Simulations des équations d'Euler avec formalisme espace-temps

F. Blachère, J. Danzel, B. Portelenelle, E. Rouhaud

Université de Technologie de Troyes, GAMMA3

Novembre 2024 GDR GDM, Ircam, Paris

Sommaire

Formalisme espace-temps

Généralités CFD classique en espace-temps

Mécanique des fluides numérique

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Simulations numériques

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Généralités CFD classique en espace-temps

Sommaire

Formalisme espace-temps Généralités CFD classique en espace-temps

Mécanique des fluides numérique

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Simulations numériques

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Généralités CFD classique en espace-temps

Formalisme espace-temps

Figure – Représentation d'un tube d'univers \mathcal{T} avec des lignes d'univers en orange.

Variété 4D

Univers : variété pseudo-riemannienne 4D \mathcal{M}

- Milieu continu (matière distribuée continûment de densité massique au repos $\tilde{\rho_c}$)
- Pseudo-métrique g de signature (1, -1, -1, -1)
- Evénement P ∈ M identifié par un jeu de 4 coordonnées (x^µ)_{µ∈{0,1,2,3}}

$$\gamma_P : \mathbb{R} \to \mathcal{M}, s \mapsto \gamma_P(s) = \{\phi_s(P)\},\$$

pendant 4D des trajectoires.

4-vitesse notée u :

$$u^\mu = {dx^\mu\over ds}$$
 avec $ds^2 = g_{\mu
u}\,dx^\mu dx^
u.$

Généralités CFD classique en espace-temps

Tenseur moment-énergie

Tenseur moment-énergie T

$$T^{\mu
u} = 2 rac{\partial \mathcal{L}_{\mathrm{M}}}{\partial g_{\mu
u}}$$

où $\mathcal{L}_{\rm M}$ est la contribution de la matière à la densité d'énergie. $\pmb{\mathcal{T}}$: généralisation 4D du tenseur des contraintes. Un tenseur covariant.

Conservation de l'énergie-impulsion

$$\nabla_{\nu} T^{\mu\nu} = 0$$

où ∇ denote la dérivée covariante.

Cette conservation est le pendant 4D de, à la fois :

- le bilan de puissance,
- la conservation de l'impulsion.

Conservation vérifiée pour tout observateur.

Généralités CFD classique en espace-temps

CFD classique $(|\mathbf{v}| \ll c)$ en espace-temps

Premiers travaux en CFD classique

- Éléments finis : espace-temps avec méthode de Galerkin discontinue, pour l'élastodynamique [*Hugues et al. 1988*] puis la CFD [*1989*]
- Volumes finis : espace-temps basé sur des tranches temporelles, pour fluides à surface libre [Zwart et al. 1999]

Intérêts pour la CFD classique

- Invariance par changement de repère.
- Mêmes schémas en espace et en temps.
- Raffinement local du maillage en espace-temps.
- Volumes finis : conservatifs en temps également.

Notre positionnement

- Formalisme des systèmes hyperboliques de loi de conservation.
- Faisabilité sur les équations d'Euler, dans des cas simples.
- Construction à partir du formalisme classique, sur maillage extrudé en temps.

Modélisation classique vers espace-temps Différences finies en espace-temps /olumes finis en espace-temps

Sommaire

Formalisme espace-temps Généralités CFD classique en espace-temp

Mécanique des fluides numérique Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Simulations numériques

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Modélisation dans l'espace classique

Cadre général pour fluide visqueux compressible avec flux de chaleur et forces volumiques : les équations de Navier-Stokes.

Équations de Navier-Stokes

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) &= 0\\ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) &= -\nabla p + \nabla \cdot \Sigma + \rho \mathbf{g}\\ \frac{\partial E}{\partial t} + \nabla \cdot (E \mathbf{v}) &= \nabla \cdot (\Sigma \cdot \mathbf{v}) - \nabla \cdot (\rho \mathbf{v}) + \rho \mathbf{g} \cdot \mathbf{v} - \nabla \cdot \mathbf{q} \end{aligned}$$

Notations :

- t le temps,
- ρ la masse volumique du fluide,
- v la vitesse du fluide,
- *p* la pression thermodynamique,
- $E = \rho e + \rho \frac{|\mathbf{v}|^2}{2}$ l'énergie totale,

- g une force volumique (e.g. gravité),
- q le flux de chaleur,
- Σ le tenseur des contraintes visqueuses.

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Modélisation dans l'espace classique

Pour cette étude, nous nous placerons dans un cadre simplifié.

