Influence of Monte-Carlo sampling on greedy algorithms

Mohammed-Raed Blel¹, Virginie Ehrlacher^{1,2}, Tony Lelièvre^{1,2}

¹Ecole des Ponts ParisTech ²INRIA

Journées IHP "Réduction de modèles et traitement géométrique des données", 9th November 2021

Outline of the talk

Greedy algorithms in Hilbert spaces: deterministic case

- Greedy algorithms in Hilbert spaces: stochastic case
 - Variance reduction with reduced basis control variate
 - Monte-Carlo greedy algorithm

Outline of the talk

Greedy algorithms in Hilbert spaces: deterministic case

- @ Greedy algorithms in Hilbert spaces: stochastic case
 - Variance reduction with reduced basis control variate
 - Monte-Carlo greedy algorithm

Solution set

Let V be a Hilbert space and $\mathcal{P} \subset \mathbb{R}^p$ be a set of parameter values for some $p \in \mathbb{N}^*$.

For all $\mu \in \mathcal{P}$, let $u_{\mu} \in V$ so that $\mathcal{M} := \{u_{\mu}, \ \mu \in \mathcal{P}\}$ is a compact subset of V.

For all $X \subset V$ finite-dimensional subspace of V, let Π_X denote the orthogonal projector of V onto X.

Example: For all $\mu \in \mathcal{P}$, $u_{\mu} \in V$ is the unique solution of a PDE system of the form

$$\mathcal{A}(u_{\mu};\mu)=0,$$

where $A(\cdot; \mu)$ is a differential operator depending on the value of the parameters μ .

Kolmogorov n-width

Definition

For all $n \in \mathbb{N}^*$,

$$d_n(\mathcal{M})_V := \inf_{\begin{subarray}{c} V_n \subset V \\ \textit{dim } V_n = n \end{subarray}} \sup_{\mu \in \mathcal{M}} \|u_\mu - \Pi_{V_n} u_\mu\|_V$$

the Kolmogorov n-width of the set \mathcal{M} .

Question: How to find a constructive way to construct a sequence of linear spaces $(X_n)_{n\geq 1}$ which are quasi-optimal in the sense that

$$\sigma_n(\mathcal{M}; X_n)_V := \sup_{\mu \in \mathcal{P}} \|u_\mu - \Pi_{X_n} u_\mu\|_V$$

decays at a rate similar to $(d_n(\mathcal{M})_V)_{n\geq 1}$?

Greedy algorithm for reduced bases

• Initialization n = 1: Let $\mu_1 \in \mathcal{P}$ such that

$$\mu_1 \in \operatorname*{argmax}_{\mu \in \mathcal{P}} \|u_{\mu}\|_{V}^2.$$

Let
$$\theta_1 := \frac{u_{\mu_1}}{\|u_{\mu_1}\|_V}$$
 and $X_1 := \text{Vect}\{\theta_1\} = \text{Vect}\{u_{\mu_1}\}.$

• Iteration $n \ge 2$: Let $\mu_n \in \mathcal{P}$ such that

$$\mu_n \in \operatorname*{argmax}_{\mu \in \mathcal{P}} \|u_\mu - \Pi_{X_{n-1}} u_\mu\|_V^2.$$

Let
$$\theta_n := \frac{u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}}{\|u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}\|_{V}}$$
 and $X_n := \text{Vect}\{\theta_1, \dots, \theta_n\} = \text{Vect}\{u_{\mu_1}, \dots, u_{\mu_n}\}.$

Weak greedy algorithm for reduced bases

Soit $0 < \gamma \le 1$.

