# From linear to nonlinear n-width: optimality in reduced modelling

#### Albert Cohen

Laboratoire Jacques-Louis Lions Sorbonne Université Paris

Collaborators: Ron DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk

IHP, 08-11-2021



## Announcing two great conferences, hopefully in physical format

1. Curves and Surfaces: Arcachon, France, June 20-24, 2022

Registration open: cs2022.sciencesconf.org

Foundation of Computational Mathematics: Whistler, Canada, June 12-21, 2023.
 Registration opening should be officially announced in coming months.

Save the dates!

# Agenda

- 1. Linear widths
- 2. Widths of parametrized PDEs and reduced bases
- 3. Nonlinear widths
- 4. Widths and sampling numbers

# Kolmogorov linear n-width

We are interested in approximating general functions  $u \in V$ , where V is a Banach space, by simpler functions v picked from a linear subspace  $V_n \subset V$  of finite dimension n.

Classical Banach spaces : Lebesgue  $L^p(\Omega)$ , Sobolev  $W^{m,p}(\Omega)$  for  $\Omega \subset \mathbb{R}^d$ .

Classical linear subspaces : algebraic or trigonometric polynomials of some prescribed degree, splines or finite elements on some given mesh, span of the n first elements  $\{e_1, \ldots, e_n\}$  from a given basis  $(e_k)_{k>1}$  of V.

Model class reflecting the properties the target function :  $u \in \mathcal{K}$ , where  $\mathcal{K}$  is a compact set of V. In parametrized PDEs, the set  $\mathcal{K}$  is the solution manifold that gathers all solutions  $u(y) \in V$  as the parameter vector y varies.

Best choice of approximation spaces for this model class?

The space  $V_n$  approximate  $\mathcal{K}$  with uniform accuracy

$$\operatorname{dist}(\mathcal{K}, V_n)_V := \max_{u \in \mathcal{K}} \min_{v \in V_n} \|u - v\|_V$$

A.N. Kolmogorov (1936) defines the linear *n*-width of  $\mathcal K$  in the metric V as

$$d_n(\mathcal{K})_V := \inf_{\dim(V_n) = n} \operatorname{dist}(\mathcal{K}, V_n)_V$$

## Kolmogorov linear n-width

We are interested in approximating general functions  $u \in V$ , where V is a Banach space, by simpler functions v picked from a linear subspace  $V_n \subset V$  of finite dimension n.

Classical Banach spaces : Lebesgue  $L^p(\Omega)$ , Sobolev  $W^{m,p}(\Omega)$  for  $\Omega \subset \mathbb{R}^d$ .

Classical linear subspaces : algebraic or trigonometric polynomials of some prescribed degree, splines or finite elements on some given mesh, span of the n first elements  $\{e_1,\ldots,e_n\}$  from a given basis  $(e_k)_{k>1}$  of V.

Model class reflecting the properties the target function :  $u \in \mathcal{K}$ , where  $\mathcal{K}$  is a compact set of V. In parametrized PDEs, the set  $\mathcal{K}$  is the solution manifold that gathers all solutions  $u(y) \in V$  as the parameter vector y varies.

Best choice of approximation spaces for this model class?

The space  $V_n$  approximate K with uniform accuracy

$$\operatorname{dist}(\mathcal{K}, V_n)_V := \max_{u \in \mathcal{K}} \min_{v \in V_n} \|u - v\|_V$$

A.N. Kolmogorov (1936) defines the linear *n*-width of  $\mathcal K$  in the metric V as

$$d_n(\mathcal{K})_V := \inf_{\dim(V_n)=n} \operatorname{dist}(\mathcal{K}, V_n)_V$$

#### Intuition



The optimal space achieving the infimum in

$$d_n(\mathcal{K})_V = \inf_{\dim(V_n) = n} \max_{u \in \mathcal{K}} \min_{v \in V_n} \|u - v\|_V.$$

may not exist. One often assumes it exists in order to avoid limiting arguments

The quantity  $d_n(\mathcal{K})_V$  can be viewed as a benchmark/bottleneck for numerical methods applied to the elements from  $\mathcal{K}$  that create approximations from linear spaces: interpolation, projection, least squares, Galerkin methods for solving PDEs...

#### Intuition



The optimal space achieving the infimum in

$$d_n(\mathcal{K})_V = \inf_{\dim(V_n)=n} \max_{u \in \mathcal{K}} \min_{v \in V_n} \|u - v\|_V.$$

may not exist. One often assumes it exists in order to avoid limiting arguments.

The quantity  $d_n(\mathcal{K})_V$  can be viewed as a benchmark/bottleneck for numerical methods applied to the elements from  $\mathcal{K}$  that create approximations from linear spaces: interpolation, projection, least squares, Galerkin methods for solving PDEs...

## An analog concept in the stochastic framework: PCA

Assume that V is a Hilbert space and u is a random variable taking its value in V. Optimal spaces in the mean-square sense.

$$\kappa_n^2 = \kappa_n(u)_V^2 := \min_{\dim(V_n) = n} \mathbb{E}\Big(\|u - P_{V_n}u\|_V^2\Big).$$

The space achieving the minimum is easily characterized by principal component analysis: consider the covariance operator

$$v \mapsto Rv = \mathbb{E}(\langle u, v \rangle u),$$

which is compact, when assuming that  $\mathbb{E}(\|u\|_V^2) < \infty$ . Diagonalized in the Karhunen-Loeve basis  $(\varphi_k)_{k \geq 1}$  with eigenvalues  $\lambda_1 \geq \lambda_2 \geq \cdots \rightarrow 0$ .

Then  $V_n := \operatorname{span}\{\varphi_1, \dots, \varphi_n\}$  and  $\kappa_n^2 = \sum_{k > n} \lambda_k$ .

Note that  $\kappa_n(u)_V^2 \leq d_n(\mathcal{K})_V^2$  when u is supported in  $\mathcal{K}$ .

### An analog concept in the stochastic framework: PCA

Assume that V is a Hilbert space and u is a random variable taking its value in V. Optimal spaces in the mean-square sense.

$$\kappa_n^2 = \kappa_n(u)_V^2 := \min_{\dim(V_n) = n} \mathbb{E}\Big(\|u - P_{V_n}u\|_V^2\Big).$$

The space achieving the minimum is easily characterized by principal component analysis: consider the covariance operator

$$v \mapsto Rv = \mathbb{E}(\langle u, v \rangle u),$$

which is compact, when assuming that  $\mathbb{E}(\|u\|_V^2) < \infty$ . Diagonalized in the Karhunen-Loeve basis  $(\varphi_k)_{k \geq 1}$  with eigenvalues  $\lambda_1 \geq \lambda_2 \geq \cdots \rightarrow 0$ .

Then 
$$V_n := \operatorname{span}\{\varphi_1, \dots, \varphi_n\}$$
 and  $\kappa_n^2 = \sum_{k > n} \lambda_k$ .

Note that  $\kappa_n(u)_V^2 \leq d_n(\mathcal{K})_V^2$  when u is supported in  $\mathcal{K}$ .

## Variants to *n*-width : realization of the approximation

The best approximation  $u_n = \operatorname{argmin}\{\|u - v\|_V : v \in V_n\}$  is the orthogonal projection if V is a Hilbert space.

For a general Banach space, the map  $u \mapsto u_n$  is not linear, and may even not be continuous (non-uniqueness of best approximation).

This motivates alternate definitions of widths where we impose linearity or continuity of the approximation process.

Approximation numbers are defined as

$$a_n(\mathcal{K})_V := \inf_{L} \max_{u \in \mathcal{K}} \|u - Lu\|_V,$$

with infimum taken over all linear maps L such that  $rank(L) \leq n$ .

In a general Banach space  $d_n \leq a_n \leq \sqrt{n}d_n$  and right equality may hold

On the other hand one can prove that

$$d_n(\mathcal{K})_V := \inf_F \max_{u \in \mathcal{K}} \|u - F(u)\|_V,$$

with infimum taken over all continuous maps F such that rank(F) < n

## Variants to n-width: realization of the approximation

The best approximation  $u_n = \operatorname{argmin}\{\|u - v\|_V : v \in V_n\}$  is the orthogonal projection if V is a Hilbert space.

For a general Banach space, the map  $u \mapsto u_n$  is not linear, and may even not be continuous (non-uniqueness of best approximation).

This motivates alternate definitions of widths where we impose linearity or continuity of the approximation process.

Approximation numbers are defined as

$$a_n(\mathcal{K})_V := \inf_{L} \max_{u \in \mathcal{K}} \|u - Lu\|_V,$$

with infimum taken over all linear maps L such that  $\operatorname{rank}(L) \leq n$ .