Équations d'Euler sans force volumique

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + \rho l) = \mathbf{0}$$
$$\frac{\partial E}{\partial t} + \nabla \cdot ((E + \rho)\mathbf{v}) = 0$$

Formalisme loi de conservation $\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{a}} + \nabla \cdot (\boldsymbol{F}(\boldsymbol{U})) = \boldsymbol{0}$

Hypothèses :

- on néglige les transferts thermiques (q = 0),
- on néglige la viscosité ($\Sigma = 0$),
- on considère g = 0,
- / est la matrice identité.

Système hyperbolique de loi de conservation :

- expression en termes de flux $\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho \boldsymbol{v} \\ E \end{pmatrix}, \boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} \rho \boldsymbol{v}^{\mathsf{T}} \\ \rho \boldsymbol{v} \otimes \boldsymbol{v} + \rho l \\ (E + \rho) \boldsymbol{v}^{\mathsf{T}} \end{pmatrix},$
- adapté pour la méthode des volumes finis.

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Modélisation avec le formalisme espace-temps

Notations & hypothèses :

- c : vitesse de la lumière dans le vide,
- variations de γ négligeables $(|\mathbf{v}| \ll c)$,

• $\gamma = \frac{1}{\sqrt{1 - \frac{|\mathbf{v}|^2}{c^2}}}$ (facteur de Lorentz).

On obtient l'équation suivante, après multiplication par $\frac{\gamma}{c}$:

$$\frac{\partial(\gamma \boldsymbol{U})}{\partial x^0} + \nabla \cdot \left(\frac{\gamma}{c} \boldsymbol{F}(\boldsymbol{U})\right) = \boldsymbol{0},$$

qui peut aussi s'écrire de manière plus générale :

Loi de conservation en espace-temps

$$\nabla_{\nu} \boldsymbol{G}^{\mu\nu}(\boldsymbol{U}) = \boldsymbol{0},$$

avec
$$\boldsymbol{G}(\boldsymbol{U}) = \begin{pmatrix} \gamma \boldsymbol{U} & \frac{\gamma}{c} \boldsymbol{F}(\boldsymbol{U}) \end{pmatrix} = \begin{pmatrix} \gamma \rho & \frac{\gamma}{c} \rho \boldsymbol{v}^T \\ \gamma \rho \boldsymbol{v} & \frac{\gamma}{c} (\rho \boldsymbol{v} \otimes \boldsymbol{v} + \rho l) \\ \gamma E & \frac{\gamma}{c} (\boldsymbol{E} + \rho) \boldsymbol{v}^T \end{pmatrix}$$

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Modélisation avec le formalisme espace-temps

On peut réécrire cette loi de conservation à l'aide du tenseur moment-énergie ${m T}^{\mu
u}$:

Loi de conservation avec tenseur moment-énergie

$$\frac{\partial(\gamma\rho)}{\partial x^0} + \nabla \cdot \left(\frac{\gamma}{c}\rho \boldsymbol{\nu}\right) = 0,$$

$$\nabla_{\nu} \boldsymbol{T}^{\mu\nu} = \boldsymbol{0},$$

avec $\mathbf{T}^{\mu\nu} = \begin{pmatrix} \gamma \mathbf{E} & \frac{\gamma}{c} (\mathbf{E} + \mathbf{p}) \mathbf{v}^T \\ \gamma \rho \mathbf{v} & \frac{\gamma}{c} (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{l}) \end{pmatrix}$ le tenseur moment-énergie.

Ces équations correspondent respectivement à :

- la conservation de la masse,
- la conservation de l'énergie,
- la conservation de la quantité de mouvement.

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Equation de transport : cas (1+1)D en différences finies

Pour simplifier, on considère dans un premier temps l'équation de transport en 1D :

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Equation de transport : cas (1+1)D en différences finies

Passage en (1+1)D

- Coordonnées : x et $t \longrightarrow (x^0 = ct, x^1 = x)$
- Vitesse : $v \longrightarrow \left(u^0 = \gamma, \ u^1 = \frac{\gamma}{c} v \right)$
- Densité : $\rho_i^n \longrightarrow \rho_{i,j}$

Schéma 1D ($i \in \llbracket 0; M \rrbracket$)

$$\frac{\rho_i^n - \rho_i^{n-1}}{\Delta t} + v \frac{\rho_i^n - \rho_{i-1}^n}{\Delta x} = 0$$

Il faut résoudre N fois le système :

$$A\rho^n = \rho^{n-1}$$

avec
$$ho^n = \begin{pmatrix}
ho_0^n &
ho_1^n & \dots &
ho_M^n \end{pmatrix}^T$$

et A de taille $(M+1) \times (M+1)$.

