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How to integrate over a group ?

▶ Let G be a finite or compact Lie group : G = {SO(D),D2n(D)} ;
▶ Let f : G→ R+ be a function(∫

g∈G
f(g)dg =

)∫
g∈G

f(g)µG(g),

∫
g∈G

µG(g) = 1;

▶ µG is the "uniform" measure on G.

How to use this formula ? What is the "expression" of µG ?
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Practical computations for simple cases

G finite: G = {gi}Ni=1∫
g∈G

f(g)µG(g) =

N∑
i=1

f(gi)k(gi)

▶ Constant function =⇒ f(g) = 1

▶ k(gi) = cte
▶ k(gi) =

1
N

G = SO(2):

R : α ∈ [0; 2π[7→
(
cosα − sinα
sinα cosα

)
∫
g∈G

f(g)µG(g) =

∫ 2π

α=0
f(R(α))k(α)dα

▶ Constant function =⇒ f(g) = 1

▶ k(α) = cte
▶ k(α) = 1

2π
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What about the group of 3D rotations ? G = SO(3)

Since several parametrisations are possible (Euler angles, quaternions, etc), let R be

R : U ⊂ R3 → SO(3)
u = (u1, u2, u3) 7→ R(u) ∈ M3(R)Therefore,∫

g∈G
f(g)µG(g) =

∫
u∈U

f(R(u))(R∗µG)(u) =

∫
u∈U

f̄(u)k(u)du

Problems

▶ For which parametrisation R does k is constant ? (if any)
▶ Only f̄ = f ◦R is known for a given R, how can we find the k associated to it ?

(without inverting complicated formulas linking two parametrisations)
▶ What is µG and what does "uniformity" mean in that context ?
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The Haar measure in solid mechanics

The measure µG is called the Haar measure of a compact Lie group G and
is necessary as soon as an integration has to be on G.

▶ Well-established in mathematical literature [Car40] :
▶ Can lack introductory documents and practical examples [Stu08] ;
▶ Introductory documentation is available in other fields (e.g. quantum physics) [Mel23].

▶ but less familiar among mechanicians (frequently not mentioned) :
▶ Sampling of random rotations [Bra18] ;
▶ In homogenisation [XAD24] with averaging tensors over a group ;
▶ Except in invariant theory [Tau22].
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Summary

Presentation based on [EK24] (pre-print, under review).

Group integration

Examples

The Reynolds Projector

Goal of the presentation

▶ Introduce the Haar measure of a Lie group and
provide a formula to compute its expression in any
parametrisation ;

▶ Apply this formula to the group of 3D rotations for
different parametrisations ;

▶ Present a tool, the Reynolds projector used in
invariant theory to compute invariants.
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Group integration
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"Uniform" integration over a group

Definition : G Lie Group (finite dimension)

G is a manifold with a differentiable group structure : (h ∈ G)

Rh or Lh : G → G
g 7→ gh or hg

and
G → G
g 7→ g−1 are differentiable.

Definition : Lie algebra g of a Lie group G

g is a vector space given by
g = TeGG

We recall the Lie algebras
so(D) =

{
A ∈ MD(R)

∣∣∣ A⊤ = −A
}
.

Intuitively, a uniform integration should not depend on the
"position" but only on the "size" of the integrated set B ⊂ G.
A "uniform" integration measure µG is therefore invariant
regarding any "translation" T∫

B
µG =

∫
B
T∗µG

▶ If G = (RD,+) : T are the usual translations and µG is the Lebesgue measure ;
▶ Generally, the "translations" are the Lh and Rh, usually different (∀h ∈ G).
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Haar measure

Definition / Theorem [Car40] : Existence and Uniqueness of the Haar measure

On a compact Lie group G, it exists a unique, bi-invariant probability measure µG
called the Haar measure. For any h ∈ G,