In a general Banach space  $d_n \le a_n \le \sqrt{n}d_n$  and right equality may hold.

On the other hand one can prove that

$$d_n(\mathcal{K})_V := \inf_F \max_{u \in \mathcal{K}} \|u - F(u)\|_V,$$

with infimum taken over all continuous maps F such that  $rank(F) \le n$ 

### Variants to n-width: realization of the approximation

The best approximation  $u_n = \operatorname{argmin}\{\|u - v\|_V : v \in V_n\}$  is the orthogonal projection if V is a Hilbert space.

For a general Banach space, the map  $u \mapsto u_n$  is not linear, and may even not be continuous (non-uniqueness of best approximation).

This motivates alternate definitions of widths where we impose linearity or continuity of the approximation process.

Approximation numbers are defined as

$$a_n(\mathcal{K})_V := \inf_{L} \max_{u \in \mathcal{K}} \|u - Lu\|_V,$$

with infimum taken over all linear maps L such that  $rank(L) \leq n$ .

In a general Banach space  $d_n \leq a_n \leq \sqrt{n}d_n$  and right equality may hold.

On the other hand one can prove that

$$d_n(\mathcal{K})_V := \inf_{F} \max_{u \in \mathcal{K}} \|u - F(u)\|_V,$$

with infimum taken over all continuous maps F such that  $\mathrm{rank}(F) \leq n$ .

#### Behaviour of *n*-widths of smoothness classes

Typical compact sets in  $V=L^p(\Omega)$  are balls of smoothness spaces. The behaviour of n-width is well understood for such sets. Example :  $V=L^\infty(I)$  where  $I=[0,1]\subset \mathbb{R}$ 

and

$$\mathcal{K} = \mathcal{U}(\operatorname{Lip}(I)) = \{u : \max\{\|u\|_{L^{\infty}}, \|u'\|_{L^{\infty}}\} \le 1\},$$

Then one can prove

$$d_n(\mathcal{K})_V = \frac{1}{2n}, \quad n \geq 1,.$$

More generally when  $V=W^{t,p}(\Omega)$  for some bounded Lipschitz domain  $\Omega\subset\mathbb{R}^d$  and  $\mathcal{K}$  is the unit ball of  $W^{s,p}(\Omega)$  with s>t, one can prove

$$cn^{-(s-t)/d} \le d_n(\mathcal{K})_V \le Cn^{-(s-t)/d}, \quad n \ge 1.$$

Curse of dimensionality: exponential growth in d of the needed n to reach accuracy  $\varepsilon$ .

Proof of upper bound : use a standard approximation method (piecewise polynomials, finite elements, or splines, on uniform partitions of  $\Omega$ )

Proof of lower bound? Two systematic approaches.

#### Bernstein width

Lemma : let  $B_W = \{u \in W : ||u||_V \le 1\}$  be the unit ball of a subspace  $W \subset V$  of dimension n+1, then  $\frac{d_n(B_W)_V}{d_n(B_W)_V} = 1$ .

Proof : trivial if V is a Hilbert space. Follows from Borsuk-Ulam antipodality theorem in the Banach space case : for any continuous application F from an n-sphere  $S_n = \partial B_W$  to an n dimensional space  $V_n$ , there exists  $x \in S_n$  such that F(x) = F(-x).

It follows that  $d_n(\mathcal{K})_V \ge r$  if  $\mathcal{K}$  contains the rescaled ball  $rB_W$  of an n+1-dimensional space W. In other words

$$d_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V, \quad n \geq 1,$$

where the Bernstein n-width  $b_n(\mathcal{K})_V$  is defined as the largest  $r\geq 0$  such that there exists  $W\subset V$  of dimension n+1 with  $rB_W\subset \mathcal{K}$ .

#### Bernstein width

Lemma : let  $B_W = \{u \in W : ||u||_V \le 1\}$  be the unit ball of a subspace  $W \subset V$  of dimension n+1, then  $d_n(B_W)_V = 1$ .

Proof : trivial if V is a Hilbert space. Follows from Borsuk-Ulam antipodality theorem in the Banach space case : for any continuous application F from an n-sphere  $S_n = \partial B_W$  to an n dimensional space  $V_n$ , there exists  $x \in S_n$  such that F(x) = F(-x).

It follows that  $d_n(\mathcal{K})_V \ge r$  if  $\mathcal{K}$  contains the rescaled ball  $rB_W$  of an n+1-dimensional space W. In other words

$$d_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V, \quad n \geq 1,$$

where the Bernstein *n*-width  $b_n(\mathcal{K})_V$  is defined as the largest  $r \geq 0$  such that there exists  $W \subset V$  of dimension n+1 with  $rB_W \subset \mathcal{K}$ .



## **Entropy numbers**

Define  $\varepsilon_n(\mathcal{K})_V$  as the smallest  $\varepsilon$  such that  $\mathcal{K}$  can be covered by  $2^n$  balls of radius  $\varepsilon$ :

$$\mathcal{K} \subset \bigcup_{i=1,\ldots,2^n} B(u^i,\varepsilon), \qquad B(u^i,\varepsilon) := \{u \,:\, \|u-u^i\|_V \leq \varepsilon\}.$$



Related to lossy coding: Elements of K can be encoded with n bits up to precision  $\varepsilon_n$ .

Carl's inequality : for all s > 0 one has

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_m(\mathcal{K})_V, \quad n \geq 0$$

In particular

$$d_n(\mathcal{K})_V \leq n^{-s}, \quad n \geq 0 \implies \varepsilon_n(\mathcal{K})_V \leq n^{-s}, \quad n \geq 0.$$

## **Entropy numbers**

Define  $\varepsilon_n(\mathcal{K})_V$  as the smallest  $\varepsilon$  such that  $\mathcal{K}$  can be covered by  $2^n$  balls of radius  $\varepsilon$ :

$$\mathcal{K} \subset \bigcup_{i=1,\ldots,2^n} B(u^i,\varepsilon), \qquad B(u^i,\varepsilon) := \{u : \|u-u^i\|_V \leq \varepsilon\}.$$



Related to lossy coding: Elements of K can be encoded with n bits up to precision  $\varepsilon_n$ .

Carl's inequality : for all s > 0 one has

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_m(\mathcal{K})_V, \quad n \geq 0$$

In particular

$$d_n(\mathcal{K})_V \lesssim n^{-s}, \quad n \geq 0 \implies \varepsilon_n(\mathcal{K})_V \lesssim n^{-s}, \quad n \geq 0.$$

## Reduced modeling for parametrized PDEs

Complex problems are often modelled by PDEs involving several physical parameters  $y=(y^1,\ldots,y^d)\in Y\subset\mathbb{R}^d$ .

$$\mathcal{P}(u, y) = 0$$
,

For each  $y \in Y$ , we assume well-posedness and therefore existence of a unique solution  $u(y) \in V$ .

In certain applications (optimization, inverse problems, uncertainty quantification), we may need to solve  $y\mapsto u(y)$  for many instances of  $y\in Y$ : requires computational methods that are uniformly cheap and efficient, uniformly over  $y\in Y$ .

We are interested in well approximating the solution manifold

$$\mathcal{K} := \{ u(y) : y \in Y \} \subset V,$$

which we assume to be compact.

Reduced modeling usually involves two steps:

- 1. In a (costly) offline stage, we search for spaces  $V_n$  of dimension n that approximate as best as possible the set  $\mathcal{K}$  (benchmark  $d_n(\mathcal{K})_V$ ). These spaces are quite different from classical finite element spaces.
- 2. In a (cheap) online stage, for any required  $y \in Y$  we may compute an accurate approximation  $u_n(y) \in V_n$  of u(y), for example by the Galerkin method.

An instructive example : consider the steady-state diffusion equation

$$-\operatorname{div}(a\nabla u)=f,$$

on a 2d domain  $\Omega$  (+ boundary conditions), with piecewise constant diffusion function a=a(y) having value  $\overline{a}+y_j$  on subdomain  $\Omega_j$ , where  $y=(y_1,\ldots,y_d)\in Y=[-c,c]^d$ .



How large is the *n*-width of  $\mathcal{K} = \{u(y) : y \in Y\} \subset V = H^1(\Omega)$ ?

Solutions u(y) are bounded in  $H^s$  iff s < 3/2 and  $d_n(\mathcal{U}(H^s))_{H^1} \sim n^{-(s-1)/2} \gtrsim n^{-1/4}$ .