• Initialization n = 1: Let $\mu_1 \in \mathcal{P}$ such that

$$\|u_{\mu_1}\|_{V} \geq \gamma \sup_{\mu \in \mathcal{P}} \|u_{\mu}\|_{V}.$$

Let
$$\theta_1 := \frac{u_{\mu_1}}{\|u_{\mu_1}\|_V}$$
 and $X_1 := \text{Vect}\{\theta_1\} = \text{Vect}\{u_{\mu_1}\}.$

• Iteration $n \ge 2$: Let $\mu_n \in \mathcal{P}$ such that

$$\|u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}\|_V \ge \gamma \sup_{\mu \in \mathcal{P}} \|u_\mu - \Pi_{X_{n-1}} u_\mu\|_V.$$

Let
$$\theta_n := \frac{u_{\mu_n} - u_{\mu_n}}{\|u_{\mu_n} - u_{\mu_n}\|_{V}}$$
 and $X_n := \text{Vect}\{\theta_1, \dots, \theta_n\} = \text{Vect}\{u_{\mu_1}, \dots, u_{\mu_n}\}.$

Convergence rates of greedy algorithms

[Buffa, Maday, Patera, Prud'homme, Turinici, 2012]

[Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk, 2011]

[DeVore, Petrova, Wojtaszczyk, 2013]

Theorem

• For all $n \in \mathbb{N}^*$,

$$\sigma_{2n}(\mathcal{M}; X_{2n})_V \leq \sqrt{2}\gamma^{-1}\sqrt{d_n(\mathcal{M})_V}.$$

- If $d_n(\mathcal{M})_V \leq Cn^{-\alpha}$, then $\sigma_n(\mathcal{M}; X_n)_V \leq \widetilde{C}n^{-\alpha}$.
- If $d_n(\mathcal{M})_V \leq Ce^{-cn^{\alpha}}$, then $\sigma_n(\mathcal{M}; X_n)_V \leq \widetilde{C}e^{-\widetilde{c}n^{\alpha}}$.

Reduced basis method:

- Offline stage: Select $\mu_1, \dots, \mu_n \in \mathcal{P}$ using a (weak) greedy algorithm.
- Online stage: For all $\mu \in \mathcal{P}$, approximate u_{μ} by a linear combination of $u_{\mu_1}, \cdots, u_{\mu_n}$ (with a Galerkin method for instance).

Outline of the talk

Greedy algorithms in Hilbert spaces: deterministic case

- @ Greedy algorithms in Hilbert spaces: stochastic case
 - Variance reduction with reduced basis control variate
 - Monte-Carlo greedy algorithm

Previous works related to greedy algorithms in a stochastic setting

- Smetana-Zahm-Patera (2018), Balabanov-Nouy (2019): Randomized residual-based error estimators
- Cohen-Dahmen-Devore-Nichols (2020): Random training sets $\mathcal{P}_{train} \subset \mathcal{P}$.
- Cohen-Dolbeault (2021): Sampling numbers
- Boyaval-Lelièvre... (2010): Variance reduction using a reduced basis control variate

Outline of the talk

Greedy algorithms in Hilbert spaces: deterministic case

- Greedy algorithms in Hilbert spaces: stochastic case
 - Variance reduction with reduced basis control variate
 - Monte-Carlo greedy algorithm

Notation and framework

- Let $d \in \mathbb{N}^*$ and $\mathcal{P}(\mathbb{R}^d)$ the set of probability measures on \mathbb{R}^d .
- Let Z be a random vector of dimension d with law characterized by a probability measure $\nu \in \mathcal{P}(\mathbb{R}^d)$.
- Let $L^2_{\nu}(\mathbb{R}^d)$ be the set of functions $u: \mathbb{R}^d \to \mathbb{R}$ such that

$$\int_{\mathbb{R}^d} |u(z)|^2 d\nu(z) = \mathbb{E}\left[|u(Z)|^2\right] < +\infty.$$

For all $\mu \in \mathcal{P}$, let $u_{\mu} \in L^{2}_{\nu}(\mathbb{R}^{d})$ so that $\mathcal{M} := \{u_{\mu}, \ \mu \in \mathcal{P}\}$ is a compact subset $L^{2}_{\nu}(\mathbb{R}^{d})$.

Additional assumption: $\mathcal{M} \subset \mathcal{C}(\mathbb{R}^d)$.

Objective: Analysis of a variance reduction method proposed [Boyaval, Lelièvre et al., 2010] in order to efficiently compute

$$\mathbb{E}\left[u_{\mu}(Z)\right]$$

for a large number of values of $\mu \in \mathcal{P}$.