∀B ⊂ G,

∫
B
µG =

∫
B
(Lh∗µG) =

∫
B
(Rh∗µG),

∫
G
µG = 1.
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Expression of the Haar measure in a given parametrisation
Let G be a compact Lie group of dimension d and p a parametrisation

p : U ⊂ Rd → G
u = (u1, . . . , ud) 7→ p(u)

The integral of a dummy function f : G 7→ R is given by∫
g∈G

f(g)µG(g) =

∫
u∈U

f(p(u))(p∗µG)(u) =

∫
u∈U

f̄(u)k(u)du

Theorem [EK24] : local expression µG

Let (ξi) be a basis of the Lie algebra g of G, and (θi) the components of the
left-invariant Maurer-Cartan form on G. The local expression k is given by

u ∈ U, k(u) = C−1 det

(
θip(u)

(
∂p

∂uj

))
,

where C is a constant to be determined such that µG is a probability measure on G.
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Expression of the Haar measure in a given parametrisation - Matrix group
Let G be a matrix group of dimension d and p a parametrisation

p : U ⊂ Rd → G
u = (u1, . . . , ud) 7→ p(u)

The integral of a dummy function f : G 7→ R is given by∫
g∈G

f(g)µG(g) =

∫
u∈U

f(p(u))(p∗µG)(u) =

∫
u∈U

f̄(u)k(u)du

Theorem [EK24] : local expression µG for a matrix group

Let (ξi) be a basis of the Lie algebra g of G. The local expression k is given by

k(u) = C−1 det

〈
p(u)−1 ∂p

∂uj
, ξi

〉
,

where C is a constant to be determined such that µG is a probability measure on G.
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Examples
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Warm up - G = SO(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p : [0; 2π[⊂ R → M2(R)

α 7→ p(α) =

(
cosα − sinα
sinα cosα

)
The integral of a dummy function f : SO(2) 7→ R is given by∫

g∈SO(2)
f(g)µSO(2)(g) =

∫
α∈[0;2π[

f(p(u))(p∗µSO(2))(α) =

∫ 2π

α=0
f̄(α)k(α)dα
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Warm up - G = SO(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p : [0; 2π[⊂ R → M2(R)

α 7→ p(α) =

(
cosα − sinα
sinα cosα

)

Application of the Theorem [EK24]

Choose (ξ1) =

(
0 1
−1 0

)
as a basis of the Lie algebra so(2) of SO(2).

The local expression k is given by

k(α) = C−1 det

〈
p(α)−1 ∂p

∂α
, ξ1

〉
,

where C is a constant to be determined such that µSO(2) is a probability measure.
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Warm up - G = SO(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p : [0; 2π[⊂ R → M2(R)

α 7→ p(α) =

(
cosα − sinα
sinα cosα

)
Application of the Theorem [EK24]

The local expression k is given by

k(α) =
C−1

2
Tr

(
p(−α) ∂p

∂α
ξ1

)
=
C−1

2
Tr

((
cosα sinα
− sinα cosα

)(
− sinα − cosα
cosα − sinα

)(
0 1
−1 0

))
=
C−1

2
Tr

((
1 0
0 1

))
= C−1

where C is a constant to be determined such that µSO(2) is a probability measure.
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Warm up - G = SO(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p : [0; 2π[⊂ R → M2(R)

α 7→ p(α) =

(
cosα − sinα
sinα cosα

)
Application of the Theorem [EK24]

The local expression k is given by

k(α) =
1

2π
The integral of a dummy function f : SO(2) 7→ R is given by∫

g∈SO(2)
f(g)µSO(2)(g) =

1

2π

∫ 2π

α=0
f̄(α)dα
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G = SO(3) - Euler angles
SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

Figure: Representation of a rotation using Euler angles.
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G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

R(u) =

cosα cos γ − cosβ sinα sin γ − cosα sin γ − cosβ cos γ sinα sinα sinβ
cos γ sinα+ cosα cosβ sin γ cosα cosβ cos γ − sinα sin γ − cosα sinβ

sinβ sin γ cos γ sinβ cosβ


The integral of a dummy function f : SO(3) 7→ R is given by∫

g∈SO(3)
f(g)µSO(3)(g) =

∫ π

α=−π

∫ π

β=0

∫ π

γ=−π
f̄(α, β, γ)k(α, β, γ) dα dβ dγ
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G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