In fact  $d_n(\mathcal{K})_{H^1}$  decreases faster than  $\mathcal{O}(\exp(-cn^{1/d}))$  : approximate by power series

$$\max_{y \in Y} \left\| u(y) - \sum_{|v| \le k} u_v y^v \right\|_{H^1} \le C \exp(-ck), \quad y^v = y_1^{v_1} \dots y_d^{v_d},$$

and use  $V_n = \operatorname{span}\{u_{\mathcal{V}} : |\mathbf{v}| \leq k\}$  of dimension  $n = \binom{k+d}{k}$ 



An instructive example : consider the steady-state diffusion equation

$$-\operatorname{div}(a\nabla u)=f,$$

on a 2d domain  $\Omega$  (+ boundary conditions), with piecewise constant diffusion function a=a(y) having value  $\overline{a}+y_j$  on subdomain  $\Omega_j$ , where  $y=(y_1,\ldots,y_d)\in Y=[-c,c]^d$ .



How large is the *n*-width of  $\mathcal{K} = \{u(y) : y \in Y\} \subset V = H^1(\Omega)$ ?

Solutions u(y) are bounded in  $H^s$  iff s < 3/2 and  $d_n(\mathcal{U}(H^s))_{H^1} \sim n^{-(s-1)/2} \gtrsim n^{-1/4}$ 

In fact  $d_n(\mathcal{K})_{H^1}$  decreases faster than  $\mathcal{O}(\exp(-cn^{1/d}))$  : approximate by power series

$$\max_{y \in Y} \left\| u(y) - \sum_{|v| \le k} u_v y^v \right\|_{H^1} \le C \exp(-ck), \quad y^v = y_1^{v_1} \dots y_d^{v_d},$$

and use  $V_n = \operatorname{span}\{u_{\mathcal{V}} : |\mathbf{v}| \leq k\}$  of dimension  $n = \binom{k+d}{k}$ 



An instructive example : consider the steady-state diffusion equation

$$-\operatorname{div}(a\nabla u)=f,$$

on a 2d domain  $\Omega$  (+ boundary conditions), with piecewise constant diffusion function a=a(y) having value  $\overline{a}+y_j$  on subdomain  $\Omega_j$ , where  $y=(y_1,\ldots,y_d)\in Y=[-c,c]^d$ .



How large is the *n*-width of  $\mathcal{K} = \{u(y) : y \in Y\} \subset V = H^1(\Omega)$ ?

Solutions u(y) are bounded in  $H^s$  iff s < 3/2 and  $d_n(\mathcal{U}(H^s))_{H^1} \sim n^{-(s-1)/2} \gtrsim n^{-1/4}$ .

In fact  $d_n(\mathcal{K})_{H^1}$  decreases faster than  $\mathcal{O}(\exp(-cn^{1/d}))$  : approximate by power series

$$\max_{y \in Y} \left\| u(y) - \sum_{|\gamma| \le k} u_{\gamma} y^{\gamma} \right\|_{H^1} \le C \exp(-ck), \quad y^{\gamma} = y_1^{\gamma_1} \dots y_d^{\gamma_d},$$

and use  $V_n = \operatorname{span}\{u_{\mathcal{V}} : |\mathbf{v}| \leq k\}$  of dimension  $n = \binom{k+d}{k}$ 



An instructive example : consider the steady-state diffusion equation

$$-\operatorname{div}(a\nabla u)=f,$$

on a 2d domain  $\Omega$  (+ boundary conditions), with piecewise constant diffusion function a=a(y) having value  $\overline{a}+y_j$  on subdomain  $\Omega_j$ , where  $y=(y_1,\ldots,y_d)\in Y=[-c,c]^d$ .



How large is the *n*-width of  $\mathcal{K} = \{u(y) : y \in Y\} \subset V = H^1(\Omega)$ ?

Solutions u(y) are bounded in  $H^s$  iff s < 3/2 and  $d_n(\mathcal{U}(H^s))_{H^1} \sim n^{-(s-1)/2} \gtrsim n^{-1/4}$ .

In fact  $d_n(\mathcal{K})_{H^1}$  decreases faster than  $\mathcal{O}(\exp(-cn^{1/d}))$  : approximate by power series

$$\max_{y\in Y} \left\| u(y) - \sum_{|\gamma|\leq k} u_{\gamma} y^{\gamma} \right\|_{H^1} \leq C \exp(-ck), \quad y^{\gamma} = y_1^{\gamma_1} \dots y_d^{\gamma_d},$$

and use  $V_n = \text{span}\{u_v : |v| \le k\}$  of dimension  $n = {k+d \choose k}$ .



### A general result for infinite dimensional parameter dependence

Theorem (Cohen-DeVore, 2016) : Let  $V_1$  and  $V_2$  be two complex valued Banach spaces and  $\mathcal{K}_1 \subset V_1$  be a compact set. Let

$$F: V_1 \rightarrow V_2$$

be a map that is holomorphic on an open neighbourhood of  $\mathcal{K}_1$ . Then, with  $\mathcal{K}_2 := F(\mathcal{K}_1)$ , one has for all s > 1

$$\sup_{n\geq 0} n^s d_n(\mathcal{K}_1)_{V_1} < \infty \implies \sup_{n\geq 0} n^t d_n(\mathcal{K}_2)_{V_2} < \infty, \quad t < s-1.$$

Note that if F was a continuous linear map, one would simply have

$$d_n(\mathcal{K}_2)_{V_2} \leq C d_n(\mathcal{K}_1)_{V_1}, \quad C = ||F||_{V_1 \to V_2}.$$

The proof goes by expanding  $a \in \mathcal{K}_1$  in a suitable basis  $a = a(y) = \sum_{j \ge 1} y_j \psi_j$  with decay properties on the  $\|\psi_j\|_{V_1}$  and then approximate F(a(y)) by polynomials in y. This induces a loss of 1 in the rate of decay. Open problem: same rate t = s?

This result applies to elliptic equations such as  $-\text{div}(a\nabla u)=f$  for the map  $F:a\to u$  with  $V_1=L^\infty$  and  $V_2=H^1$ . Also applies to parabolic equations, nonlinear problems such as Navier-Stokes equations, and to these problems set on parametrized domains. It does not apply to hyperbolic equations.

### A general result for infinite dimensional parameter dependence

Theorem (Cohen-DeVore, 2016): Let  $V_1$  and  $V_2$  be two complex valued Banach spaces and  $\mathcal{K}_1 \subset V_1$  be a compact set. Let

$$F: V_1 \rightarrow V_2$$

be a map that is holomorphic on an open neighbourhood of  $\mathcal{K}_1$ . Then, with  $\mathcal{K}_2:=F(\mathcal{K}_1)$ , one has for all s>1

$$\sup_{n\geq 0} n^s d_n(\mathcal{K}_1)_{V_1} < \infty \implies \sup_{n\geq 0} n^t d_n(\mathcal{K}_2)_{V_2} < \infty, \quad t < s-1.$$

Note that if F was a continuous linear map, one would simply have

$$d_n(\mathcal{K}_2)_{V_2} \leq Cd_n(\mathcal{K}_1)_{V_1}, \quad C = ||F||_{V_1 \to V_2}.$$

The proof goes by expanding  $a \in \mathcal{K}_1$  in a suitable basis  $a = a(y) = \sum_{j \geq 1} y_j \psi_j$  with decay properties on the  $\|\psi_j\|_{V_1}$  and then approximate F(a(y)) by polynomials in y. This induces a loss of 1 in the rate of decay. Open problem: same rate t = s?

This result applies to elliptic equations such as  $-\mathrm{div}(a\nabla u)=f$  for the map  $F:a\to u$  with  $V_1=L^\infty$  and  $V_2=H^1$ . Also applies to parabolic equations, nonlinear problems such as Navier-Stokes equations, and to these problems set on parametrized domains. It does not apply to hyperbolic equations.

#### A general result for infinite dimensional parameter dependence

Theorem (Cohen-DeVore, 2016): Let  $V_1$  and  $V_2$  be two complex valued Banach spaces and  $\mathcal{K}_1 \subset V_1$  be a compact set. Let

$$F: V_1 \rightarrow V_2$$

be a map that is holomorphic on an open neighbourhood of  $\mathcal{K}_1$ . Then, with  $\mathcal{K}_2 := F(\mathcal{K}_1)$ , one has for all s > 1

$$\sup_{n\geq 0} n^s d_n(\mathcal{K}_1)_{V_1} < \infty \implies \sup_{n\geq 0} n^t d_n(\mathcal{K}_2)_{V_2} < \infty, \quad t < s-1.$$

Note that if F was a continuous linear map, one would simply have

$$d_n(\mathcal{K}_2)_{V_2} \leq Cd_n(\mathcal{K}_1)_{V_1}, \quad C = ||F||_{V_1 \to V_2}.$$

The proof goes by expanding  $a \in \mathcal{K}_1$  in a suitable basis  $a = a(y) = \sum_{j \geq 1} y_j \psi_j$  with decay properties on the  $\|\psi_j\|_{V_1}$  and then approximate F(a(y)) by polynomials in y. This induces a loss of 1 in the rate of decay. Open problem: same rate t = s?