Notation

- Let $M \in \mathbb{N}^*$ and let $\overline{Z} := (Z_k)_{1 \le k \le M}$ a set of M iid randdom vectors distributed according to the law of Z.
- For all $u, v \in L^2_{\nu}(\mathbb{R}^d) \cap \mathcal{C}(\mathbb{R}^d)$, we denote by

$$\mathbb{E}_{\overline{Z}}(u) := \frac{1}{M} \sum_{k=1}^{M} u(Z_k),$$

$$Cov_{\overline{Z}}(u, v) := \mathbb{E}_{\overline{Z}}(uv) - \mathbb{E}_{\overline{Z}}(u)\mathbb{E}_{\overline{Z}}(v),$$

$$Var_{\overline{Z}}(u) := \sqrt{Cov_{\overline{Z}}(u, u)} = \sqrt{\mathbb{E}_{\overline{Z}}(u^2) - \mathbb{E}_{\overline{Z}}(u)^2}.$$

Standard Monte-Carlo method

- Let $M_{\text{ref}} \in \mathbb{N}^*$ (so that M_{ref} is typically very large), and let $\overline{Z}^{\text{ref}} := (Z_k^{\text{ref}})_{1 \le k \le M_{\text{ref}}}$ be a set of M_{ref} iid randdom vectors distributed according to the law of Z.
- The **standard Monte-Carlo method** consists in computing, for all $\mu \in \mathcal{P}$, an approximation of $\mathbb{E}[u_{\mu}(Z)]$ as the empirical mean

$$\mathbb{E}_{\overline{Z}^{\mathrm{ref}}}\left(u_{\mu}
ight) = rac{1}{M_{\mathrm{ref}}} \sum_{k=1}^{M_{\mathrm{ref}}} u_{\mu}\left(Z_{k}^{\mathrm{ref}}
ight).$$

The statistical error given by this method is of the order of

$$\frac{\sqrt{\operatorname{Var}\left[u_{\mu}(Z)\right]}}{\sqrt{M_{\operatorname{ref}}}} \leq \frac{C}{\sqrt{M_{\operatorname{ref}}}} \quad \text{où } C := \sup_{\mu \in \mathcal{P}} \sqrt{\operatorname{Var}\left[u_{\mu}(Z)\right]}.$$

For all $\mu \in \mathcal{P}$, the computational cost scales like $\mathcal{O}(M_{\text{ref}})$.

Reduced basis control variate

- **Idea**: Construct (in an online stage) an approximation of $u_{\mu}(Z)$ as a linear combination of $u_{\mu_1}(Z), \dots, u_{\mu_n}(Z)$ for some well-chosen $\mu_1, \dots, \mu_n \in \mathcal{P}$ (the choice being done in an offline stage).
- Offline stage: Selection of $n \in \mathbb{N}^*$, $\mu_1, \dots, \mu_n \in \mathcal{P}$ and computation of

$$\mathbb{E}_{\overline{Z}^{\mathrm{ref}}}\left(u_{\mu_{i}}\right) \quad \forall 1 \leq i \leq n.$$

- Let $M_{\text{small}} \in \mathbb{N}^*$ (so that $M_{\text{small}} \ll M_{\text{ref}}$), and let $\overline{Z}^{\text{small}} := (Z_k^{\text{small}})_{1 \le k \le M_{\text{small}}}$ be a set of M_{small} iid randdom vectors distributed according to the law of Z (and independent of $\overline{Z}^{\text{ref}}$).
- Computation of

$$\mathbb{E}_{\overline{\nearrow}^{\text{small}}}\left(u_{\mu_{i}}\right) \quad \text{and} \quad A_{ij} := \operatorname{Cov}_{\overline{\nearrow}^{\text{small}}}\left(u_{\mu_{i}}, u_{\mu_{i}}\right) \quad \forall 1 \leq i, j \leq n.$$

Reduced basis control variate

• Online stage: For all $\mu \in \mathcal{P}$, computation of

$$B_i := \operatorname{Cov}_{\overline{Z}^{\operatorname{small}}}(u_{\mu_i}, u_{\mu}) \quad \forall 1 \leq i \leq n \qquad \mathcal{O}(nM_{\operatorname{small}}).$$