In 3D, there exists an accidental isomorphism j between R3 and so(3) given by

j :

x1x2
x3

 ∈ R3 →

 0 x3 −x2
−x3 0 x1
x2 −x1 0

 ∈ so(3),
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G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

Application of the Theorem [EK24]

Choose (ξi = j(ei)) as a basis of the Lie algebra so(3) of SO(3).
The local expression k is given by

k(α, β, γ) = C−1 det

〈
R(α, β, γ)−1 ∂R

∂uj
, j(ei)

〉
,

where C is a constant to be determined such that µSO(3) is a probability measure.
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G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

Application of the Theorem [EK24]

The local expression k is given by

k(α, β, γ) = C−1 det ⟨τi(α, β, γ), j(ej)⟩ , with τi = R(α, β, γ)−1 ∂R

∂ui
(α, β, γ) ∈ so(3).

Let T be the components matrix of the vectors j−1(τi) ∈ R3 in the canonical basis of R3,

k(α, β, γ) = C−1 detT.

where C is a constant to be determined such that µSO(3) is a probability measure.
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G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p : U = [−π;π]× [0;π]× [−π;π] → M3(R)
u = (α, β, γ) 7→ R(u)

Application of the Theorem [EK24]

The local expression k is given by (using a symbolic computation software)

k(α, β, γ) =
1

8π2
sinβ

The integral of a dummy function f : SO(3) 7→ R is given by∫
g∈SO(3)

f(g)µSO(3)(g) =
1

8π2

∫ π

α=−π

∫ π

β=0

∫ π

γ=−π
f̄(α, β, γ) sinβ dα dβ dγ

Usage in mechanics : Applied to the homogenisation of randomly oriented spheroidal voids
in porous metals (Gurson model [XAD24]).
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Group of unitary quaternions Q

Definition : Algebra of quaternions H

H =
{
q = w + xi+ yj + zk | (w, x, y, z) ∈ R4

}
, i2 = j2 = k2 = ijk = −1.

It is isomorphic to the algebra M2(C),
[q] =

(
w + xi −y − zi
y − zi w − xi

)
with [q] = [w − xi− yj − zk] = [q]

t
, [q]−1 =

[q]

det[q]

Definition : Group of unitary quaternions Q

||q|| = w2 + x2 + y2 + z2 = det[q] = 1, [q]−1[q] = [qq] = [q]
t
[q] = [1] = I

Therefore,
Q ≃ S3 ≃ SU(2) =

{
[q] ∈ M2(C)

∣∣∣ [q]t[q] = I, det[q] = 1
}
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Group of unitary quaternions Q

Lie algebra morphisms

q = Im(H) =
{
v = vxi+ vyj + vzk |v ∈ R3

}
≃ su(2) = {[v] | v ∈ q}

Looking at the application (adjoint representation of SU(2) on su(2))

ρ : SU(2) → GL(su(2)) ≃ GL3(R)
[q] 7→

(
[v] 7→ [q][v][q]−1 = [qvq̄] = [ρ(q)v]

)

Properties

▶ ||ρ(q)v|| = det([q][v][q]−1) = det([v]) = ||v|| (isometry)
▶ S3 ≃ SU(2) is connected and v 7→ [1][v][1]−1 = [v] (ρ(1) = I)

We have a (non-injective) morphism between SU(2) and SO(3).
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G = SO(3) - Unitary Quaternions

A unitary quaternion q = w + xi+ yj + zk ∈ Q can be associated to a rotation
R(n, α) ∈ GL3(R) (morphism between SU(2) and SO(3)) :

▶ The rotation axis n is given by n = (x, y, z);
▶ Vect(n) = ker(ρ(q)− I) ;