This result applies to elliptic equations such as  $-{\rm div}(a\nabla u)=f$  for the map  $F:a\to u$  with  $V_1=L^\infty$  and  $V_2=H^1$ . Also applies to parabolic equations, nonlinear problems such as Navier-Stokes equations, and to these problems set on parametrized domains. It does not apply to hyperbolic equations.

## The reduced basis algorithm

Idea : use particular instances  $u^i = u(y^i) \in \mathcal{K}$  for generating  $V_n = \operatorname{span}\{u^1, \dots, u^n\}$ .

Greedy selection in offline stage : having generated  $u^1, \dots, u^{k-1}$ , select next instance

$$||u^k - P_{V_{k-1}}u^k||_V = \max_{u \in \mathcal{K}} ||u - P_{V_{k-1}}u||_V,$$

where  $P_{V_{k-1}}$  is the orthogonal projection. Here we assume V to be a Hilbert space.



In practice, weak selection  $\|u - P_{V_{k-1}}u^k\|_V \ge \gamma \max_{u \in \mathcal{K}} \|u - P_{V_{k-1}}u\|_V$ , for fixed  $\gamma \in ]0,1[$ , and maximization on a large finite training set  $\widetilde{\mathcal{K}} \subset \mathcal{K}$ .

## The reduced basis algorithm

 $\text{Idea}: \text{use particular instances } u^i = u(y^i) \in \mathcal{K} \text{ for generating } V_n = \operatorname{span}\{u^1, \dots, u^n\}.$ 

Greedy selection in offline stage : having generated  $u^1, \dots, u^{k-1}$ , select next instance

$$||u^k - P_{V_{k-1}}u^k||_V = \max_{u \in \mathcal{K}} ||u - P_{V_{k-1}}u||_V,$$

where  $P_{V_{k-1}}$  is the orthogonal projection. Here we assume V to be a Hilbert space.



In practice, weak selection  $\|u - P_{V_{k-1}}u^k\|_V \ge \gamma \max_{u \in \mathcal{K}} \|u - P_{V_{k-1}}u\|_V$ , for fixed  $\gamma \in ]0,1[$ , and maximization on a large finite training set  $\widetilde{\mathcal{K}} \subset \mathcal{K}$ .

## Approximation performances

For the greedily generated spaces  $V_n$ , we would like to compare

$$\sigma_n(\mathcal{K})_{\mathit{V}} = \operatorname{dist}(\mathcal{K}, \mathit{V}_n)_{\mathit{V}} = \max_{\mathit{u} \in \mathcal{K}} \|\mathit{u} - \mathit{P}_{\mathit{V}_n} \mathit{u}\|_{\mathit{V}},$$

with the *n*-widths  $d_n(\mathcal{K})_V$  that correspond to the optimal spaces.

Direct comparison is deceiving

Buffa-Maday-Patera-Turinici (2010) :  $\sigma_n \leq n2^n d_n$ .

For all  $n \geq 0$  and  $\varepsilon > 0$ , there exists  $\mathcal{K}$  such that  $\sigma_n(\mathcal{K})_V \geq (1 - \varepsilon)2^n d_n(\mathcal{K})_V$ 

Comparison is much more favorable in terms of convergence rate.

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s>0

$$\sup_{n\geq 1} \mathsf{n}^{\mathsf{s}} \mathsf{d}_n(\mathcal{K})_V < \infty \Rightarrow \sup_{n\geq 1} \mathsf{n}^{\mathsf{s}} \sigma_n(\mathcal{K})_V < \infty,$$

anc

$$\sup_{n\geq 1} e^{cn^s} d_n(\mathcal{K})_V < \infty \Rightarrow \sup_{n\geq 1} e^{\tilde{c}n^s} \sigma_n(\mathcal{K})_V < \infty$$

### Approximation performances

For the greedily generated spaces  $V_n$ , we would like to compare

$$\sigma_n(\mathcal{K})_V = \operatorname{dist}(\mathcal{K}, V_n)_V = \max_{u \in \mathcal{K}} \|u - P_{V_n}u\|_V,$$

with the *n*-widths  $d_n(\mathcal{K})_V$  that correspond to the optimal spaces.

Direct comparison is deceiving.

Buffa-Maday-Patera-Turinici (2010) :  $\sigma_n \leq n2^n d_n$ .

For all  $n \geq 0$  and  $\epsilon > 0$ , there exists  $\mathcal K$  such that  $\sigma_n(\mathcal K)_V \geq (1-\epsilon)2^n d_n(\mathcal K)_V$ .

Comparison is much more favorable in terms of convergence rate.

 ${\sf Theorem}$  (Binev-Cohen-Dahmen-De ${\sf Vore} ext{-Petrova-Wojtaszczyk, 2013})$  : For any s>0

$$\sup_{n\geq 1} n^{\mathsf{s}} d_n(\mathcal{K})_V < \infty \Rightarrow \sup_{n\geq 1} n^{\mathsf{s}} \sigma_n(\mathcal{K})_V < \infty$$

anc

$$\sup_{n\geq 1} e^{cn^s} d_n(\mathcal{K})_V < \infty \Rightarrow \sup_{n\geq 1} e^{\tilde{c}n^s} \sigma_n(\mathcal{K})_V < \infty$$

#### Approximation performances

For the greedily generated spaces  $V_n$ , we would like to compare

$$\sigma_n(\mathcal{K})_V = \operatorname{dist}(\mathcal{K}, V_n)_V = \max_{u \in \mathcal{K}} \|u - P_{V_n}u\|_V,$$

with the *n*-widths  $d_n(\mathcal{K})_V$  that correspond to the optimal spaces.

Direct comparison is deceiving.

Buffa-Maday-Patera-Turinici (2010) :  $\sigma_n \leq n2^n d_n$ .

For all  $n \ge 0$  and  $\varepsilon > 0$ , there exists  $\mathcal K$  such that  $\sigma_n(\mathcal K)_V \ge (1-\varepsilon)2^n d_n(\mathcal K)_V$ .

Comparison is much more favorable in terms of convergence rate.

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s>0,

$$\sup_{n\geq 1} n^{\mathfrak s} d_n(\mathcal K)_V < \infty \Rightarrow \sup_{n\geq 1} n^{\mathfrak s} \sigma_n(\mathcal K)_V < \infty,$$

and

$$\sup_{n\geq 1} e^{cn^s} d_n(\mathcal{K})_V < \infty \Rightarrow \sup_{n\geq 1} e^{\tilde{c}n^s} \sigma_n(\mathcal{K})_V < \infty,$$

## Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay of Kolmogorov n-width.

Simple example: consider the univariate linear transport equation

$$\partial_t u + a \partial_x u = 0$$
,

with constant velocity  $a \in \mathbb{R}$  and initial condition  $u_0 = u(x, 0) = \chi_{[0,1]}(x)$ .

Parametrize the solution by the velocity  $a \in [a_{\min}, a_{\max}]$  and consider the solution manifold at final time T = 1.

$$\mathcal{H} = \{\chi_{[a,a+1]} : a \in [a_{\mathsf{min}}, a_{\mathsf{max}}]\}.$$

It can be proved that for 1

$$d_n(\mathcal{H})_{LP} \sim n^{-1/p}$$
.

In particular, we cannot hope for a good performance of reduced basis methods (not better than piecewise constant approximation on uniform meshes).

## Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay of Kolmogorov n-width.

Simple example: consider the univariate linear transport equation

$$\partial_t u + a \partial_x u = 0$$
,

with constant velocity  $a \in \mathbb{R}$  and initial condition  $u_0 = u(x, 0) = \chi_{[0,1]}(x)$ .

Parametrize the solution by the velocity  $a \in [a_{\min}, a_{\max}]$  and consider the solution manifold at final time T = 1,

$$\mathcal{H} = \{\chi_{[a,a+1]} : a \in [a_{\min}, a_{\max}]\}.$$

It can be proved that for  $1 \le p < \infty$ ,

$$d_n(\mathcal{H})_{L^p} \sim n^{-1/p}$$
.

In particular, we cannot hope for a good performance of reduced basis methods (not better than piecewise constant approximation on uniform meshes).

### Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay of Kolmogorov n-width.

Simple example: consider the univariate linear transport equation

$$\partial_t u + a \partial_x u = 0$$
,

with constant velocity  $a \in \mathbb{R}$  and initial condition  $u_0 = u(x, 0) = \chi_{[0,1]}(x)$ .

