Influence of Monte-Carlo sampling on greedy algorithms
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0 Greedy algorithms in Hilbert spaces: deterministic case



Solution set

Let V be a Hilbert space and P C R” be a set of parameter values for some p € N*.
Forall € P, letu, € V sothat M := {u,, n € P} is a compact subset of V.

For all X C V finite-dimensional subspace of V, let [x denote the orthogonal projector
of V onto X.

Example: For all © € P, u, € V is the unique solution of a PDE system of the form
A(UM; :U‘) =0,

where A(-; 1) is a differential operator depending on the value of the parameters .



Kolmogorov n-width

Definition
For all n € N*,

dp( M)y = inf sup |lu, — Ny, uul|v
Vn cV HEM
dimVy,=n

the Kolmogorov n-width of the set M.

Question: How to find a constructive way to construct a sequence of linear spaces
(Xn)n>1 which are quasi-optimal in the sense that

on(M; Xn)v 1= sup ||, — Mx, Uyllv
neP

decays at a rate similar to (dn(M)y)n>1?



Greedy algorithm for reduced bases

@ [nitialization n = 1: Let u1 € P such that

p1 € argmax || U, |5
neEP

Let 01 := “u - and X := Vect{6: } = Vect{u,, }.
@ lteration n > 2. Let un € P such that

2
pn € argmax ||u, — Mx, Uu”,,-
neEP

Let 6, := tin D10 ang Xn = Vect{01, -+ ,0n} = Vect{Uu, -+ , Uy, }-

Upn *”x,,,1 Upn v



Weak greedy algorithm for reduced bases

Soit0 < v < 1.
@ Initialization n = 1: Let u1 € P such that

Uy llv = v sup [[upllv.
HEP

Let 0y := = and X; := Vect{6: } = Vect{u,, }.

Upq v

@ lteration n > 2: Let uy € P such that

[Uin = Tx,_y Unallv = 7 SUP (U = T, U v
neEP

Upp 7nxn—1 Upn

and X, := Vect{01,--- ,0p} = Vect{U,,, -+ , Uy, }

v

Let 0, := H

uuninxn—1 Yun H



Convergence rates of greedy algorithms

[Buffa, Maday, Patera, Prud’homme, Turinici, 2012]
[Binev,Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk, 2011]

[DeVore, Petrova, Wojtaszczyk, 2013]

@ Foralln e N,

T2n(M; Xon)v < V277 /do( M)y

@ If do(M)y < Cn=, then on(M; Xn)y < Cn—.
@ Ifdn(M)y < Ce=", then on(M; Xa)y < Ce"".

Reduced basis method:
@ Offline stage: Select p1,--- , un € P using a (weak) greedy algorithm.

@ Online stage: For all u € P, approximate u,, by a linear combination of
Uy, Uy, (With @ Galerkin method for instance).
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Previous works related to greedy algorithms in a stochastic setting

@ Smetana-Zahm-Patera (2018), Balabanov-Nouy (2019): Randomized
residual-based error estimators

@ Cohen-Dahmen-Devore-Nichols (2020): Random training sets Piain C P.
@ Cohen-Dolbeault (2021): Sampling numbers

@ Boyaval-Leliévre... (2010): Variance reduction using a reduced basis control
variate
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Notation and framework

@ Let d € N* and P(R) the set of probability measures on R°.

@ Let Z be a random vector of dimension d with law characterized by a probability
measure v € P(RY).

@ Let L2(RY) be the set of functions v : RY — R such that

/R u(z) dv(z) = [u(2)F] < +oc.

Forall u € P, let u, € L2(RY) so that M := {u,,, u € P} is a compact subset
L2(RY).

Additional assumption: M C C(R?).

Objective: Analysis of a variance reduction method proposed [Boyaval, Lelievre et al., 2010] in
order to efficiently compute
E [u(2)]

for a large number of values of i € P.
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@ Let M € N* and let Z := (Z),_ ., @ set of M iid randdom vectors distributed
according to the law of Z. -

@ Forall u, v € L2(R%) N C(RY), we denote by

Ez(u) = 1 Z u(Zy),
Covz(u,v) == E?(UV) — Ez(W)Ez(v),
Var(U) : \/COVZ (u,u) \/Ef(u2) — Ex(u)?.
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Standard Monte-Carlo method

@ Let M € N* (s that My is typically very large), and let Z*' = (ZE"), 2y, beA
set of M, iid randdom vectors distributed according to the law of Z.