▶ The angle of rotation α is given by α = 2arccosw = 2arcsin
√
x2 + y2 + z2;

▶ 1 + 2 cosα = Tr(R(n, α)) ;
▶ The rotated vector of a vector v ∈ R3 is given by the multiplications qvq̄ ;

▶ adjoint representation of SU(2) on su(2) ;
▶ v = vxi+ vyj + vzk (Im(H) ≃ su(2) ≃ R3) ;
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G = SO(3) - Unitary Quaternions

Hyperpolar parametrisation → Application of Theorem [EK24]

p : U → Q ⊂ H
(θ, ψ, ϕ) 7→ q = w + xi+ yj + zk

(θ, ψ, ϕ) ∈ U = [0;π]× [0;π]× [0; 2π],


w = cos θ
x = sin θ cosψ
y = sin θ sinψ cosϕ
z = sin θ sinψ sinϕ

Is there a p : U ⊂ R3 → SO(3) such as k(u) = 1 ?

Usage in mechanics : For numerical computations (random sampling) with rotations [Bra18].
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Overview : Integration over the group of 3D rotations

Problems solved ?
▶ What is µG and what does "uniformity" mean in that context ?

▶ It is the unique, bi-invariant Haar measure over the group.
▶ Only f̄ = f ◦R is known for a given R, how can we find the k associated to it ?

▶ Applications of Theorem [EK24].
▶ For which parametrisation R : U → SO(3) does k is constant ?

▶ I don’t know (probably not).

What are the applications of the Haar measure in solid mechanics ?



Introduction Group integration Examples The Reynolds Projector Conclusion References 17 / 23

The Reynolds Projector
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Averaged tensor

Let T be a tensor of order n on RD and G a group acting on RD.
G acts on T through ⋆,

(g ⋆ T)i1...in = gi1j1 . . . ginjnTj1...jn , g ∈ G.

If G = {gi}Ni=1, an averaged tensor T̃ can be computed,

T̃ =
1

N

N∑
i=1

gi ⋆ T =

N∑
i=1

(gi ⋆ T)µG(gi).

Extension to a Lie group G using the Haar measure

T̃ =

∫
g∈G

(g ⋆ T)µG(g).
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The Reynolds projector
Let V a vector space on which G acts threw a linear representation ρV : G→ GL(V ),

v ∈ V, g ⋆ v := ρV (g)v.

Definition : The Reynolds projector/operator RV
G of G on V [Stu08]

RV
G : V → V

v 7→
∫
g∈G

(
ρV (g)v

)
µG(g)

Properties

▶ It is a projector : linear and (RV
G)

2 = RV
G ;

▶ It is invariant under the action of G : ρV (g)RV
G(v) = RV

G(v).

Usage in mechanics : In homogenisation ([XAD24]) the Reynolds projector appears as an
averaging operator.
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Dimension of invariant elements of V

Let V a vector space on which G acts threw a linear representation ρV : G→ GL(V )

V G := {v ∈ V | v is invariant under G} = {v ∈ V | ρV (g)v = v,∀g ∈ G}.

Trace formula (since RV
G is a projector)

dimV G = dim Im(RV
G) =

∫
g∈G

Tr(ρV (g))µG(g).

If V = ⊗nRD, tensors of order n over RD without indicial symmetries, and
ρ : G→ GLD(R) the canonical representation

dimV G =

∫
g∈G

Tr(ρ(g))nµG(g).

Usage in mechanics : In invariant theory [And04] this dimension is used to compute the number
of coefficients needed to represent higher order tensors for anisotropic generalised continua.
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Overview : Usage of the Haar measure in solid mechanics

Key points

▶ The Haar measure is the basic ingredient for integrating over a Lie group ;
▶ It defines the uniform probability space (G, σ(G), µG) on the group ;
▶ It allows to formulate the Reynolds projector RV

G of a compact Lie group on a
vector space V :

▶ It is an averaging operator : it is a projector on the space V G of invariant elements ;
▶ Used to determine the dimension of invariant spaces.
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