Parametrize the solution by the velocity  $a \in [a_{\min}, a_{\max}]$  and consider the solution manifold at final time T = 1,

$$\mathcal{H} = \{\chi_{[a,a+1]} : a \in [a_{\min}, a_{\max}]\}.$$

It can be proved that for  $1 \le p < \infty$ ,

$$d_n(\mathcal{H})_{L^p} \sim n^{-1/p}$$
.

In particular, we cannot hope for a good performance of reduced basis methods (not better than piecewise constant approximation on uniform meshes).

#### Nonlinear approximation

For such problems, one expects improved performance by nonlinear methods.

Non-linear approximation : the function u is approximated by simpler function  $v \in \Sigma_n$  that can be described by  $\mathcal{O}(n)$  parameters, however  $\Sigma_n$  is not a linear space.

- Rational fractions :  $\Sigma_n = \left\{ rac{p}{q} \, ; \, p,q \in \mathbb{P}_n 
  ight\}$
- Best *n*-term / sparse approximation in a basis  $(e_k)_{k\geq 1}$  : pick approximation from the set  $\Sigma_n = \{\sum_{k\in F} c_k e_k : \#(E) \leq n\}$ .
- Piecewise polynomials, splines, finite elements on meshes generated after *n* step of adaptive refinement (select and split an element in the current partition).
- Neural networks : functions  $v: \mathbb{R}^d \to \mathbb{R}^m$  of the form

$$v = A_k \circ \sigma \circ A_{k-1} \circ \sigma \circ A_{k-2} \circ \cdots \circ \sigma \circ A_1,$$

where  $A_j: \mathbb{R}^{d_j} \to \mathbb{R}^{d_{j+1}}$  is affine and  $\sigma$  is a nonlinear (rectifier) function applied componentwise, for example  $\sigma(x) = RELU(x) = \max\{x,0\}$ . Here  $\Sigma_n$  is the set of such functions when the total number of parameters does not exceed n.

Is there a natural notion of width describing optimal nonlinear approximation?

#### Nonlinear approximation

For such problems, one expects improved performance by nonlinear methods.

Non-linear approximation : the function u is approximated by simpler function  $v \in \Sigma_n$  that can be described by  $\mathcal{O}(n)$  parameters, however  $\Sigma_n$  is not a linear space.

- Rational fractions :  $\Sigma_n = \Big\{ rac{p}{q} \, ; \, p,q \in \mathbb{P}_n \Big\}.$
- Best *n*-term / sparse approximation in a basis  $(e_k)_{k\geq 1}$  : pick approximation from the set  $\Sigma_n = \{\sum_{k\in E} c_k e_k : \#(E) \leq n\}$ .
- Piecewise polynomials, splines, finite elements on meshes generated after *n* step of adaptive refinement (select and split an element in the current partition).
- Neural networks : functions  $v: \mathbb{R}^d \to \mathbb{R}^m$  of the form

$$v = A_k \circ \sigma \circ A_{k-1} \circ \sigma \circ A_{k-2} \circ \cdots \circ \sigma \circ A_1$$

where  $A_j: \mathbb{R}^{d_j} \to \mathbb{R}^{d_{j+1}}$  is affine and  $\sigma$  is a nonlinear (rectifier) function applied componentwise, for example  $\sigma(x) = RELU(x) = \max\{x, 0\}$ . Here  $\Sigma_n$  is the set of such functions when the total number of parameters does not exceed n.

Is there a natural notion of width describing optimal nonlinear approximation?



### Nonlinear approximation

For such problems, one expects improved performance by nonlinear methods.

Non-linear approximation : the function u is approximated by simpler function  $v \in \Sigma_n$  that can be described by  $\mathcal{O}(n)$  parameters, however  $\Sigma_n$  is not a linear space.

- Rational fractions :  $\Sigma_n = \Big\{ rac{p}{q} \, ; \, p,q \in \mathbb{P}_n \Big\}.$
- Best *n*-term / sparse approximation in a basis  $(e_k)_{k\geq 1}$  : pick approximation from the set  $\Sigma_n = \{\sum_{k\in E} c_k e_k : \#(E) \leq n\}$ .
- Piecewise polynomials, splines, finite elements on meshes generated after *n* step of adaptive refinement (select and split an element in the current partition).
- Neural networks : functions  $v: \mathbb{R}^d \to \mathbb{R}^m$  of the form

$$v = A_k \circ \sigma \circ A_{k-1} \circ \sigma \circ A_{k-2} \circ \cdots \circ \sigma \circ A_1$$

where  $A_j: \mathbb{R}^{d_j} \to \mathbb{R}^{d_{j+1}}$  is affine and  $\sigma$  is a nonlinear (rectifier) function applied componentwise, for example  $\sigma(x) = RELU(x) = \max\{x, 0\}$ . Here  $\Sigma_n$  is the set of such functions when the total number of parameters does not exceed n.

Is there a natural notion of width describing optimal nonlinear approximation?

# Library widths

A library  $\mathcal{L}_n$  is a finite collection of linear spaces  $V_n \subset V$  of dimension at most n.

We approximate u by picking a space from  $\mathcal{L}_n$ , resulting in the error

$$e(u,\mathcal{L}_n)_V = \min_{V_n \in \mathcal{L}_n} \min_{v \in V_n} \|u - v\|_V.$$

Temlyakov (1998) defines the library width

$$d_{N,n}(\mathcal{K})_V := \inf_{\#(\mathcal{L}_n) \le N} \max_{u \in \mathcal{K}} e(u, \mathcal{L}_n)_V.$$

Note that  $d_{1,n} = d_n$ 

The interesting regime is when N >> n. Typical choices that have been studied are  $N = A^n$  or  $N = n^{an}$  for some A > 1 or a > 0.

Remark: optimal library approximation amounts in splitting the set  $\mathcal{K}$  into N different component  $\mathcal{K}_j$ , each of them being approximated by some optimal n-dimensional space  $V_n^j$  picked from the library.

This type of width is well adapted to describe optimality for best *n*-term approximation or adaptive refinements, but not for neural networks or rational fractions.

# Library widths

A library  $\mathcal{L}_n$  is a finite collection of linear spaces  $V_n \subset V$  of dimension at most n.

We approximate u by picking a space from  $\mathcal{L}_n$ , resulting in the error

$$e(u,\mathcal{L}_n)_V = \min_{V_n \in \mathcal{L}_n} \min_{v \in V_n} \|u - v\|_V.$$

Temlyakov (1998) defines the library width

$$d_{N,n}(\mathcal{K})_V := \inf_{\#(\mathcal{L}_n) \le N} \max_{u \in \mathcal{K}} e(u, \mathcal{L}_n)_V.$$

Note that  $d_{1,n} = d_n$ 

The interesting regime is when N >> n. Typical choices that have been studied are  $N = A^n$  or  $N = n^{an}$  for some A > 1 or a > 0.

Remark: optimal library approximation amounts in splitting the set  $\mathcal{K}$  into N different component  $\mathcal{K}_j$ , each of them being approximated by some optimal n-dimensional space  $V_n^j$  picked from the library.

This type of width is well adapted to describe optimality for best *n*-term approximation or adaptive refinements, but not for neural networks or rational fractions.

# Library widths

A library  $\mathcal{L}_n$  is a finite collection of linear spaces  $V_n \subset V$  of dimension at most n.

We approximate u by picking a space from  $\mathcal{L}_n$ , resulting in the error

$$e(u,\mathcal{L}_n)_V = \min_{V_n \in \mathcal{L}_n} \min_{v \in V_n} \|u - v\|_V.$$

Temlyakov (1998) defines the library width

$$d_{N,n}(\mathcal{K})_V := \inf_{\#(\mathcal{L}_n) \le N} \max_{u \in \mathcal{K}} e(u, \mathcal{L}_n)_V.$$

Note that  $d_{1,n} = d_n$ .

The interesting regime is when N >> n. Typical choices that have been studied are  $N = A^n$  or  $N = n^{an}$  for some A > 1 or a > 0.

Remark : optimal library approximation amounts in splitting the set  $\mathcal{K}$  into N different component  $\mathcal{K}_j$ , each of them being approximated by some optimal n-dimensional space  $V_n^j$  picked from the library.

This type of width is well adapted to describe optimality for best n-term approximation or adaptive refinements, but not for neural networks or rational fractions.



### Manifold widths

Naive idea : replace linear spaces  $V_n$  of dimension n by smooth manifolds  $\mathcal{M}_n$  of dimension n in the definition of  $d_n$ .

This would lead to the quantity

$$\inf_{\dim(\mathcal{M}_n)=n} \max_{u \in \mathcal{K}} \min_{v \in V} \|u-v\|_V,$$

However its value is 0 even for n=1 : space filling curves!

