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How to integrate over a group ?

» Let G be a finite or compact Lie group : G = {SO(D),D2,(D)} ;
» Let f: G — RT be a function

( 9€@ Jlo)ds :) /geG Fg)ucl9), /QEG palg) =1

> /i is the "uniform™ measure on G.

How to use this formula 7 What is the "expression” of ug ?
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Practical computations for simple cases

o m G =S0(2):
G finite: G = {g,l- =1 R: a e [0; 2n] (osa ﬁsi‘na>
N SN &« COS «x
F9)na(g) =Y fg)k(g:) -
oG = | #oua) = [ sBa)ka)da
» Constant function = f(g) =1 9<C o=
Lo » Constant function = f(g) =1
> k(gi) = cte
» k(a) = cte

> k(g) = §
. > k(o) =4

™



Introduction 4/23
[e]e] Tele]

What about the group of 3D rotations ? G = SO(3)

Since several parametrisations are possible (Euler angles, quaternions, etc), let R be

R: UcCR3 s SO(3)
u=(u',u?,u?) = R(u) < M3R)

-46(1‘ f(!ﬁ/%.‘(.@ = /ue(; f(]?(u»(]?‘[z()(u) = / ]‘T(U)k‘(’u,)du,

JueU

Therefore,

Problems

» For which parametrisation R does k is constant 7 (if any)

» Only f = fo R is known for a given R, how can we find the % associated to it ?
(without inverting complicated formulas linking two parametrisations)

» What is 1y and what does "uniformity” mean in that context ?
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The Haar measure in solid mechanics

The measure p¢ is called the Haar measure of a compact Lie group G and
is necessary as soon as an integration has to be on G.

» Well-established in mathematical literature [Car40] :

» Can lack introductory documents and practical examples [Stu08] ;
» Introductory documentation is available in other fields (e.g. quantum physics) [Mel23].

» but less familiar among mechanicians (frequently not mentioned) :
» Sampling of random rotations [Bral8] ;
» In homogenisation [XAD24] with averaging tensors over a group ;
» Except in invariant theory [Tau22].
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Summary

Presentation based on [EK24] (pre-print, under review).

Goal of the presentation

Group integration > Intrgduce the Haar measure of.a Lie group a.nd
provide a formula to compute its expression in any
parametrisation ;

Examples » Apply this formula to the group of 3D rotations for

different parametrisations ;

The Reynolds Projector » Present a tool, the Reynolds projector used in
invariant theory to compute invariants.
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"Uniform" integration over a group

Definition : G Lie Group (finite dimension)

G is a manifold with a differentiable group structure : (h € G)

RporLp: G — & and &= (_;1 are differentiable.
g + ghorhg g =

Definition : Lie algebra g of a Lie group G

g is a vector space given by

Y

g= T;f"f(: o

We recall the Lie algebras
s0(D) = {A € Mp(R) ‘ AT = —A}.
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"Uniform" integration over a group

Definition : G Lie Group (finite dimension)

G is a manifold with a differentiable group structure : (h € G)

RporLy: G — G e G = gl are differentiable.
g +— ghorhg g =

Intuitively, a uniform integration should not depend on the

"position” but only on the "size” of the integrated set B C G. G
A "uniform" integration measure p is therefore invariant

regarding any "translation” T

/MG:/T*,UG
B B

» If & = (R”,+): T are the usual translations and /i is the Lebesgue measure ;
» Generally, the "translations" are the Lj, and Ry, usually different (Vh € G).
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Haar measure

Definition / Theorem [Car40] : Existence and Uniqueness of the Haar measure

On a compact Lie group G, it exists a unique, bi-invariant probability measure ug
called the Haar measure. For any h € G,

VB C G, /uc Z/(Lh*MG) =/(Rh*ua), /uc= 1.
B B B G
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Expression of the Haar measure in a given parametrisation

Let G be a compact Lie group of dimension d and p a parametrisation

p: U c R4 - G
u=(ul,..., u?) = plu)

The integral of a dummy function [ : G — R is given by

geG / fp(u)(P" pe)( / flu

Theorem [EK24] : local expression jiq

Let (&) be a basis of the Lie algebra g of G, and (#?) the components of the
left-invariant Maurer-Cartan form on G. The local expression k is given by

")

where (' is a constant to be determined such that ug is a probability measure on G.
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Expression of the Haar measure in a given parametrisation - Matrix group

Let G be a matrix group of dimension d and p a parametrisation

p: U c R4 - G

u*(ul,...,ud) — [)(u)