@ The standard Monte-Carlo method consists in computing, for all x € P, an
approximation of E [u,(Z)] as the empirical mean

M

S (@)

E?ref U/L -

rgf

@ The statistical error given by this method is of the order of

Var [u,(Z)] < % suc-= sup /Var [u,(Z)].

Mref Mref HEP

For all € P, the computational cost scales like O(Mie).
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Reduced basis control variate

@ Idea: Construct (in an online stage) an approximation of u,(Z) as a linear
combination of u,, (Z2),--- , uu,(Z) for some well-chosen 1, - -, un € P (the
choice being done in an offline stage).

@ Offline stage: Selection of n € N*, uy,--- , un € P and computation of

]E?ref (Uu,.) V1 S I S n.

—small

@ Let Myar € N* (80 that Munan < M), andlet 27 = (Z™), _, _  be a set
of M.man iid randdom vectors distributed according to the law of Z (and
independent of Z'").

@ Computation of

Eoman (Uy;)  @nd — Aj = Covuman (Uyy, Uyy) V1 <, j <.
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Reduced basis control variate

@ Online stage: For all © € P, computation of

B,‘ = Covfsmau (UH” Uu) v S i S n O(nMsmall)~

@ Let A¥ := (\')1<j<p € R" solution of

n
A= argmin  Varsma (UM — ZA/UN,) ) (1)

N=(X\j)1<i<n€R" =1
or equivalently, of

AN =B, B=(B)i<icn A= (Api<ijen.  O(n°)

@ Compute an approximation of
E[un(Z)] = E [(up = X204 t) (2)] + 204 ME [y, (2)] as

n
Zsmall (Uu Z /\H Uy, > + Z A;l]Ezref (U,L,-) . O(Msma]] + n)
i=1
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Reduced basis control variate

@ Better (in terms of a computational complexity) than a standard Monte Carlo
approach if
nMsmall < Mref~

@ What about accuracy? The statistical error is then (assuming that | \*| <  for
some « > 0 for the sake of simplicity) of the order of

\/Var (U = 30 N uw,) (2)] L Ckn
Vv Msmall Vv Mref .

The statistical error will then be comparable to a standard Monte-Carlo method if
( Z AMU#;) (2)

It is then natural to choose (A}, )1<i<n such that Var [(u, — 37, M'uy,) (Z)] is as
small as possible, hence (1).

small

ref
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Offline stage: choice of u1,--- , un € P with a greedy algorithm with

Monte-Carlo sampling

@ Important remark:
The space V := L2(R?)/R (the set of functions of L2(R9) defined up to an additive
constant) is a Hilbert space embedded with the scalar product:

vu,v eV, (u,v)y = Covlu(Z), v(Z)] := E[u(Z)v(Z)] — Elu(Z)|E[vV(Z)].

The associated norm is then

lul3 := Var[u(Z)] = Cov{u(Z), u(Z)] = E[u(Z)?] - E[u(Z)[*.

@ For any finite-dimensional subspace X C V, and for all u € V, Nxu is the unique
element of V such that

Var{u(Z) — Nxu(2)] = min Var[u(Z) — v(2)]
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Ideal greedy algorithm

@ [nitialization n = 1: Let u1 € P such that

p1 € argmax || U, |5
neEP

Let 01 := “u - and X := Vect{6: } = Vect{u,, }.
@ lteration n > 2. Let un € P such that

2
pn € argmax ||u, — Mx, Uu”,,-
neEP

Let 6, := tin D10 ang Xn = Vect{01, -+ ,0n} = Vect{Uu, -+ , Uy, }-

Upp 7nxn—1 Upn v
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Ideal greedy algorithm

@ [nitialization n = 1: Let u1 € P such that

w1 € argmax Var[u,(Z)].
neEP

Let 61 := and Xi := Vect{61} = Vect{u,, }.

Ve [M

@ lteration n > 2: Let up € P such that

tn € argmax Var[u,(Z) — Nx,_, u.(2)].
neP

Uun _nX,-,_1 Up
\/Vﬁr[uﬂn (Z)_HX,.,_1 Upp (Z)]

Let 0, := and X, := Vect{01,--- ,0n} = Vect{Uy,, - , Uu, }.
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Monte Carlo greedy algorithm

@ Exact variances cannot be computed in practice, only empirical variances.

@ Forallne N, let M, e N*, Z" .= (Z) <k, iid randdom vectors distributed
according to the law of Z and independent of Z.

