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Solution set

Let V be a Hilbert space and P ⊂ R
p be a set of parameter values for some p ∈ N

∗.

For all µ ∈ P , let uµ ∈ V so that M := {uµ, µ ∈ P} is a compact subset of V .

For all X ⊂ V finite-dimensional subspace of V , let ΠX denote the orthogonal projector

of V onto X .

Example: For all µ ∈ P , uµ ∈ V is the unique solution of a PDE system of the form

A(uµ;µ) = 0,

where A(·;µ) is a differential operator depending on the value of the parameters µ.
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Kolmogorov n-width

Definition

For all n ∈ N
∗,

dn(M)V := inf
Vn ⊂ V

dim Vn = n

sup
µ∈M

‖uµ − ΠVn uµ‖V

the Kolmogorov n-width of the set M.

Question: How to find a constructive way to construct a sequence of linear spaces

(Xn)n≥1 which are quasi-optimal in the sense that

σn(M;Xn)V := sup
µ∈P

‖uµ − ΠXn uµ‖V

decays at a rate similar to (dn(M)V )n≥1?
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Greedy algorithm for reduced bases

Initialization n = 1: Let µ1 ∈ P such that

µ1 ∈ argmax
µ∈P

‖uµ‖2
V .

Let θ1 :=
uµ1

‖uµ1
‖V

and X1 := Vect{θ1} = Vect{uµ1
}.

Iteration n ≥ 2: Let µn ∈ P such that

µn ∈ argmax
µ∈P

∥∥uµ − ΠXn−1
uµ

∥∥2

V
.

Let θn :=
uµn−ΠXn−1

uµn∥∥∥uµn−ΠXn−1
uµn

∥∥∥
V

and Xn := Vect{θ1, · · · , θn} = Vect{uµ1
, · · · , uµn}.
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Weak greedy algorithm for reduced bases

Soit 0 < γ ≤ 1.

Initialization n = 1: Let µ1 ∈ P such that

‖uµ1
‖V ≥ γ sup

µ∈P
‖uµ‖V .

Let θ1 :=
uµ1

‖uµ1
‖V

and X1 := Vect{θ1} = Vect{uµ1
}.

Iteration n ≥ 2: Let µn ∈ P such that

‖uµn − ΠXn−1
uµn‖V ≥ γ sup

µ∈P
‖uµ − ΠXn−1

uµ‖V .

Let θn :=
uµn−ΠXn−1

uµn∥∥∥uµn−ΠXn−1
uµn

∥∥∥
V

and Xn := Vect{θ1, · · · , θn} = Vect{uµ1
, · · · , uµn}.
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Convergence rates of greedy algorithms

[Buffa, Maday, Patera, Prud’homme, Turinici, 2012]

[Binev,Cohen, Dahmen, DeVore, Petrova,Wojtaszczyk, 2011]

[DeVore, Petrova, Wojtaszczyk, 2013]

Theorem

For all n ∈ N
∗,

σ2n(M;X2n)V ≤
√

2γ−1
√

dn(M)V .

If dn(M)V ≤ Cn−α, then σn(M;Xn)V ≤ C̃n−α.

If dn(M)V ≤ Ce−cnα , then σn(M;Xn)V ≤ C̃e−c̃nα .

Reduced basis method:

Offline stage: Select µ1, · · · , µn ∈ P using a (weak) greedy algorithm.

Online stage: For all µ ∈ P , approximate uµ by a linear combination of

uµ1
, · · · , uµn (with a Galerkin method for instance).
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Previous works related to greedy algorithms in a stochastic setting

Smetana-Zahm-Patera (2018), Balabanov-Nouy (2019): Randomized

residual-based error estimators

Cohen-Dahmen-Devore-Nichols (2020): Random training sets Ptrain ⊂ P .

Cohen-Dolbeault (2021): Sampling numbers

Boyaval-Lelièvre... (2010): Variance reduction using a reduced basis control

variate
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Notation and framework

Let d ∈ N
∗ and P(Rd) the set of probability measures on R

d .

Let Z be a random vector of dimension d with law characterized by a probability

measure ν ∈ P(Rd ).

Let L2
ν(R

d ) be the set of functions u : Rd → R such that

∫

Rd

|u(z)|2 dν(z) = E

[
|u(Z )|2

]
< +∞.