Schéma (1+1)D (
$$i \in [0; N]$$
)
 $u^0 \frac{\rho_{i,j} - \rho_{i-1,j}}{\Delta x^0} + u^1 \frac{\rho_{i,j} - \rho_{i,j-1}}{\Delta x^1} = 0$

Il faut résoudre une seule fois le système :

$$K\rho = \rho_0$$

avec :

$$\begin{aligned} \rho &= \left(\rho_{1,0} \ \dots \ \rho_{1,M} \ \ \rho_{2,0} \ \dots \ \rho_{N,M}\right)^{T}, \\ \rho_{0} &= \left(\rho_{0,0} \ \dots \ \rho_{0,M} \ \ 0 \ \dots \ 0\right)^{T}, \\ \text{et } K \text{ bidiagonale par blocs avec } A \text{ et } I_{N+1} \end{aligned}$$

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Méthode des volumes finis

Principe des volumes finis

- forme conservative de l'EDP (forme intégrale),
- intégration sur des volumes de contrôle K,
- écriture en termes de flux avec le théorème de Stokes.

Intérêts des volumes finis :

- méthode conservative, i.e. égalité des flux entrants et sortants dans un volume,
- facilement utilisable avec un maillage non structuré, formulation indépendante de sa complexité.

Forme intégrale de la loi de conservation

$$\int_{\Omega} \frac{\partial \boldsymbol{\textit{U}}}{\partial t} \; \mathrm{d}\Omega + \int_{\Omega} \nabla \cdot (\boldsymbol{\textit{F}}(\boldsymbol{\textit{U}})) \; \; \mathrm{d}\Omega = \boldsymbol{0}$$

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Méthode des volumes finis

Schéma semi-discret volumes finis dans K

$$rac{\partial U_K}{\partial t} + rac{1}{|\mathcal{K}|}\sum_i |\,\partial \mathcal{K}_i\,|\,\,\mathcal{F}_i = 0$$

Notations :

- U_K la valeur moyenne de U sur K,
- ∂K_i la face *i* de *K*,
- |E| le volume de l'élément E,
- \mathcal{F}_i le flux numérique à travers ∂K_i .

Schéma en temps

On discrétise la dérivée temporelle par un schéma d'Euler implicite :

$$\frac{\partial U_K}{\partial t} \simeq \frac{U_K^n - U_K^{n-1}}{\Delta t}$$

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Méthode des volumes finis

Nombreuses possibilités pour le choix du flux numérique \mathcal{F}_i .

Un choix classique : le flux de Rusanov

$$\mathcal{F}_i = \frac{1}{2} \left(\left(F(U_K) + F(U_L) \right) n_i - b_i (U_L - U_K) \right)$$

Notations :

- *L* cellule voisine de *K* pour le flux \mathcal{F}_i ,
- n_i vecteur normal unitaire de la face ∂K_i, orienté de K vers L,
- *b_i* la plus grande vitesse d'onde entre *U_K* et *U_L*.

Choix de b_i

- pour l'advection : $b_i = |\mathbf{v} \cdot n_i|$,
- pour Euler : à discuter selon contexte.

Modélisation classique vers espace-temps Différences finies en espace-temps **/olumes finis en espace-temps**

Méthode des volumes finis

Un flux plus général : le flux HLL

$$\mathcal{F}_{i} = \frac{-b_{i}^{-}F(U_{K}) + b_{i}^{+}F(U_{L})}{b_{i}^{+} - b_{i}^{-}}n_{i} + \frac{b_{i}^{+}b_{i}^{-}}{b_{i}^{+} - b_{i}^{-}}(U_{L} - U_{K})$$

avec deux vitesses d'ondes $b_i^+ > 0$ et $b_i^- < 0$.

On retrouve le flux de Rusanov avec le choix $b_i = b_i^+ = -b_i^-$.

Référence : A. Harten, P. D. Lax, and B. van Leer. *On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.* In : SIAM Rev. 25.1 (1983), pp. 35–61. issn : 0036-1445. doi : 10.1137/1025002.

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Volumes finis en espace-temps

Le temps n'apparaît plus explicitement dans le schéma volumes finis.

Schéma volumes finis espace-temps

$$\frac{1}{|\mathcal{K}|}\sum_{i}|\partial \mathcal{K}_{i}|\widetilde{\mathcal{F}}_{i}=0,$$

avec $\widetilde{\mathcal{F}}_i$ le flux à travers les faces des **cellules d'espace-temps**.