The integral of a dummy function f : G — R is given by

geG / () (P" pe)( / flu

Theorem [EK24] : local expression g for a matrix group

Let (&;) be a basis of the Lie algebra g of G. The local expression k is given by
B(w) = C" det <p<>0ps> |
071,]'

where (' is a constant to be determined such that ug is a probability measure on G.
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Warm up - G = 50(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p: [0;2r[C R — My (R)
cosa —sin«
a = pla) = < )

sina  cosa
The integral of a dummy function f : SO(2) — R is given by

21

/gesomf (9)mso) (9) = /a o] PP H500)(@) = / F(@)k(a)da

a=0
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Warm up - G = 50(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p: [0;2r[Cc R — M, (R)
N — pla) = cosa —sino
P = \sina  cosa

Application of the Theorem [EK24]

Choose (&) = (01 é) as a basis of the Lie algebra so(2) of SO(2).

The local expression k is given by
- —10p
k(o) = C ' det 1= &),
(@)= 0 det () .61 )

where C'is a constant to be determined such that pgo () is a probability measure.
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Warm up - G = 50(2)
SO(2) is a matrix group of dimension 1 and p the parametrisation
p: [0;2r[Cc R — M, (R)

cosa —sina
e = pla) = < )

sino  cos«

Application of the Theorem [EK24]

The local expression k is given by

=" 0
ko) = S <p<—a>£&)
o= << COS (v sina> (—sina —cosa> < 0 1>>
= —Tr . g
2 —sina  cos« cosa —sina -1 0
c1! 1 0 .
—T“<<o 1>> =0

where C'is a constant to be determined such that ugo(2) is a probability measure.
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Warm up - G = 50(2)

SO(2) is a matrix group of dimension 1 and p the parametrisation

p: [0;2r[Cc R — Ms(R)
’ o )_ cosa —sino
“ PlY= \sina  cosa

Application of the Theorem [EK24]

The local expression k is given by
1
T o

The integral of a dummy function f : SO(2) — R is given by

k/’((li)

. 1 [
[ t@wmsow@ =5 [ Fla)a
Jges0o(2) T Ja=0




Examples
[e]e] lelele)

(G = SO(3) - Euler angles
SO(3) is a matrix group of dimension 3 and p the parametrisation
p: U=[-mm7| x[0;7] x [-m;7] — M;3(R)
u = (a, 3,7) —  R(u)

Figure: Representation of a rotation using Euler angles.
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(G = 5S0(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p: U=|[-mm7|x[0;7] x [-m;71] — M3(R)
u = (a, B3,7) = R(u)
cosacosy —cosBsinasiny —cosasiny —cosfcosysina  sinasinf
R(u) = | cosysina + cosacos fsiny  cosacosfcosy —sinasiny —cosasin 3
sin 3 sin cosysin 3 cos 3

The integral of a dummy function f: SO(3) — R is given by

/gESO(S)f( 950 /_ﬂ/ﬁ o/_ﬂ o, B,y)k(a, 3, 7) dadB dy
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(G = 5S0(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation
p: U=[-mmn]x[0;7] x [-m;7] — M;s(R)
u = (e, 5,7) = R(u)
In 3D, there exists an accidental isomorphism j between R? and s0(3) given by
T 0 r3 —XT9
jila | eRP—= | =23 0 xr1 | €s0(3),
T3 Tr9  —X 0
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(G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation
p: U=[-mn] x[0;7] x [-m;7] — Ms(R)
u=(a,,7) —  R(u)

Application of the Theorem [EK24]

Choose (&; = j(e;)) as a basis of the Lie algebra s0(3) of SO(3).
The local expression k is given by
. L, 1 0R .
k(a,8,7) = € det { R(a, ) law,y<ez—>> |

where C'is a constant to be determined such that ugo(s) is a probability measure.
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(G = SO(3) - Euler angles

SO(3) is a matrix group of dimension 3 and p the parametrisation

p: U=[-mn] x[0;7] x [-m;7] — M3(R)
u=(a,B,7) = R(u)

Application of the Theorem [EK24]

The local expression k is given by

e, B,7) = O det (e B,7),(es)), with 72 = (e B,) 5

(o, B,7) € 50(3).

Let T be the components matrix of the vectors j ' (7;) € R? in the canonical basis of R3,

k(a,B,v) = C tdetT.

where (' is a constant to be determined such that ugos) is a probability measure.
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(G = SO(3) - Euler angles
SO(3) is a matrix group of dimension 3 and p the parametrisation

p: U=|[-mmn|x[0;7] x [-m;71] — M3(R)
u=(a,B,7) —  R(u)

Application of the Theorem [EK24]

The local expression k is given by  (using a symbolic computation software)
1
k(a,B,v) = 5 sinj
87r

The integral of a dummy functlon f:S0O(3) — R is given by

/ f(g)/f/“ / / / f(a, B,7) sin BdadB dy
g€SO(3) a=—7 JB=0Jy=—m7

Usage in mechanics : Applied to the homogenisation of randomly oriented spheroidal voids
in porous metals (Gurson model [XAD24]).