For all µ ∈ P , let uµ ∈ L2
ν(R

d) so that M := {uµ, µ ∈ P} is a compact subset

L2
ν(R

d ).

Additional assumption: M ⊂ C(Rd).

Objective: Analysis of a variance reduction method proposed [Boyaval, Lelièvre et al., 2010] in

order to efficiently compute

E [uµ(Z )]

for a large number of values of µ ∈ P .
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Notation

Let M ∈ N
∗ and let Z := (Zk )1≤k≤M a set of M iid randdom vectors distributed

according to the law of Z .

For all u, v ∈ L2
ν(R

d ) ∩ C(Rd), we denote by

EZ (u) :=
1

M

M∑

k=1

u(Zk ),

CovZ (u, v) := EZ (uv)− EZ (u)EZ (v),

VarZ (u) :=
√

CovZ (u,u) =
√

EZ (u
2)− EZ (u)

2.
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Standard Monte-Carlo method

Let Mref ∈ N
∗ (so that Mref is typically very large), and let Z

ref
:=
(
Z ref

k

)
1≤k≤Mref

be a

set of Mref iid randdom vectors distributed according to the law of Z .

The standard Monte-Carlo method consists in computing, for all µ ∈ P , an

approximation of E [uµ(Z )] as the empirical mean

E
Z

ref (uµ) =
1

Mref

Mref∑

k=1

uµ

(
Z

ref
k

)
.

The statistical error given by this method is of the order of

√
Var [uµ(Z )]√

Mref

≤ C√
Mref

où C := sup
µ∈P

√
Var [uµ(Z )].

For all µ ∈ P , the computational cost scales like O(Mref).
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Reduced basis control variate

Idea: Construct (in an online stage) an approximation of uµ(Z ) as a linear

combination of uµ1
(Z ), · · · , uµn(Z ) for some well-chosen µ1, · · · , µn ∈ P (the

choice being done in an offline stage).

Offline stage: Selection of n ∈ N
∗, µ1, · · · , µn ∈ P and computation of

E
Z

ref (uµi
) ∀1 ≤ i ≤ n.

Let Msmall ∈ N
∗ (so that Msmall ≪ Mref), and let Z

small
:=
(
Z small

k

)
1≤k≤Msmall

be a set

of Msmall iid randdom vectors distributed according to the law of Z (and

independent of Z
ref

).

Computation of

E
Z

small (uµi
) and Aij := Cov

Z
small

(
uµi

, uµj

)
∀1 ≤ i , j ≤ n.
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Reduced basis control variate

Online stage: For all µ ∈ P , computation of

Bi := Cov
Z

small (uµi
, uµ) ∀1 ≤ i ≤ n O(nMsmall).

Let Λµ := (λµ

i )1≤i≤n ∈ R
n solution of

Λµ = argmin
Λ:=(λi )1≤i≤n∈Rn

Var
Z

small

(
uµ −

n∑

i=1

λi uµi

)
, (1)

or equivalently, of

AΛµ = B, B = (Bi)1≤i≤n, A = (Aij)1≤i,j≤n. O(n2)

Compute an approximation of

E [uµ(Z )] = E
[(

uµ −∑n
i=1 uµi

)
(Z )
]
+
∑n

i=1 λ
µ

i E [uµi
(Z )] as

E
Z

small

(
uµ −

n∑

i=1

λµ

i uµi

)
+

n∑

i=1

λµ

i EZ
ref (uµi

) . O(Msmall + n)
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Reduced basis control variate

Better (in terms of a computational complexity) than a standard Monte Carlo

approach if

nMsmall ≪ Mref.

What about accuracy? The statistical error is then (assuming that |λµ

i | ≤ κ for

some κ > 0 for the sake of simplicity) of the order of

√
Var

[(
uµ −∑n

i=1 λ
µ

i uµi

)
(Z )
]

√
Msmall

+
Cκn√

Mref

.

The statistical error will then be comparable to a standard Monte-Carlo method if

Var

[(
uµ −

n∑

i=1

λµ

i uµi

)
(Z )

]
≈ Msmall

Mref
.