DeVore-Howard-Michelli (1989): impose continuous selection by defining

$$\delta_n(\mathcal{K})_V := \inf_{D, E} \max_{u \in \mathcal{K}} \|u - D(E(u))\|_V,$$

where infimum is taken on all continuous pairs  $E: V \to \mathbb{R}^n$  and  $D: \mathbb{R}^n \to V$ .



#### Manifold widths

Naive idea : replace linear spaces  $V_n$  of dimension n by smooth manifolds  $\mathcal{M}_n$  of dimension n in the definition of  $d_n$ .

This would lead to the quantity

$$\inf_{\dim(\mathcal{M}_n)=n} \max_{u \in \mathcal{K}} \min_{v \in V} \|u-v\|_V,$$

However its value is 0 even for n = 1: space filling curves!



DeVore-Howard-Michelli (1989): impose continuous selection by defining

$$\delta_n(\mathcal{K})_V := \inf_{D,E} \max_{u \in \mathcal{K}} \|u - D(E(u))\|_V,$$

where infimum is taken on all continuous pairs  $E: V \to \mathbb{R}^n$  and  $D: \mathbb{R}^n \to V$ 



#### Manifold widths

Naive idea : replace linear spaces  $V_n$  of dimension n by smooth manifolds  $\mathcal{M}_n$  of dimension n in the definition of  $d_n$ .

This would lead to the quantity

$$\inf_{\dim(\mathcal{M}_n)=n} \max_{u \in \mathcal{K}} \min_{v \in V} \|u-v\|_V,$$

However its value is 0 even for n = 1: space filling curves!



DeVore-Howard-Michelli (1989): impose continuous selection by defining

$$\delta_n(\mathcal{K})_V := \inf_{D,E} \max_{u \in \mathcal{K}} \|u - D(E(u))\|_V,$$

where infimum is taken on all continuous pairs  $E: V \to \mathbb{R}^n$  and  $D: \mathbb{R}^n \to V$ .



Both library and manifold widths match known rates of nonlinear approximation (DeVore-Popov, 1980-1990's) by wavelets or adaptive finite elements : if  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , one has

$$d_{n,N}(\mathcal{K})_V \sim \delta_n(\mathcal{K})_V \sim n^{-s/d}$$
.

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl's inequality (for the regimes  $N = A^n$  or  $N = n^{an}$ )

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_{m,N}(\mathcal{K})_V, \quad n \geq 0.$$

Manifold widths do not satisty Carl's inequality but are bounded by below by Bernstein widths (by the Borsuk-Ulam argument).

$$\delta_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V$$

For example, if  $V = L^{\infty}(I)$  and  $\mathcal{K} = \mathcal{U}(\text{Lip}(I))$ , one has  $\delta_n(\mathcal{K})_V \sim n^{-1}$ .

Both library and manifold widths match known rates of nonlinear approximation (DeVore-Popov, 1980-1990's) by wavelets or adaptive finite elements : if  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , one has

$$d_{n,N}(\mathcal{K})_V \sim \delta_n(\mathcal{K})_V \sim n^{-s/d}$$
.

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl's inequality (for the regimes  $N = A^n$  or  $N = n^{an}$ ).

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_{m,N}(\mathcal{K})_V, \quad n \geq 0.$$

Manifold widths do not satisty Carl's inequality but are bounded by below by Bernstein widths (by the Borsuk-Ulam argument).

$$\delta_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V$$

For example, if  $V = L^{\infty}(I)$  and  $\mathcal{K} = \mathcal{U}(\text{Lip}(I))$ , one has  $\delta_n(\mathcal{K})_V \sim n^{-1}$ .

Both library and manifold widths match known rates of nonlinear approximation (DeVore-Popov, 1980-1990's) by wavelets or adaptive finite elements : if  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , one has

$$d_{n,N}(\mathcal{K})_V \sim \delta_n(\mathcal{K})_V \sim n^{-s/d}$$
.

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl's inequality (for the regimes  $N = A^n$  or  $N = n^{an}$ ).

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_{m,N}(\mathcal{K})_V, \quad n \geq 0.$$

Manifold widths do not satisty Carl's inequality but are bounded by below by Bernstein widths (by the Borsuk-Ulam argument).

$$\delta_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V$$
.

For example, if  $V = L^{\infty}(I)$  and  $\mathcal{K} = \mathcal{U}(\operatorname{Lip}(I))$ , one has  $\delta_n(\mathcal{K})_V \sim n^{-1}$ .

Both library and manifold widths match known rates of nonlinear approximation (DeVore-Popov, 1980-1990's) by wavelets or adaptive finite elements : if  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , one has

$$d_{n,N}(\mathcal{K})_V \sim \delta_n(\mathcal{K})_V \sim n^{-s/d}$$
.

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl's inequality (for the regimes  $N = A^n$  or  $N = n^{an}$ ).

$$(n+1)^s \varepsilon_n(\mathcal{K})_V \leq C_s \sup_{m=0,\ldots,n} (m+1)^s d_{m,N}(\mathcal{K})_V, \quad n \geq 0.$$

Manifold widths do not satisty Carl's inequality but are bounded by below by Bernstein widths (by the Borsuk-Ulam argument).

$$\delta_n(\mathcal{K})_V \geq b_n(\mathcal{K})_V$$
.

For example, if  $V = L^{\infty}(I)$  and  $\mathcal{K} = \mathcal{U}(\operatorname{Lip}(I))$ , one has  $\delta_n(\mathcal{K})_V \sim n^{-1}$ .

#### Stable nonlinear widths

Cohen-DeVore-Petrova-Wojtaszczyk (2020) : for some fixed L>1 define

$$\delta_{n,L}(\mathcal{K})_{V} := \inf_{D,E} \max_{u \in \mathcal{K}} \|u - D(E(u))\|_{V},$$

where the infimum is taken on all pairs  $E:V \to \mathbb{R}^n$  and  $D:\mathbb{R}^n \to V$ , that satisfy

$$\|D(x) - D(y)\|_{V} \leq L\|x - y\|_{n} \quad \text{and} \quad \|E(u) - E(v)\|_{n} \leq L\|u - v\|_{V}, \quad x, y \in \mathbb{R}^{n}, \ u, v \in V.$$

Here  $\|\cdot\|_n$  is an arbitrary norm on  $\mathbb{R}^n$ .

This notion of stable width now satisfies Carl's inequality : for any L>1,

$$(n+1)^{\mathfrak{s}}\varepsilon_{n}(\mathcal{K})_{V} \leq C_{\mathfrak{s}} \sup_{m=0,\ldots,n} (m+1)^{\mathfrak{s}}\delta_{m,L}(\mathcal{K})_{V}, \quad n \geq 0.$$

in addition to the lower bound by Gelfand width  $\delta_{n,L}(\mathcal{K})_V \geq b_n(\mathcal{K})_V$ 

Open problem : with  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , do we have  $\delta_{n,L}(\mathcal{K})_V\sim n^{-s/d}$ ? Positive answer known only when p=2.

#### Stable nonlinear widths

Cohen-DeVore-Petrova-Wojtaszczyk (2020) : for some fixed L>1 define

$$\delta_{n,L}(\mathcal{K})_{V} := \inf_{D,E} \max_{u \in \mathcal{K}} \|u - D(E(u))\|_{V},$$

where the infimum is taken on all pairs  $E:V\to\mathbb{R}^n$  and  $D:\mathbb{R}^n\to V$ , that satisfy

$$\|D(x) - D(y)\|_{V} \leq L\|x - y\|_{n} \quad \text{and} \quad \|E(u) - E(v)\|_{n} \leq L\|u - v\|_{V}, \quad x, y \in \mathbb{R}^{n}, \ u, v \in V.$$

Here  $\|\cdot\|_n$  is an arbitrary norm on  $\mathbb{R}^n$ .

This notion of stable width now satisfies Carl's inequality : for any L > 1,

$$(n+1)^{\mathfrak{s}}\varepsilon_{n}(\mathcal{K})_{V} \leq C_{\mathfrak{s}} \sup_{m=0,\ldots,n} (m+1)^{\mathfrak{s}}\delta_{m,L}(\mathcal{K})_{V}, \quad n \geq 0.$$

in addition to the lower bound by Gelfand width  $\delta_{n,L}(\mathcal{K})_V \geq b_n(\mathcal{K})_V$ 

Open problem : with  $V=L^p(\Omega)$  and  $\mathcal{K}=\mathcal{U}(B^s_{q,q}(\Omega))$  for  $\frac{1}{q}<\frac{1}{p}+\frac{s}{d}$ , do we have  $\delta_{n,L}(\mathcal{K})_V\sim n^{-s/d}$ ? Positive answer known only when p=2.

# Stable widths and entropies

When V is a Hilbert space, stable widths are strongly tied to entropy numbers.

