\partial V}{\partial q} (q_m)$ $p_r = \frac{1}{5} M (q_r - q_\ell) - \frac{h}{5} (2 V'_m + V'_r)$ with space indices: $p_{j+1} = \frac{1}{h} M (q_{j+1} - q_j) - \frac{h}{6} (2 V'_{j+1/2} + V'_{j+1})$ similarly, $p_{j} = \frac{1}{h} M (q_{j} - q_{j-1}) - \frac{h}{6} (2 V'_{i-1/2} + V'_{i})$ taking into account the discrete Euler-Lagrange equations $\frac{1}{h^2} \left(q_{i-1} - 2 q_i + q_{i+1} \right) + \frac{1}{3} M^{-1} \left(V'_{i-1/2} + V'_i + V'_{i+1/2} \right) = 0$ $p_j = \frac{1}{h} M (q_{j+1} - q_j) + \frac{h}{6} (V'_j + 2V'_{j+1/2})$ 16

discrete Hamilton equations

expressions of the moments

$$p_{j+1} = \frac{1}{h} M \left(q_{j+1} - q_j \right) - \frac{h}{6} \left(2 V'_{j+1/2} + V'_{j+1} \right)$$
$$p_j = \frac{1}{h} M \left(q_{j+1} - q_j \right) + \frac{h}{6} \left(V'_j + 2 V'_{j+1/2} \right)$$

discrete Hamiltonian equations

$$p_{j+1} - p_j + \frac{h}{6} \left(V'_j + 4 V'_{j+1/2} + V'_{j+1} \right) = 0$$

$$q_{j+1} - q_j - \frac{h^2}{12} M^{-1} \left(V'_{j+1} - V'_j \right) - \frac{h}{2} M^{-1} \left(p_{j+1} + p_j \right) = 0$$

discrete system to solve at each time step

Ľ

$$\begin{aligned} q_{j+1/2} &- \frac{h^2}{8} M^{-1} V'_{j+1/2} - \frac{1}{2} q_{j+1} = \frac{1}{2} q_j \\ p_{j+1} &+ \frac{h}{6} \left(4 V'_{j+1/2} + V'_{j+1} \right) = p_j - \frac{h}{6} V'_j \\ q_{j+1} &- \frac{h}{2} M^{-1} p_{j+1} - \frac{h^2}{12} M^{-1} V'_{j+1} = q_j + \frac{h}{2} M^{-1} p_j - \frac{h^2}{12} M^{-1} V'_j \end{aligned}$$

write this nonlinear system under the form $F_S(q_{j+1/2}, p_{j+1}, q_{j+1}) = 0$

numerical resolution of one time step with Newton 18

$$F_{S}(q_{j+1/2}, p_{j+1}, q_{j+1}) = 0$$
Jacobian matrix

$$dF_{S}(q_{m}, p, q) = \begin{pmatrix} I - \frac{h^{2}}{8}M^{-1}K & 0 & -\frac{1}{2}I \\ \frac{2}{3}hK & I & \frac{h}{6}K \\ 0 & -\frac{h}{2}M^{-1} & I - \frac{h^{2}}{12}M^{-1}K \end{pmatrix}$$
with $K = V''(q_{m})$

inverse of the Jacobian matrix (formal calculus, scalar case)

$$dF_{S}(q_{m}, p, q))^{-1} = \begin{bmatrix} 1 & \frac{1}{4}\frac{h}{m} & \frac{1}{2} \\ -\frac{2}{3}m\theta + \frac{1}{18}hm\theta\varphi & 1 - \frac{1}{8}h\theta - \frac{1}{12}h\varphi + \frac{1}{96}h^{2}\theta\varphi & -\frac{1}{3}m\theta - \frac{1}{6}m\varphi + \frac{1}{48}hm\theta\varphi \\ -\frac{1}{3}h\theta & \frac{1}{2}\frac{h}{m} - \frac{1}{16}\frac{h^{2}\theta}{m} & 1 - \frac{1}{8}h\theta \end{bmatrix}$$
with $\theta \equiv \frac{h}{m}K$ and $\varphi \equiv \frac{h}{m}V''(q)$