• Let $\Lambda^{\mu} := (\lambda_i^{\mu})_{1 \leq i \leq n} \in \mathbb{R}^n$ solution of

$$\Lambda^{\mu} = \underset{\Lambda:=(\lambda_{i})_{1 \leq i \leq n} \in \mathbb{R}^{n}}{\operatorname{argmin}} \operatorname{Var}_{\overline{Z}^{\operatorname{small}}} \left(u_{\mu} - \sum_{i=1}^{n} \lambda_{i} u_{\mu_{i}} \right), \tag{1}$$

or equivalently, of

$$A\Lambda^{\mu}=B, \quad B=(B_i)_{1\leq i\leq n}, \ A=(A_{ij})_{1\leq i,j\leq n}. \qquad \mathcal{O}(n^2)$$

• Compute an approximation of

$$\mathbb{E}\left[u_{\mu}(Z)\right] = \mathbb{E}\left[\left(u_{\mu} - \sum_{i=1}^{n} u_{\mu_{i}}\right)(Z)\right] + \sum_{i=1}^{n} \lambda_{i}^{\mu} \mathbb{E}\left[u_{\mu_{i}}(Z)\right] \text{ as }$$

$$\mathbb{E}_{\overline{Z}^{\text{mall}}}\left(u_{\mu} - \sum_{i=1}^{n} \lambda_{i}^{\mu} u_{\mu_{i}}\right) + \sum_{i=1}^{n} \lambda_{i}^{\mu} \mathbb{E}_{\overline{Z}^{\text{ref}}}\left(u_{\mu_{i}}\right). \qquad \mathcal{O}(\textit{M}_{\text{small}} + \textit{n})$$

Reduced basis control variate

 Better (in terms of a computational complexity) than a standard Monte Carlo approach if

$$nM_{\rm small} \ll M_{\rm ref}$$
.

• What about accuracy? The statistical error is then (assuming that $|\lambda_i^\mu| \le \kappa$ for some $\kappa > 0$ for the sake of simplicity) of the order of

$$\frac{\sqrt{\operatorname{Var}\left[\left(u_{\mu}-\sum_{i=1}^{n}\lambda_{i}^{\mu}u_{\mu_{i}}\right)\left(Z\right)\right]}}{\sqrt{M_{\text{small}}}}+\frac{C\kappa n}{\sqrt{M_{\text{ref}}}}.$$

The statistical error will then be comparable to a standard Monte-Carlo method if

$$\operatorname{Var}\left[\left(u_{\mu}-\sum_{i=1}^{n}\lambda_{i}^{\mu}u_{\mu_{i}}\right)(\boldsymbol{Z})\right]\approx\frac{M_{\text{small}}}{M_{\text{ref}}}.$$

It is then natural to choose $(\lambda_{\mu}^{i})_{1 \leq i \leq n}$ such that $\operatorname{Var}\left[\left(u_{\mu} - \sum_{i=1}^{n} \lambda_{i}^{\mu} u_{\mu_{i}}\right)(Z)\right]$ is as small as possible, hence (1).

Outline of the talk

Greedy algorithms in Hilbert spaces: deterministic case

- Greedy algorithms in Hilbert spaces: stochastic case
 - Variance reduction with reduced basis control variate
 - Monte-Carlo greedy algorithm

Offline stage: choice of $\mu_1,\cdots,\mu_n\in\mathcal{P}$ with a greedy algorithm with Monte-Carlo sampling

Important remark:

The space $V := L_{\nu}^2(\mathbb{R}^d)/\mathbb{R}$ (the set of functions of $L_{\nu}^2(\mathbb{R}^d)$ defined up to an additive constant) is a Hilbert space embedded with the scalar product:

$$\forall u, v \in V, \quad \langle u, v \rangle_V := \operatorname{Cov}[u(Z), v(Z)] := \mathbb{E}[u(Z)v(Z)] - \mathbb{E}[u(Z)]\mathbb{E}[v(Z)].$$

The associated norm is then

$$||u||_V^2 := \text{Var}[u(Z)] = \text{Cov}[u(Z), u(Z)] = \mathbb{E}[u(Z)^2] - \mathbb{E}[u(Z)]^2.$$