Flux HLL espace-temps

$$\widetilde{\mathcal{F}}_i = \frac{-\beta_i^- \mathcal{G}(\mathcal{U}_{\mathcal{K}}) + \beta_i^+ \mathcal{G}(\mathcal{U}_L)}{\beta_i^+ - \beta_i^-} n_i + \frac{\beta_i^+ \beta_i^-}{\beta_i^+ - \beta_i^-} (\mathcal{U}_L - \mathcal{U}_{\mathcal{K}})$$

avec les vitesses d'onde suivantes :

$$\beta_i^+ = \sqrt{\delta_{\sigma\tau} \left(B_i^+ \right)^{\sigma} n_i^{\sigma} \left(B_i^+ \right)^{\tau} n_i^{\tau}}, \qquad B_i^+ = \left(\gamma \quad \frac{\gamma}{c} b_i^+ \quad \frac{\gamma}{c} b_i^+ \quad \frac{\gamma}{c} b_i^+ \right)^T$$

$$\beta_i^- = -\sqrt{\delta_{\sigma\tau} \left(B_i^- \right)^{\sigma} n_i^{\sigma} \left(B_i^- \right)^{\tau} n_i^{\tau}}, \qquad B_i^- = \left(\gamma \quad \frac{\gamma}{c} b_i^- \quad \frac{\gamma}{c} b_i^- \quad \frac{\gamma}{c} b_i^- \right)^T$$

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Volumes finis en espace-temps

Sur un maillage espace-temps **extrudé en temps**, ce schéma est équivalent au formalisme classique avec :

- schéma Euler implicite en temps,
- flux HLL en espace.

Figure – Maillage espace-temps extrudé en temps.

Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Volumes finis en espace-temps

Figure - Projection du maillage sur l'espace classique.

$$\frac{1}{|\mathcal{K}|}\left[\sum_{\mu}|\partial \mathcal{K}_{\mu}|\widetilde{\mathcal{F}}_{\mu}+\sum_{\nu}|\partial \mathcal{K}_{\nu}|\widetilde{\mathcal{F}}_{\nu}\right]=0\iff \frac{U_{\mathcal{K}}-U_{L}}{\Delta t}+\frac{1}{|p(\mathcal{K})|}\sum_{\nu}|p(\partial \mathcal{K}_{\nu})|\mathcal{F}_{\nu}=0$$

Environnement de développement Test numérique de convergence Équations d'Euler ^Perspectives

Sommaire

ormalisme espace-temps Généralités CFD classique en espace-temp

Mécanique des fluides numérique Modélisation classique vers espace-temps Différences finies en espace-temps Volumes finis en espace-temps

Simulations numériques

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Environnement de développement

- Librairies utilisées :
 - NumPy pour le calcul matriciel,
 - SciPy pour le solveur non linéaire,
 - meshio pour lecture / écriture sur le maillage.
- Non parallélisé pour le moment.

- Langage de script.
- API C, C++, Python, Julia, Fortran.

Environnement de développement **Fest numérique de convergence** Équations d'Euler Perspectives

Test numérique de convergence – configuration

Figure – Domaine discrétisé et conditions limites

Equation de transport

$$abla_{
u} \mathbf{T}^{\mu
u}(U) = 0,$$

we $\mathbf{T}(U) = \left(\gamma \rho \quad \frac{\gamma}{c} \rho v\right).$

Domaine : carré unité $[0; 1]^2$.

Vitesse : v = 0.4

а

Conditions aux limites :

- Dirichlet : $\rho_0(x) = \exp\left(\left(\frac{x-0.3}{0.1}\right)^2\right)$,
- Neumann sur les autres côtés.

Test numérique de convergence - premier ordre

Notations :

- $\Delta x = \min_{K} \frac{|K|}{|\partial K|}$ représente la « taille » du maillage.
- $e_{L^2} = \frac{||\rho_{ex}(t,x) \rho_h||}{||\rho_{ex}(t,x)||}$ est l'erreur relative avec norme L^2 .

Nb cellules	Δx	e_{L^2}	Pente
1.62000e+02	0.01320145	0.45818549	_
6.48000e+02	0.00660072	0.34380968	0.41432182
2.59200e+03	0.00330036	0.23328525	0.55951489
1.03680e+04	0.00165018	0.14477816	0.68825105
4.14720e+04	0.00082509	0.08302003	0.80231262
1.65888e+05	0.00041255	0.0449368	0.885562

Table - Schéma espace-temps au premier ordre

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Test numérique de convergence – second ordre

On peut obtenir une convergence au second ordre en appliquant un schéma MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws).