Newton algorithm: machine precision convergence at the fifth iteration

Simpson vs Newmark, 10 meshes per period

Simpson vs Newmark, 20 meshes per period

Simpson vs Newmark, 40 meshes per period

errors and order of convergence

22

10 periods	number of meshes	200	400	800	order
Newmark	momentum	1.85 10 ⁰	$4.59 \ 10^{-1}$	$1.14 \ 10^{-1}$	2.01
Simpson	momentum	$1.12 \ 10^{-3}$	$6.80 \ 10^{-5}$	$4.20 \ 10^{-6}$	4.03
Newmark	state	$3.97 \ 10^{-1}$	$1.00 \ 10^{-1}$	$2.51 \ 10^{-2}$	1.99
Simpson	state	$2.45 \ 10^{-4}$	$1.48 \ 10^{-5}$	9.16 10 ⁻⁷	4.03
100 periods	number of meshes	2000	4000	8000	order
Newmark	momentum	1.65 10 ¹	4.56 10 ⁰	1.14 10 ⁰	1.92
Simpson	momentum	$1.08 \ 10^{-2}$	$6.48 \ 10^{-4}$	$4.01 \ 10^{-5}$	4.04
Newmark	state	2.99 10 ⁰	1.01 10 ⁰	$2.57 \ 10^{-1}$	1.77
Simpson	state	$2.43 \ 10^{-3}$	$1.45 \ 10^{-4}$	$8.98 \ 10^{-6}$	4.04
1000 periods	number of meshes	20000	40000	80000	order
Newmark	momentum	$1.78 \ 10^1$	$1.78 \ 10^1$	1.24 10 ¹	0.33
Simpson	momentum	$1.08 \ 10^{-1}$	$6.47 \ 10^{-3}$	$4.00 \ 10^{-4}$	4.04
Newmark	state	3.14 10 ⁰	3.14 10 ⁰	2.26 10 ⁰	0.23
Simpson	state	$2.43 \ 10^{-2}$	$1.46 \ 10^{-3}$	9.00 10 ⁻⁵	4.04

double linear pendulum

double linear pendulum: first variable

double linear pendulum: second variable

top

top: nutation

conclusion and perspectives

symplectic Simpson numerical scheme linear and a nonlinear pendulum fourth order accuracy numerically established for a nonlinear oscillator and a linear double pendulum stability proven in the linear case under a natural condition $0 < \omega_{\max} h < 2\sqrt{2}$ system case : nonlinear test cases under study to do: covariant extension to mutiple dimensions

adjoint version for dynamic control

28

references

FD, Juan Antonio Rojas-Quintero, A Variational Symplectic Scheme Based on Simpson's Quadrature Geometric Science of Information 2023, LNCS 14072, pages 22–31, 2023.

FD, Juan Antonio Rojas-Quintero, Simpson's Quadrature for a Nonlinear Variational Symplectic Scheme

> Finite Volumes for Complex Applications X—Volume 2, SPMS, volume 433, pages 83-92, 2023.

Juan Antonio Rojas-Quintero, FD, José Guadalupe Cabrera-Díaz, Simpson's Variational Integrator for Systems with Quadratic Lagrangians

Axioms, volume 13, article 255 (23 pages), 2024.

merci de votre attention !

annex: nonlinear pendulum [see Chenciner (2000)] 31

angle $\theta_0 \in (0, \pi)$ $\left[\theta_0 = \frac{\pi}{2} \text{ on the picture}\right]$ non linear pendulum problem $\frac{d^2q}{dt^2} + \omega^2 \sin q = 0, \ q(0) = \theta_0, \ \frac{dq}{dt}(0) = 0$ conservation of energy $\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} \left(\frac{\mathrm{d}q}{\mathrm{d}t} \right)^2 + \omega^2 \left(1 - \cos q \right) \right] = 0$ parameter $k \equiv \sin\left(\frac{\theta_0}{2}\right)$ and 0 < k < 1. observe that $\frac{dq}{dt} < 0$ for small values of t > 0then $\frac{\mathrm{d}q}{\mathrm{d}t} = -2\omega k \sqrt{1 - \frac{1}{k^2} \sin^2\left(\frac{q}{2}\right)} = -2\omega k \cos\varphi$ change of unknown $\sin \varphi = \frac{1}{k} \sin \left(\frac{q}{2} \right)$ then $\varphi(0) = \frac{\pi}{2}$ and $\frac{d\varphi}{dt} = -\omega \sqrt{1 - k^2 \sin^2 \varphi} = -\omega \cos\left(\frac{q}{2}\right)$ differential relation $\omega dt = -\frac{d\varphi}{\sqrt{1-k^2 \sin^2 \varphi}}$

nonlinear pendulum (ii)

incomplete elliptic integral of the first kind

$$F(a, m) \equiv \int_0^a \frac{\mathrm{d}\varphi}{\sqrt{1-m\sin^2\varphi}}$$

complete elliptic integral of the first kind

$$K(m) \equiv \int_0^{\pi/2} \frac{\mathrm{d}\varphi}{\sqrt{1-m\sin^2\varphi}} = F(\frac{\pi}{2}, m)$$

integrate the differential relation $\omega dt = -\frac{d\varphi}{\sqrt{1-k^2 \sin^2 \varphi}}$

$$\omega t = -\int_{\pi/2}^{\varphi} rac{\mathrm{d}\xi}{\sqrt{1-k^2\sin^2\xi}} = \mathcal{K}(k^2) - \mathcal{F}(arphi, k^2)$$

after a fourth of a period *T*, the parameter φ changes from $\frac{\pi}{2}$ to zero: $\omega \frac{T}{4} = \int_0^{\pi/2} \frac{\mathrm{d}\varphi}{\sqrt{1-k^2 \sin^2 \varphi}} = K(k^2)$ Jacobi amplitude A(., m)

reciprocal function of the incomplete elliptic integral of the first kind

$$F(a, m) = u$$
 is equivalent to $a = A(u, m)$

we have
$$F(\varphi, k^2) = K(k^2) - \omega t$$
 and $\varphi = A(K(k^2) - \omega t, k^2)$
 $\sin\left(\frac{q}{2}\right) = k \sin \varphi, \ \frac{\mathrm{d}q}{\mathrm{d}t} = -2 \,\omega \, k \, \cos \varphi$