• For any finite-dimensional subspace $X \subset V$, and for all $u \in V$, $\Pi_X u$ is the unique element of V such that

$$\operatorname{Var}[u(Z) - \Pi_X u(Z)] = \min_{v \in X} \operatorname{Var}[u(Z) - v(Z)].$$

Ideal greedy algorithm

• Initialization n = 1: Let $\mu_1 \in \mathcal{P}$ such that

$$\mu_1 \in \operatorname*{argmax}_{\mu \in \mathcal{P}} \|u_{\mu}\|_{V}^2.$$

Let
$$\theta_1 := \frac{u_{\mu_1}}{\|u_{\mu_1}\|_V}$$
 and $X_1 := \text{Vect}\{\theta_1\} = \text{Vect}\{u_{\mu_1}\}.$

• Iteration $n \ge 2$: Let $\mu_n \in \mathcal{P}$ such that

$$\mu_n \in \operatorname*{argmax}_{\mu \in \mathcal{P}} \|u_\mu - \Pi_{X_{n-1}} u_\mu\|_V^2.$$

Let
$$\theta_n := \frac{u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}}{\|u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}\|_{V}}$$
 and $X_n := \text{Vect}\{\theta_1, \dots, \theta_n\} = \text{Vect}\{u_{\mu_1}, \dots, u_{\mu_n}\}.$

Ideal greedy algorithm

• Initialization n = 1: Let $\mu_1 \in \mathcal{P}$ such that

$$\mu_1 \in \operatorname*{argmax} \operatorname*{Var}[u_{\mu}(Z)].$$

Let
$$\theta_1 := \frac{u_{\mu_1}}{\sqrt{\text{Var}[u_{\mu_1}(Z)]}}$$
 and $X_1 := \text{Vect}\{\theta_1\} = \text{Vect}\{u_{\mu_1}\}.$

• Iteration $n \ge 2$: Let $\mu_n \in \mathcal{P}$ such that

$$\mu_n \in \operatorname*{argmax} \operatorname*{Var}[u_\mu(Z) - \Pi_{X_{n-1}} u_\mu(Z)].$$

Let
$$\theta_n := \frac{u_{\mu_n} - \Pi_{X_{n-1}} u_{\mu_n}}{\sqrt{\text{Var}[u_{\mu_n}(Z) - \Pi_{X_{n-1}} u_{\mu_n}(Z)]}}$$
 and $X_n := \text{Vect}\{\theta_1, \cdots, \theta_n\} = \text{Vect}\{u_{\mu_1}, \cdots, u_{\mu_n}\}.$

Monte Carlo greedy algorithm

- Exact variances cannot be computed in practice, only empirical variances.
- For all $n \in \mathbb{N}^*$, let $M_n \in \mathbb{N}^*$, $\overline{Z}^n := (Z_k^n)_{1 \le k \le n}$ iid randdom vectors distributed according to the law of Z and independent of Z.

Let us also assume that $m, n \in \mathbb{N}^*$ and that for all $1 \le k \le M_n$ and $1 \le l \le M_m$, Z_k^n is independent of Z_l^m as soon as $n \ne m$ or $k \ne l$.

• For all $X \subset V$ and all $u \in V$, let $\overline{\Pi}_X^n u \in V$ be the unique solution to

$$\operatorname{Var}_{\overline{Z}^n}\left(u-\overline{\Pi}_X^n u\right)=\inf_{v\in X}\operatorname{Var}_{\overline{Z}^n}\left(u-v\right).$$

Monte-Carlo greedy algorithm

• Initialization n = 1: Let $\overline{\mu}_1 \in \mathcal{M}$ such that

$$\overline{\mu}_1 \in \operatorname*{argmax} \operatorname{Var}_{\overline{Z}^1}(u_{\mu}).$$

Let
$$\overline{\theta}_1 := \frac{u_{\overline{\mu}_1}}{\sqrt{\operatorname{Var}[u_{\overline{\mu}_1}(Z)]}}$$
 and $\overline{X}_1 := \operatorname{Vect}\{\overline{\theta}_1\} = \operatorname{Vect}\{u_{\overline{\mu}_1}\}.$