Let us also assume that m,n € N* and thatforall1 < k < M,and 1 <[ < Mp, Z/
is independent of Z/" as soon as n# mor k # /.

@ Forall X c Vandallue V,letMyu € V be the unique solution to

=n .
Varzn (u - HXU) = Vlg(Var?n (u—v).
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Monte-Carlo greedy algorithm

@ [nitialization n = 1: Let wy € M such that

iy € argmax Var (Uy).
neP

Let 0 := and X := Vect{0} = Vect{uz, }.

uz,
V/Va [m(

@ lteration n > 2: Let &z, € P such that

— —n
Tn € argér;;ax Varzn (UM -Nx, uu) .
L

Mn7n7 1 Utn

Let 0n = \/Var[ A I'I_n — (Z)]
X, = Vect{@ ) ,On} Vect{um S Uﬁn}-

and
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Monte-Carlo greedy algorithm

Question: under which assumptions can one guarantee that the Monte-Carlo greedy
algorithm is a weak greedy algorithm with parameter v € (0, 1] with high probability?

In particular, how to choose the sequence (Mp)nen=?
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Assumption on v

@ Assumption (A): The probability measure v is such that there exists « > 1 an
> 0 such that

/ e?XI” dv(x) < +o0.
R

@ Consequence: We can use results from [Fournier,Guilin,2015] about concentration
inequalities of the empirical measure of v in Wasserstein distance.
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Concentration inequality in Wasserstein distance

@ Let £ be the set of Lipschitz functions on R?, and for all u € £, let ||u]| its
Lipschitz constant.

@ Let ¢ : R} — R defined by

KL<t + KL st ifd=1,
Ve €ERL, (k) =13 (k/109(2 4+ 1/k)*) et + KT oo ifd=2, (@)
Kot + KT oy if d > 3.

Theorem (Fournier, Guilin, 2015)

Assume that v satisfies assumption (A). Then, there exist c, C > 0 (which only depend

onv, d, o and 8), such that for all M € N*, Z := (Zx)1<k<m iid random vectors
distributed according to v and for all k > 0,

P [’n (7) > n] < CemM#l),
where

Ti(Z)= sup [EIf(Z)] - E5(f)].

feLi||fll <1
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Assumption on M

M = {u,, pe M}

Assumption (B): The set M satisfies the four conditions:
B1) M is a compact subset of V and let C; := sup,, . \/Var [1,,(Z)] < oo;
B2) M C Land Cz :=suUp,cp Uz < +o0;
B3) M C L(R) and Cus := SUP,,cp ||ty — E[Uu(Z)][|oe < +o0;
)

(
(
(
(B4) forall n € N*, do(M)y > 0.
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For all n € N*, let
7= (2. .7

= [
On—1 = Teag \/Val'fn (UM — I'IXn_1 Ll‘u),

~ —1:(n—1)
Gn_1 = Tea%( \/Var [UN(Z) —Nx . u.(2) ‘Z ]

Clo :=max (Cu, |01 — E[01(2)]l|eoe, -+, 10n — E[On(2)] ]| )
Cz :=max (Cc, |61, -+, [nllc) -
_ (-5
S TN o ®)
i (1-1%)55
net = 6CL.Cy ' @

Remark: For all n € N, x,, is a deterministic function of 71:".
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Main result

Theorem (Blel, Ehrlacher, Lelievre, 2021)

Let0 < & < 1 and (8n)nen+ C (0,1)" a sequence such that Myen- (1 — 65) > 1 — 4.
Let us assume that M satisfies assumption (B) and that v satisfies assumption (A).

Let us assume that there exists 0 < v < 1 such that for alln € N*, M, € N* is a
=1:(n—1)

Z -measurable random variable which satisfies almost surely:
On 1
vn>1, M,>—-In(—= ) ——, 5
>t M- (F) o 2

Then, the Monte-Carlo greedy algorithm is a weak greedy algorithm with parameter v
with probability at least1 — 6.
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Conclusion

Summary:

Theoretical bounds on the number of samples to be used at each iteration of the
Monte-Carlo greedy algorithm so that it can be theoretically guaranteed to be a weak
greedy algorithm with high probability.

Open questions:

@ Pessimistic bounds: better inequalities? For now, heuristic strategies to choose
the sequence (Ms)n>1 in practice.
@ Independent uniform sampling: what about adaptive sampling?

@ Z is assumed to be a finite dimensional random vector: what happens if Z is
infinite-dimensional? (Brownian motion)

Thank you for your attention!
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