 \longrightarrow Approximation par des fonctions affines par morceaux au lieu de fonctions constantes par morceaux, dans le schéma volumes finis.

Nb cellules	Δx	e_{L^2}	Pente
1.62000e+02	0.01320145	0.30279079	_
6.48000e+02	0.00660072	0.12092761	1.32417758
2.59200e+03	0.00330036	0.0316328	1.93465064
1.03680e+04	0.00165018	0.00654552	2.27284145
4.14720e+04	0.00082509	0.00155193	2.07643975
1.65888e+05	0.00041255	0.00045802	1.76057627

Table - Schéma espace-temps au second ordre

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Cas-tests pour les équations d'Euler en 1D

- Problèmes de Riemann.
- Donnée initiale avec discontinuité ; solution analytique.
- Référence : Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics : a practical introduction. Springer Science & Business Media

Test	ρ_L	PL	v_L	ρ_R	<i>P</i> _R	VR	t _f
1	1.0	1.0	0.0	0.125	0.1	0.0	0.25
2	1.0	0.4	-2.0	1.0	0.4	2.0	0.15

Table - Conditions initiales pour les cas-tests Euler 1D

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Test $1: {\bf tube} \ {\bf \dot{a}} \ {\bf choc} \ {\bf de} \ {\bf Sod}, \ {\bf densit} \ {\bf \acute{e}} \ {\bf \rho}$

Figure – Test 1, densité ρ

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Test 1 : tube à choc de Sod, pression p

Figure – Test 1, pression p

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Test 1 : tube à choc de Sod, vitesse v

Figure – Test 1, vitesse v

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Simulations numériques des équations d'Euler

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Perspectives - (2+1)D

Figure – Transport de la fonction $(x, y) \mapsto \sin(x) + \sin(y)$

Environnement de développement Test numérique de convergence Équations d'Euler **Perspectives**

Perspectives - adaptation de maillage

Figure – Maillage grossier (gauche) et maillage adapté (droite).

Autre perspectives

- Maillage 4D : encore en développement [Dumont & Jourdan 2018]
- Optimisation & parallélisation pour gain en temps de calcul
- Étude de schéma d'ordre élevé pour gain en précision
- Applications d'intérêt : interaction fluide-structure, frontière mobile, etc.
- Théorie : mieux se conformer au formalisme de la géométrie différentielle et aux principes de la relativité restreinte.

Formalisme espace-temps	
Mécanique des fluides numérique	
Simulations numériques	
	Perspectives

Merci pour votre attention.

Formalisme espace-temps	
Mécanique des fluides numérique	
Simulations numériques	Equations d Euler
Simulations numeriques	Perspectives

Slides complémentaires.

L'intervalle ds

Intervalle constant :

$$ds^2 = (cd\tau)^2 = d\vec{x}.d\vec{x} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

où τ est le temps propre.

Pour un observateur inertiel avec $x^0 = ct$ et $g_{\mu\nu} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$:

$$ds^{2} = (cdt)^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2}$$

$$= (cdt)^{2} \left[1 - \frac{1}{c^{2}} \left(\frac{dx^{1}}{dt} \right)^{2} - \frac{1}{c^{2}} \left(\frac{dx^{2}}{dt} \right)^{2} - \frac{1}{c^{2}} \left(\frac{dx^{3}}{dt} \right)^{2} \right]$$

$$= (cdt)^{2} \left[1 - \left(\frac{v}{c} \right)^{2} \right]$$

où $v^i = \frac{dx^i}{dt}$ la vitesse 3D pour un observateur inertiel. On définit le facteur $\gamma = \frac{dx^0}{ds} = \frac{dt}{d\tau} = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}}$, facteur de Lorentz.

La quadrivitesse

La quadrivitesse est définie par :

$$ec{u} = rac{dec{x}}{ds}$$
 remarquer que $||u||^2 = rac{dec{x}}{ds} \cdot rac{dec{x}}{ds} = 1$

Pour un observateur inertiel avec $x^0 = ct$ et $\gamma = \frac{dx^0}{ds} = \frac{dt}{d\tau} = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$

$$u^{\mu}\left(\gamma, \frac{\gamma}{c}\frac{dx^{i}}{dt}\right) = u^{\mu}\left(\gamma, \frac{\gamma}{c}v^{i}\right) \quad \text{ou} \quad cu^{\mu}\left(\gamma c, \gamma v^{i}\right)$$

On définit les observateurs propres tels que :

 $\hat{u}^{\mu}(1,0,0,0)$

en tout point.