• Iteration $n \ge 2$: Let $\overline{\mu}_n \in \mathcal{P}$ such that

$$\overline{\mu}_n \in \operatorname*{argmax}_{\mu \in \mathcal{P}} \operatorname*{Var}_{\overline{Z}^n} \left(u_{\mu} - \overline{\Pi}^n_{\overline{X}_{n-1}} u_{\mu} \right).$$

Let
$$\overline{\theta}_n := \frac{u_{\overline{\mu}_n} - 1 1_{\overline{X}_{n-1}} u_{\overline{\mu}_n}}{\sqrt{\operatorname{Var}[u_{\overline{\mu}_n}(Z) - \Pi_{\overline{X}^{n-1}} u_{\overline{\mu}_n}(Z)]}}$$
 and $\overline{X}_n := \operatorname{Vect}\{\overline{\theta}_1, \cdots, \overline{\theta}_n\} = \operatorname{Vect}\{u_{\overline{\mu}_1}, \cdots, u_{\overline{\mu}_n}\}.$

Monte-Carlo greedy algorithm

Question: under which assumptions can one guarantee that the Monte-Carlo greedy algorithm is a weak greedy algorithm with parameter $\gamma \in (0, 1]$ with high probability? In particular, how to choose the sequence $(M_n)_{n \in \mathbb{N}^*}$?

Assumption on ν

• Assumption (A): The probability measure ν is such that there exists $\alpha>$ 1 an $\beta>$ 0 such that

$$\int_{\mathbb{R}} e^{\beta |x|^{\alpha}} d\nu(x) < +\infty.$$

• Consequence: We can use results from [Fournier,Guillin,2015] about concentration inequalities of the empirical measure of ν in Wasserstein distance.

Concentration inequality in Wasserstein distance

- Let \mathcal{L} be the set of Lipschitz functions on \mathbb{R}^d , and for all $u \in \mathcal{L}$, let $||u||_{\mathcal{L}}$ its Lipschitz constant.
- Let $\phi: \mathbb{R}_+^* \to \mathbb{R}_+^*$ defined by

$$\forall \kappa \in \mathbb{R}_{+}^{*}, \quad \phi(\kappa) := \begin{cases} \kappa^{2} \mathbb{1}_{\kappa \leq 1} + \kappa^{\alpha} \mathbb{1}_{\kappa > 1} & \text{if } d = 1, \\ (\kappa/\log(2 + 1/\kappa)^{2}) \mathbb{1}_{\kappa \leq 1} + \kappa^{\alpha} \mathbb{1}_{\kappa > 1} & \text{if } d = 2, \\ \kappa^{d} \mathbb{1}_{\kappa \leq 1} + \kappa^{\alpha} \mathbb{1}_{\kappa > 1} & \text{if } d \geq 3. \end{cases}$$
(2)

Theorem (Fournier, Guilin, 2015)

Assume that ν satisfies assumption (A). Then, there exist c, C > 0 (which only depend on ν , d, α and β), such that for all $M \in \mathbb{N}^*$, $\overline{Z} := (Z_k)_{1 \le k \le M}$ iid random vectors distributed according to ν and for all $\kappa > 0$,

$$\mathbb{P}\left[\mathcal{T}_1\left(\overline{Z}\right) \geq \kappa
ight] \leq C e^{-cM\phi(\kappa)},$$

where

$$\mathcal{T}_1\left(\overline{Z}\right) := \sup_{f \in \mathcal{L}: \|f\|_{\mathcal{L}} \le 1} |\mathbb{E}[f(Z)] - \mathbb{E}_{\overline{Z}}(f)|.$$

Assumption on ${\mathcal M}$

$$\mathcal{M} := \{ \mathbf{u}_{\mu}, \ \mu \in \mathcal{M} \}$$

Assumption (B): The set \mathcal{M} satisfies the four conditions:

- (B1) \mathcal{M} is a compact subset of V and let $C_2 := \sup_{\mu \in \mathcal{P}} \sqrt{\operatorname{Var}\left[u_{\mu}(Z)\right]} < \infty$;
- (B2) $\mathcal{M} \subset \mathcal{L}$ and $C_{\mathcal{L}} := \sup_{\mu \in \mathcal{P}} \|u_{\mu}\|_{\mathcal{L}} < +\infty$;
- (B3) $\mathcal{M} \subset L^{\infty}(\mathbb{R}^d)$ and $C_{\infty} := \sup_{\mu \in \mathcal{P}} \|u_{\mu} \mathbb{E}[u_{\mu}(Z)]\|_{L^{\infty}} < +\infty;$
- (B4) for all $n \in \mathbb{N}^*$, $d_n(\mathcal{M})_V > 0$.