Theorem : Let V be a Hilbert space, then for any L>1, there exists a constant c=c(L) such that, for any compact set  $\mathcal{K}$ ,

$$\delta_{cn,L}(\mathcal{K})_V \leq 3\varepsilon_n(\mathcal{K})_V$$
.

With L=2 one can take c=26.

Together with Carl's inequality, this means that

$$\sup_{n\geq 0} n^{\mathfrak s} \delta_{n,L}(\mathcal K)_{V} < \infty \iff \sup_{n\geq 0} n^{\mathfrak s} \epsilon_{n}(\mathcal K)_{V} < \infty,$$

for all s > 0.

We do not know if this result holds for Banach spaces. Proof for Hilbert spaces

- 1. Consider  $\mathcal{N}$  an  $\varepsilon_n$ -net of  $\mathcal{K}$  with  $\#(\mathcal{N}) = 2^n$
- 2. Johnson-Lindenstrauss projection as encoder :  $E = P_W$  where  $\dim(W) \leq cn$

$$L^{-1}\|u^i - u^j\|_V \le \|P_W(u^i - u^j)\|_V \le \|u^i - u^j\|_V, \quad u^i, u^j \in \mathcal{N}.$$

- 3. This gives an exact decoding map that is L-Lipschitz from  $P_W \mathcal{N}$  to  $\mathcal{N}$
- 4. Extend this map from  $W \sim \mathbb{R}^{cn}$  to V with same Lipschitz constant (Kirszbraun)

# Stable widths and entropies

When V is a Hilbert space, stable widths are strongly tied to entropy numbers.

Theorem : Let V be a Hilbert space, then for any L>1, there exists a constant c=c(L) such that, for any compact set  $\mathcal{K}$ ,

$$\delta_{cn,L}(\mathcal{K})_V \leq 3\varepsilon_n(\mathcal{K})_V$$
.

With L=2 one can take c=26.

Together with Carl's inequality, this means that

$$\sup_{n\geq 0} n^{s} \delta_{n,L}(\mathcal{K})_{V} < \infty \iff \sup_{n\geq 0} n^{s} \epsilon_{n}(\mathcal{K})_{V} < \infty,$$

for all s > 0.

We do not know if this result holds for Banach spaces. Proof for Hilbert spaces :

- 1. Consider  $\mathcal{N}$  an  $\varepsilon_n$ -net of  $\mathcal{K}$  with  $\#(\mathcal{N}) = 2^n$ .
- 2. Johnson-Lindenstrauss projection as encoder :  $E = P_W$  where  $\dim(W) \leq cn$

$$L^{-1}\|u^{i}-u^{j}\|_{V}\leq\|P_{W}(u^{i}-u^{j})\|_{V}\leq\|u^{i}-u^{j}\|_{V},\quad u^{i},u^{j}\in\mathcal{N}.$$

- 3. This gives an exact decoding map that is L-Lipschitz from  $P_W\mathcal{N}$  to  $\mathcal{N}$ .
- 4. Extend this map from  $W \sim \mathbb{R}^{cn}$  to V with same Lipschitz constant (Kirszbraun).

#### Stable width of solution manifolds

For the linear transport equation manifold  $\mathcal{H}=\left\{\chi_{[a,a+1]}:a\in[a_{\min},a_{\max}]\right\}$  it is easily established that entropy numbers in  $L^p$  spaces have exponential decay

$$\varepsilon_n(\mathcal{H})_{L^p} \leq C \exp(-cn), \quad n \geq 0.$$

This implies in particular that  $\delta_{n,L}(\mathcal{H})_{L^2} \leq \tilde{C} \exp(-\tilde{c}n)$  while  $\frac{d_n(\mathcal{H})_{L^2}}{d_n(\mathcal{H})_{L^2}} \sim n^{-1/2}$ .

Similar results hold for manifolds resulting from more general hyperbolic equations.

A general result : if  $F:V_1\to V_2$  is a L-Lipschitz mapping between Banach spaces, then an  $\epsilon$ -net of  $\mathcal{K}_1\subset V_1$  is mapped into an  $L\epsilon$ -net of  $\mathcal{K}_2:=F(\mathcal{K}_1)$  and therefore

$$\varepsilon_n(\mathcal{K}_2)_{V_2} \leq L\varepsilon_n(\mathcal{K}_1)_{V_1}, \quad n \geq 0.$$

This implies in particular that when  $V_2$  is a Hilbert space

$$\sup_{n\geq 0} n^{s} \delta_{n,L}(\mathcal{K}_{1})_{V_{1}} < \infty \implies \sup_{n\geq 0} n^{s} \delta_{n,L}(\mathcal{K}_{2})_{V_{2}} < \infty.$$

Benchmark: develop concrete stable numerical methods that meet these rates

#### Stable width of solution manifolds

For the linear transport equation manifold  $\mathcal{H}=\left\{\chi_{[a,a+1]}:a\in[a_{\min},a_{\max}]\right\}$  it is easily established that entropy numbers in  $L^p$  spaces have exponential decay

$$\varepsilon_n(\mathcal{H})_{L^p} \leq C \exp(-cn), \quad n \geq 0.$$

This implies in particular that  $\delta_{n,L}(\mathcal{H})_{L^2} \leq \tilde{C} \exp(-\tilde{c}n)$  while  $\frac{d_n(\mathcal{H})_{L^2}}{d_n(\mathcal{H})_{L^2}} \sim n^{-1/2}$ .

Similar results hold for manifolds resulting from more general hyperbolic equations.

A general result : if  $F:V_1\to V_2$  is a L-Lipschitz mapping between Banach spaces, then an  $\epsilon$ -net of  $\mathcal{K}_1\subset V_1$  is mapped into an  $L\epsilon$ -net of  $\mathcal{K}_2:=F(\mathcal{K}_1)$  and therefore

$$\varepsilon_n(\mathcal{K}_2)_{V_2} \leq L\varepsilon_n(\mathcal{K}_1)_{V_1}, \quad n \geq 0.$$

This implies in particular that when  $V_2$  is a Hilbert space

$$\sup_{n\geq 0} n^{\mathfrak s} \delta_{n,L}(\mathcal K_1)_{V_1} < \infty \implies \sup_{n\geq 0} n^{\mathfrak s} \delta_{n,L}(\mathcal K_2)_{V_2} < \infty.$$

Benchmark: develop concrete stable numerical methods that meet these rates.

#### Recent results in this direction

Consider a dictionnary  $\mathcal D$  in a Hilbert space V, such that  $\|\phi\|_V \leq 1$  for all  $\phi \in \mathcal D$ , and the model class

$$\mathcal{K} := \left\{ v = \sum c_j \varphi_j \ : \ \varphi_j \in \mathcal{D}, \ \sum |c_j| \leq 1 \right\}.$$

The OMP algorithm recursively produces

$$\label{eq:un} u_n = \sum_{j=1}^n c_j \phi_j = P_{V_n} u, \quad V_n = \mathrm{span}\{\phi_1, \dots, \phi_n\},$$

by selecting  $\phi_n \in \mathcal{D}$  maximizing  $\frac{\langle u - P_{V_{n-1}} u, \phi \rangle}{\|\phi\|_V}$  over  $\phi \in \mathcal{D}$ .

DeVore-Temlyakov (1998) :  $u \in \mathcal{K} \implies ||u - u_n||_V \le n^{-1/2}$ 

Siegel-Xu (2021): consider smoothly parametrized dictionnaries

$$\mathcal{D} = \{ oldsymbol{arphi} = \mathcal{P}(oldsymbol{ heta}) \; : \; oldsymbol{ heta} \in \mathcal{M} \},$$

where  $\mathcal{M}$  is d-dimensional compact manifold and  $\mathcal{P}$  is  $\mathcal{C}^r$ . In this setting

$$u \in \mathcal{K} \implies \|u - u_n\|_V \lesssim n^{-s}, \quad s = \frac{1}{2} + \frac{r}{d} \quad \text{and} \quad \varepsilon_n(\mathcal{K})_V \lesssim n^{-s}.$$

For certain examples (ridge functions) one has exactly  $\varepsilon_n(\mathcal{K})_V \sim n^{-s}$ : optimal nonlinear approximation rate achived by greedy algorithm.



#### Recent results in this direction

Consider a dictionnary  $\mathcal D$  in a Hilbert space V, such that  $\|\phi\|_V \leq 1$  for all  $\phi \in \mathcal D$ , and the model class

$$\mathcal{K} := \Big\{ v = \sum c_j \phi_j \ : \ \phi_j \in \mathcal{D}, \ \sum |c_j| \leq 1 \Big\}.$$

The OMP algorithm recursively produces

$$u_n = \sum_{j=1}^n c_j \phi_j = P_{V_n} u, \quad V_n = \operatorname{span} \{\phi_1, \dots, \phi_n\},$$

by selecting  $\phi_n \in \mathcal{D}$  maximizing  $\frac{\langle u - P_{V_{n-1}} u, \phi \rangle}{\|\phi\|_V}$  over  $\phi \in \mathcal{D}$ .