Le vecteur vitesse est un vecteur normé dans la direction du temps.

Définition d'un champ de tenseur impulsion-énergie T

Soit T, tenseur impulsion-énergie, tenseur d'ordre 2 symétrique décrivant la matière. Peut-être vu comme une généralisation du tenseur des contraintes de la 3D Dimension des termes dans un système inertiel de coordonnées : énergie par unité de volume 3D.

On projette le tenseur impulsion-énergie sur le temps et l'espace et :

$$\mathbf{T} = \mathcal{U}\vec{u} \otimes \vec{u} + \vec{u} \otimes \vec{q} + \vec{q} \otimes \vec{u} + \overline{T}$$

Environnement de développement Test numérique de convergence Équations d'Euler Perspectives

Interprétation du tenseur impulsion-énergie

Dans le système propre de coordonnées avec $\hat{u}^{\mu} = (0, 0, 0, 1)$, on a

$$\hat{T}^{\mu\nu} \begin{pmatrix} \mathcal{U} & \hat{q}^1 & \hat{q}^2 & \hat{q}^3 \\ \hat{q}^1 & \sigma^{11} & \sigma^{12} & \sigma^{13} \\ \hat{q}^2 & \sigma^{12} & \sigma^{22} & \sigma^{23} \\ \hat{q}^3 & \sigma^{13} & \sigma^{23} & \sigma^{33} \end{pmatrix}$$

Ce qui permet d'interpréter physiquement chaque composante :

 $\begin{array}{l} \mathcal{U} \text{ densité d'énergie totale} : \mathcal{U} = \rho_c c^2 = \widetilde{\rho_c} c^2 \left(1 + \frac{e_{int}}{c^2}\right) \\ \text{où } \rho_c \text{ masse volumique et } \widetilde{\rho_c} \text{ masse volumique au repos.} \\ \vec{\tilde{q}} \text{ flux d'énergie} \approx \text{ flux de chaleur} \\ \vec{\tilde{T}} = \sigma \text{ tenseur des contraintes} \end{array}$

Lois de conservation

Soit un domaine espace-temps ${\mathcal D}$

Conservation de la masse au repos \Rightarrow

$$\forall \Omega \subset \mathcal{D}, \nabla . (\widetilde{\rho}_c \vec{u}) = 0$$

Conservation du tenseur impulsion-énergie $T \Rightarrow$

 $\forall \Omega \subset \mathcal{D}, \nabla . \mathbf{T} = 0$

avec $\mathbf{T} = \widetilde{
ho}_c c^2 \left(1 + \frac{e_{int}}{c^2}\right) \vec{u} \otimes \vec{u} + \vec{u} \otimes \vec{q} + \vec{q} \otimes \vec{u} + \overline{T}$, on obtient :

$$\widetilde{
ho}_{c}rac{de_{int}}{ds}ec{u}+\widetilde{
ho}_{c}(c^{2}+e_{int})ec{a}+
abla.(ec{u}\otimesec{q}+ec{q}\otimesec{u})+
abla.\overline{T}=0$$

Formalisme espace-temps Mécanique des fluides numérique Simulations numériques Simulations numériques

Projection sur le temps de la conservation de T

Conservation du tenseur impulsion-énergie $T \Rightarrow$

$$\nabla \cdot \boldsymbol{T} = 0$$

On projette sur le temps :

$$\vec{u}.(\nabla.\boldsymbol{T})=0$$

$$\vec{u}.\left(\widetilde{\rho_c}\frac{de_{int}}{ds}\vec{u}+\widetilde{\rho_c}(c^2+e_{int})\vec{a}+\nabla.(\vec{u}\otimes\vec{q}+\vec{q}\otimes\vec{u})+\nabla.\overline{T}\right)=0$$

$$\widetilde{\rho}_c \frac{de_{int}}{ds} = \overline{T} : d - \nabla . \vec{q} + \vec{q} . \vec{a} \quad avec \quad d = sym(\nabla \vec{u})$$

La projection sur le temps de la conservation du tenseur impulsion-énergie correspond à un bilan covariant de l'énergie interne :

pendant du 1er principe de la thermodynamique en mécanique classique.

La projection sur l'espace de la conservation du tenseur impulsion-énergie est le pendant du bilan de l'impulsion en mécanique classique.