It is then natural to choose (λi
µ)1≤i≤n such that Var

[(
uµ −∑n

i=1 λ
µ

i uµi

)
(Z )
]

is as

small as possible, hence (1).
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Offline stage: choice of µ1, · · · , µn ∈ P with a greedy algorithm with
Monte-Carlo sampling

Important remark:

The space V := L2
ν(R

d)/R (the set of functions of L2
ν(R

d) defined up to an additive

constant) is a Hilbert space embedded with the scalar product:

∀u, v ∈ V , 〈u, v〉V := Cov[u(Z ), v(Z )] := E[u(Z )v(Z )]− E[u(Z )]E[v(Z )].

The associated norm is then

‖u‖2
V := Var[u(Z )] = Cov[u(Z ), u(Z )] = E[u(Z )2]− E[u(Z )]2.

For any finite-dimensional subspace X ⊂ V , and for all u ∈ V , ΠX u is the unique

element of V such that

Var[u(Z )− ΠX u(Z )] = min
v∈X

Var[u(Z )− v(Z )].
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Ideal greedy algorithm

Initialization n = 1: Let µ1 ∈ P such that

µ1 ∈ argmax
µ∈P

‖uµ‖2
V .

Let θ1 :=
uµ1

‖uµ1
‖V

and X1 := Vect{θ1} = Vect{uµ1
}.

Iteration n ≥ 2: Let µn ∈ P such that

µn ∈ argmax
µ∈P

∥∥uµ − ΠXn−1
uµ

∥∥2

V
.

Let θn :=
uµn−ΠXn−1

uµn∥∥∥uµn−ΠXn−1
uµn

∥∥∥
V

and Xn := Vect{θ1, · · · , θn} = Vect{uµ1
, · · · , uµn}.
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Ideal greedy algorithm

Initialization n = 1: Let µ1 ∈ P such that

µ1 ∈ argmax
µ∈P

Var[uµ(Z )].

Let θ1 :=
uµ1√

Var[uµ1
(Z)]

and X1 := Vect{θ1} = Vect{uµ1
}.

Iteration n ≥ 2: Let µn ∈ P such that

µn ∈ argmax
µ∈P

Var[uµ(Z )− ΠXn−1
uµ(Z )].

Let θn :=
uµn−ΠXn−1

uµn√
Var[uµn (Z)−ΠXn−1

uµn (Z)]
and Xn := Vect{θ1, · · · , θn} = Vect{uµ1

, · · · , uµn}.
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Monte Carlo greedy algorithm

Exact variances cannot be computed in practice, only empirical variances.

For all n ∈ N
∗, let Mn ∈ N

∗, Z
n
:= (Z n

k )1≤k≤n iid randdom vectors distributed

according to the law of Z and independent of Z .

Let us also assume that m, n ∈ N
∗ and that for all 1 ≤ k ≤ Mn and 1 ≤ l ≤ Mm, Z n

k

is independent of Z m
l as soon as n 6= m or k 6= l .

For all X ⊂ V and all u ∈ V , let Π
n

X u ∈ V be the unique solution to

Var
Z

n

(
u − Π

n

X u
)
= inf

v∈X
Var

Z
n (u − v) .
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Monte-Carlo greedy algorithm

Initialization n = 1: Let µ1 ∈ M such that

µ1 ∈ argmax
µ∈P

Var
Z

1(uµ).

Let θ1 :=
uµ1√

Var[uµ1
(Z)]

and X 1 := Vect{θ1} = Vect{uµ1
}.

Iteration n ≥ 2: Let µn ∈ P such that

µn ∈ argmax
µ∈P

Var
Z

n

(
uµ − Π

n

Xn−1
uµ

)
.

Let θn :=
uµn

−Π
Xn−1

uµn√
Var[uµn

(Z)−Π
X

n−1 uµn
(Z)]

and

X n := Vect{θ1, · · · , θn} = Vect{uµ1
, · · · , uµn

}.
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Monte-Carlo greedy algorithm

Question: under which assumptions can one guarantee that the Monte-Carlo greedy

algorithm is a weak greedy algorithm with parameter γ ∈ (0,1] with high probability?

In particular, how to choose the sequence (Mn)n∈N∗?
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Assumption on ν

Assumption (A): The probability measure ν is such that there exists α > 1 an

β > 0 such that ∫

R

e
β|x|α

dν(x) < +∞.