For all $n \in \mathbb{N}^*$, let

$$\overline{\sigma}_{n-1} = \max_{\mu \in \mathcal{P}} \sqrt{\operatorname{Var}_{\overline{Z}^{n}} \left(u_{\mu} - \overline{\Pi}_{\overline{X}_{n-1}}^{n} u_{\mu} \right)},$$

$$\widehat{\sigma}_{n-1} = \max_{\mu \in \mathcal{P}} \sqrt{\operatorname{Var} \left[u_{\mu}(Z) - \Pi_{\overline{X}_{n-1}} u_{\mu}(Z) \, \middle| \, \overline{Z}^{1:(n-1)} \right]}.$$

$$C_{\infty}^{n} := \max \left(C_{\infty}, \|\overline{\theta}_{1} - \mathbb{E}[\overline{\theta}_{1}(Z)]\|_{L^{\infty}}, \cdots, \|\overline{\theta}_{n} - \mathbb{E}[\overline{\theta}_{n}(Z)]\|_{L^{\infty}} \right)$$

$$C_{\mathcal{L}}^{n} := \max \left(C_{\mathcal{L}}, \|\overline{\theta}_{1}\|_{\mathcal{L}}, \cdots, \|\overline{\theta}_{n}\|_{\mathcal{L}} \right).$$

$$\kappa_{0} := \frac{\left(1 - \gamma^{2} \right) \widehat{\sigma}_{0}^{2}}{8C_{\infty}C_{\mathcal{L}}};$$
(3)

 $\overline{Z}^{1:n} = (\overline{Z}^1, \cdots, \overline{Z}^n)$

$$\forall n \geq 1, \quad \kappa_n := \frac{\min\left(\frac{1}{2n}, \quad \frac{(1-\gamma^2)\widehat{\sigma}_n^2}{(n+1)\left(9C_2^2+4\right)}\right)}{6C_\infty^n C_L^n}. \tag{4}$$

Remark: For all $n \in \mathbb{N}$, κ_n is a deterministic function of $\overline{Z}^{1:n}$.

Theorem (Blel, Ehrlacher, Lelièvre, 2021)

Let $0<\delta<1$ and $(\delta_n)_{n\in\mathbb{N}^*}\subset (0,1)^{\mathbb{N}^*}$ a sequence such that $\Pi_{n\in\mathbb{N}^*}(1-\delta_n)\geq 1-\delta$. Let us assume that $\mathcal M$ satisfies assumption (B) and that ν satisfies assumption (A). Let us assume that there exists $0<\gamma<1$ such that for all $n\in\mathbb{N}^*$, $M_n\in\mathbb{N}^*$ is a $\overline{Z}^{1:(n-1)}$ -measurable random variable which satisfies almost surely:

$$\forall n \geq 1, \quad M_n \geq -\ln\left(\frac{\delta_n}{C}\right) \frac{1}{c\phi\left(\kappa_{n-1}\right)},$$
 (5)

Then, the Monte-Carlo greedy algorithm is a weak greedy algorithm with parameter γ with probability at least 1 $-\delta$.

Conclusion

Summary:

Theoretical bounds on the number of samples to be used at each iteration of the Monte-Carlo greedy algorithm so that it can be theoretically guaranteed to be a weak greedy algorithm with high probability.

Open questions:

- Pessimistic bounds: better inequalities? For now, heuristic strategies to choose the sequence $(M_n)_{n\geq 1}$ in practice.
- Independent uniform sampling: what about adaptive sampling?
- Z is assumed to be a finite dimensional random vector: what happens if Z is infinite-dimensional? (Brownian motion)

Thank you for your attention!