Group integration Examples The Reynolds Projector Conclusion References

[e]e]e] lele]

Group of unitary quaternions ()

Definition : Algebra of quaternions H

H = {(1 =w+xi+yj+ zk | (w,z,y,2) € R4} , 2=42 =k =ijk=—1.

It is isomorphic to the algebra My (C),
lq] = w+ Tt —Y— 21
D= \y—2i w—wi

with @ = [w—ai—yj— 2k =[d, g
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Group of unitary quaternions ()

Definition : Algebra of quaternions H

H={g=w+i+yj+zk|(w,z,y,2) eR}, ?=3=k=ijk=-1.

It is isomorphic to the algebra My (C),
lq] = w+zxi —Yy— 21
D= \y—2i w—wi

with @ = [w—ai—yj— 2k =[d, g

Definition : Group of unitary quaternions )

llgll = w? + 2% + 3 + 22 = detlg] = 1, [q) " [a] = [ga] =[] la) = [1] =1

mf[(l] =1, det[q] = 1}

Therefore, Q~ S ~SU(2) = {[q} € My (C)
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Group of unitary quaternions ()
q=Im(H) = {v =1, +vyj +v.k|vER} ~su(2)={[v]|veq}
Looking at the application (adjoint representation of SU(2) on su(2))
p: SU(2) — GL(su(2)) ~ GL3(R)
@~ (v~ [l = lgvd) = [p(a)v])
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Group of unitary quaternions ()

Lie algebra morphisms

qg=Im(H) = {u = vt +vyj +vk|v e R:;} ~ su(2) = {[v]|v € q}
Looking at the application (adjoint representation of SU(2) on su(2))
p: SU(2) — GL(su(2)) ~ GL3(R)
()~ (1] [l = lavd] = [o(a)o])

Properties

> (o) = det () = dei(l) = o]~ (sometry)
» 53~ SU(2) is connected and v + [1][v][1]7 = [v] (p(1) =1)
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Group of unitary quaternions ()
q=Im(H) = {v =1, +vyj +v.k|vER} ~su(2)={[v]|veq}
Looking at the application (adjoint representation of SU(2) on su(2))
p: SU(2) — GL(su(2)) ~ GL3(R)
@~ (v~ [l = lgvd) = [p(a)v])

Properties

v Ilo(@el] = det((allellg]=") = det(fe]) = Ilvl] (isometry)
» 53~ SU(2) is connected and v + [1][v][1]7 = [v] (p(1) =1)

We have a (non-injective) morphism between SU(2) and SO(3).
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(G = SO(3) - Unitary Quaternions

A unitary quaternion ¢ = w + xi + yj + zk € @ can be associated to a rotation
R(n,a) € GL3(R) (morphism between SU(2) and SO(3)) :

» The rotation axis n is given by n = (z,y, 2);
» Vect(n) = ker(p(q) = 1) ;

» The angle of rotation « is given by o = 2 arccosw = 2arcsin /22 + y2 + 22;
» 1+2cosa=Tr(R(n,q)) ;

» The rotated vector of a vector v € R? is given by the multiplications qug ;

» adjoint representation of SU(2) on su(2) ;
> v =i+ vy + vk (Im(H) ~ su(2) ~R3) ;
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G = 50(3) - Unitary Quaternions

Hyperpolar parametrisation —

p: U — QCH
0,9,0) = ¢=wtzityj+zk
w = cosf
N ) . x =sinfcosvy
(07¢a¢) el = [0777] S [O’ﬂ-] X [0’27T]’ y = SinHSiD¢COS¢
z =sinfsinysin @
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(G = SO(3) - Unitary Quaternions

Hyperpolar parametrisation —

Q CH

p: U —
0,9,0) = q=w+azi+yj+zk
w = cosf
x =sinfcosy

(0a¢a¢) elU= [077T] X [077T] x [0’ 27T]’ Y = sin@sindJCOS(b
z =sinfsinysin @

s there a p: U C R® — SO(3) such as k(u) =17

Usage in mechanics : For numerical computations (random sampling) with rotations [Bral8].



Examples
00000e

Overview : Integration over the group of 3D rotations

Problems solved ?