Consequence: We can use results from [Fournier,Guilin,2015] about concentration

inequalities of the empirical measure of ν in Wasserstein distance.
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Concentration inequality in Wasserstein distance

Let L be the set of Lipschitz functions on R
d , and for all u ∈ L, let ‖u‖L its

Lipschitz constant.

Let φ : R∗
+ → R

∗
+ defined by

∀κ ∈ R
∗
+, φ(κ) :=






κ2
1κ≤1 + κα

1κ>1 if d = 1,

(κ/ log(2 + 1/κ)2)1κ≤1 + κα
1κ>1 if d = 2,

κd
1κ≤1 + κα

1κ>1 if d ≥ 3.

(2)

Theorem (Fournier, Guilin, 2015)

Assume that ν satisfies assumption (A). Then, there exist c,C > 0 (which only depend

on ν, d, α and β), such that for all M ∈ N
∗, Z := (Zk )1≤k≤M iid random vectors

distributed according to ν and for all κ > 0,

P

[
T1

(
Z
)
≥ κ

]
≤ Ce

−cMφ(κ),

where

T1

(
Z
)
:= sup

f∈L;‖f‖L≤1

|E[f (Z )]− EZ (f )| .
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Assumption on M

M := {uµ, µ ∈ M}

Assumption (B): The set M satisfies the four conditions:

(B1) M is a compact subset of V and let C2 := supµ∈P

√
Var [uµ(Z )] < ∞;

(B2) M ⊂ L and CL := supµ∈P ‖uµ‖L < +∞;

(B3) M ⊂ L∞(Rd ) and C∞ := supµ∈P ‖uµ − E[uµ(Z )]‖L∞ < +∞;

(B4) for all n ∈ N
∗, dn(M)V > 0.
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Notation

For all n ∈ N
∗, let

Z
1:n

=
(

Z
1
, · · · , Z n

)

σn−1 = max
µ∈P

√
Var

Z
n

(
uµ − Π

n

X n−1
uµ

)
,

σ̂n−1 = max
µ∈P

√
Var

[
uµ(Z )− ΠX n−1

uµ(Z )
∣∣∣Z 1:(n−1)

]
.

C
n
∞ := max

(
C∞, ‖θ1 − E[θ1(Z )]‖L∞ , · · · , ‖θn − E[θn(Z )]‖L∞

)

C
n
L := max

(
CL, ‖θ1‖L, · · · , ‖θn‖L

)
.

κ0 :=

(
1 − γ2

)
σ̂2

0

8C∞CL
; (3)

∀n ≥ 1, κn :=

min

(
1

2n
,

(1−γ2)σ̂2
n

(n+1)(9C2
2
+4)

)

6Cn
∞Cn

L

. (4)

Remark: For all n ∈ N, κn is a deterministic function of Z
1:n

.
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Main result

Theorem (Blel, Ehrlacher, Lelièvre, 2021)

Let 0 < δ < 1 and (δn)n∈N∗ ⊂ (0, 1)N
∗

a sequence such that Πn∈N∗ (1 − δn) ≥ 1 − δ.

Let us assume that M satisfies assumption (B) and that ν satisfies assumption (A).

Let us assume that there exists 0 < γ < 1 such that for all n ∈ N
∗, Mn ∈ N

∗ is a

Z
1:(n−1)

-measurable random variable which satisfies almost surely:

∀n ≥ 1, Mn ≥ − ln

(
δn

C

)
1

cφ (κn−1)
, (5)

Then, the Monte-Carlo greedy algorithm is a weak greedy algorithm with parameter γ
with probability at least 1 − δ.
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Conclusion

Summary:

Theoretical bounds on the number of samples to be used at each iteration of the

Monte-Carlo greedy algorithm so that it can be theoretically guaranteed to be a weak

greedy algorithm with high probability.

Open questions:

Pessimistic bounds: better inequalities? For now, heuristic strategies to choose

the sequence (Mn)n≥1 in practice.

Independent uniform sampling: what about adaptive sampling?

Z is assumed to be a finite dimensional random vector: what happens if Z is

infinite-dimensional? (Brownian motion)

Thank you for your attention!
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