» What is ug and what does "uniformity” mean in that context 7
» It is the unique, bi-invariant Haar measure over the group.

» Only f = fo R is known for a given R, how can we find the k associated to it ?
» Applications of Theorem [EK24].

» For which parametrisation R : U — SO(3) does k is constant ?
» | don't know (probably not).

What are the applications of the Haar measure in solid mechanics ?




The Reynolds Projector
[ leJe]e]

The Reynolds Projector
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Averaged tensor

Let T be a tensor of order n on R” and G a group acting on RP.
G acts on T through *,

(g * T)len = gi1j1 R ginjnlen-jn? g e G
If G = {g;}Y,, an averaged tensor T can be computed,

N

N

-1

T=+ > gixT=> (g * T)uc(gs)-
i=1 i=1

Extension to a Lie group G using the Haar measure

T= /geG(g*T)uG(g).
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The Reynolds projector
Let V' a vector space on which G acts threw a linear representation py: G — GL(V),
veV, gxv:=py(g).

Definition : The Reynolds projector/operator Ry, of G on V [Stu08]

RG: V. = V

v o= [ (pv(g)v)uc(g)
gelG

Properties

» It is a projector : linear and (RY)? = R, ;
» It is invariant under the action of G’ : py(g9) R&(v) = R&(v).

Usage in mechanics : In homogenisation ([XAD24]) the Reynolds projector appears as an
averaging operator.
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Dimension of invariant elements of V
Let V' a vector space on which G acts threw a linear representation py: G — GL(V)
V& .= {v eV |visinvariant under G} = {v € V | py(g9)v = v,Yg € G}.

Trace formula (since RY, is a projector)

dim v = dim Im(RE) = [ Te(py (9))nao)
geG

If V = @"RP, tensors of order n over RY without indicial symmetries, and
p: G — GLp(R) the canonical representation

dimv(’—/ Tr(p(g9))" pa(g)-
JgeG

Usage in mechanics : In invariant theory [And04] this dimension is used to compute the number
of coefficients needed to represent higher order tensors for anisotropic generalised continua.
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Overview : Usage of the Haar measure in solid mechanics

» The Haar measure is the basic ingredient for integrating over a Lie group ;
» It defines the uniform probability space (G, o(G), ug) on the group ;

» It allows to formulate the Reynolds projector Rg of a compact Lie group on a
vector space V' :

» Itis an averaging operator : it is a projector on the space V& of invariant elements ;
» Used to determine the dimension of invariant spaces.



References 22/23

References |

[Car40] Henri Cartan. “Sur la mesure de Haar". In: Comptes Rendus de I'Académie des Sciences
de Paris 211 (1940), pp. 759-762.

[And04] Steven S. Andrews. “Using Rotational Averaging To Calculate the Bulk Response of
Isotropic and Anisotropic Samples from Molecular Parameters”. en. In: Journal of
Chemical Education 81.6 (June 2004), p. 877. DOI: 10.1021/ed081p877.

[Stu08] Bernd Sturmfels. Algorithms in Invariant Theory. 2nd ed. Texts & monographs in
symbolic computation. Description based on publisher supplied metadata and other
sources. Vienna: Springer, 2008. 1204 pp.

[Bralg] R M Brannon. Rotation, Reflection, and Frame Changes: Orthogonal tensors in
computational engineering mechanics. en. |0P Publishing, Apr. 2018. DOI:
10.1088/978-0-7503-1454-1.

[Tau22] Julien Taurines. “Modélisation du couplage magnéto-élastique dans les milieux solides a
symétrie cubique”. PhD thesis. Université Paris-Saclay, Dec. 2022.

[Mel23] Antonio Anna Mele. Introduction to Haar measure tools in quantum information: A

beginner’s tutorial. 2023. DOI: 10.48550/arxiv.2307.08956.


https://doi.org/10.1021/ed081p877
https://doi.org/10.1088/978-0-7503-1454-1
https://doi.org/10.48550/arxiv.2307.08956

References 23/23

References Il

[EK24] Cléement Ecker and Boris Kolev. The Haar measure in solid mechanics. arXiv:2410.03371
[math-ph]. Oct. 2024.

[XAD24] S. Xenos, N. Aravas, and K. Danas. “A homogenization-based model of the Gurson type
for porous metals comprising randomly oriented spheroidal voids”. en. In: European
Journal of Mechanics - A/Solids 105 (May 2024), p. 105238. DOI:
10.1016/j.euromechsol.2024.105238.


https://doi.org/10.1016/j.euromechsol.2024.105238

	Introduction
	Group integration
	Examples
	The Reynolds Projector
	Conclusion
	References