DeVore-Temlyakov (1998) :  $u \in \mathcal{K} \implies ||u - u_n||_V \le n^{-1/2}$ .

Siegel-Xu (2021): consider smoothly parametrized dictionnaries

$$\mathcal{D} = \{ oldsymbol{arphi} = \mathcal{P}(oldsymbol{ heta}) \; : \; oldsymbol{ heta} \in \mathcal{M} \},$$

where  $\mathcal{M}$  is d-dimensional compact manifold and  $\mathcal{P}$  is  $\mathcal{C}^r$ . In this setting

$$u \in \mathcal{K} \implies \|u - u_n\|_V \lesssim n^{-s}, \quad s = \frac{1}{2} + \frac{r}{d} \quad \text{and} \quad \varepsilon_n(\mathcal{K})_V \lesssim n^{-s}.$$

For certain examples (ridge functions) one has exactly  $\varepsilon_n(\mathcal{K})_V \sim n^{-s}$ : optimal nonlinear approximation rate achived by greedy algorithm.



#### Recent results in this direction

Consider a dictionnary  $\mathcal D$  in a Hilbert space V, such that  $\|\phi\|_V \le 1$  for all  $\phi \in \mathcal D$ , and the model class

$$\mathcal{K} := \Big\{ v = \sum c_j \varphi_j \ : \ \varphi_j \in \mathcal{D}, \ \sum |c_j| \leq 1 \Big\}.$$

The OMP algorithm recursively produces

$$u_n = \sum_{j=1}^n c_j \varphi_j = P_{V_n} u, \quad V_n = \operatorname{span} \{\varphi_1, \ldots, \varphi_n\},$$

by selecting  $\phi_n \in \mathcal{D}$  maximizing  $\frac{\langle u - P_{V_{n-1}} u, \phi \rangle}{\|\phi\|_V}$  over  $\phi \in \mathcal{D}$ .

DeVore-Temlyakov (1998):  $u \in \mathcal{K} \implies ||u - u_n||_V \le n^{-1/2}$ .

Siegel-Xu (2021): consider smoothly parametrized dictionnaries

$$\mathcal{D} = \{ \phi = \mathcal{P}(\theta) : \theta \in \mathcal{M} \},\$$

where  $\mathcal{M}$  is d-dimensional compact manifold and  $\mathcal{P}$  is  $\mathcal{C}^r$ . In this setting

$$u \in \mathcal{K} \implies \|u - u_n\|_{V} \lesssim n^{-s}, \quad s = \frac{1}{2} + \frac{r}{d} \quad \text{and} \quad \varepsilon_n(\mathcal{K})_{V} \lesssim n^{-s}.$$

For certain examples (ridge functions) one has exactly  $\varepsilon_n(\mathcal{K})_V \sim n^{-s}$ : optimal nonlinear approximation rate achived by greedy algorithm.



Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class K from n point evaluations (critical quantity when such evaluations are costly).

 $\text{ Deterministic sampling}: r_m^{\text{det}}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \lVert u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m)) \rVert_{V}$ 

Randomized sampling :  $r_m^{\mathrm{rand}}(\mathcal{K})_V^2 := \inf_{\mathbf{x} \in \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m))\|_V^2)$ 

where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ 

Linear recovery : define  $\rho_m^{\det}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear

Obviously:  $r_m^{\det}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$  and  $r_m^{\operatorname{rand}}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$ .

Also:  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ .

Gelfand numbers : replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ 

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  ${\cal D}$ 

Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class K from n point evaluations (critical quantity when such evaluations are costly).

Deterministic sampling :  $r_m^{\text{det}}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \|u - \Phi_{\mathbf{x}}(u(x^1), \dots, u(x^m))\|_{V}$ 

where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ 

Linear recovery : define  $ho_m^{\det}(\mathcal{K})_V$  and  $ho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear

Obviously:  $r_m^{\det}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$  and  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$ .

Also:  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ .

Gelfand numbers: replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ 

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}$ 

Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class  $\mathcal{K}$  from n point evaluations (critical quantity when such evaluations are costly).

Deterministic sampling : 
$$r_m^{\det}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} ||u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m))||_V$$
, where infimum is taken on all  $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^m) \in D^m$  and maps  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ .

Randomized sampling:  $r_m^{\text{rand}}(\mathcal{K})_V^2 := \inf_{\mathbf{x}, \mathbf{\Phi}_{\mathbf{x}}} \max_{u \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|u - \mathbf{\Phi}_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m))\|_V^2)$ 

Linear recovery : define  $\rho_m^{\det}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear

Obviously:  $r_m^{\det}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$  and  $r_m^{\operatorname{rand}}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$ .

Also:  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ 

Gelfand numbers : replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ 

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}$ 

Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class  $\mathcal{K}$  from n point evaluations (critical quantity when such evaluations are costly).

 $\mathsf{Deterministic} \; \mathsf{sampling} : r_m^{\det}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \lVert u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m)) \rVert_V,$ 

where infimum is taken on all  $\mathbf{x}=(x^1,\dots,x^m)\in D^m$  and maps  $\Phi_{\mathbf{x}}:\mathbb{R}^m\to V.$ 

Randomized sampling:  $r_m^{\mathrm{rand}}(\mathcal{K})_V^2 := \inf_{\mathbf{x},\Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1),\dots,u(\mathbf{x}^m))\|_V^2),$  where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ .

Linear recovery : define  $\rho_m^{\det}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear

Obviously:  $r_m^{\det}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$  and  $r_m^{\operatorname{rand}}(\mathcal{K})_V \leq \rho_m^{\det}(\mathcal{K})_V$ .

Also:  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ 

Gelfand numbers : replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ 

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}$ 

Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class  $\mathcal{K}$  from n point evaluations (critical quantity when such evaluations are costly).

 $\mathsf{Deterministic} \; \mathsf{sampling} : r_m^{\det}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \lVert u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m)) \rVert_V,$ 

where infimum is taken on all  $\mathbf{x}=(x^1,\dots,x^m)\in D^m$  and maps  $\Phi_{\mathbf{x}}:\mathbb{R}^m\to V$  .

 $\mathsf{Randomized \ sampling}: \mathit{r}^{\mathrm{rand}}_{\mathit{m}}(\mathcal{K})^{2}_{\mathit{V}} := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{\mathit{u} \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|\mathit{u} - \Phi_{\mathbf{x}}(\mathit{u}(\mathit{x}^{1}), \ldots, \mathit{u}(\mathit{x}^{\mathit{m}}))\|^{2}_{\mathit{V}}),$ 

where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m o V$ .

Linear recovery : define  $\rho_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear.

 $\text{Obviously}: \textit{r}^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}} \leq \rho^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}} \text{ and } \textit{r}^{\operatorname{rand}}_{\textit{m}}(\mathcal{K})_{\textit{V}} \leq \rho^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}}.$ 

Also :  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ .

Gelfand numbers: replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ 

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}.$ 

Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class  $\mathcal{K}$  from n point evaluations (critical quantity when such evaluations are costly).

 $\mathsf{Deterministic}\;\mathsf{sampling}: r_m^{\det}(\mathcal{K})_V := \inf_{\mathbf{x},\Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \lVert u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1),\dots,u(\mathbf{x}^m)) \rVert_V,$ 

where infimum is taken on all  $\mathbf{x}=(x^1,\dots,x^m)\in D^m$  and maps  $\Phi_{\mathbf{x}}:\mathbb{R}^m o V$ 

Randomized sampling:  $r_m^{\mathrm{rand}}(\mathcal{K})_V^2 := \inf_{\mathbf{x},\Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1),\dots,u(\mathbf{x}^m))\|_V^2),$  where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ .

Linear recovery : define  $\rho_m^{\det}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear.

 $\mathsf{Obviously}: \mathit{r}^{\mathrm{det}}_{\mathit{m}}(\mathcal{K})_{\mathit{V}} \leq \rho^{\mathrm{det}}_{\mathit{m}}(\mathcal{K})_{\mathit{V}} \text{ and } \mathit{r}^{\mathrm{rand}}_{\mathit{m}}(\mathcal{K})_{\mathit{V}} \leq \rho^{\mathrm{det}}_{\mathit{m}}(\mathcal{K})_{\mathit{V}}.$ 

 $\mathsf{Also}: \mathit{r}^{\mathrm{rand}}_m(\mathcal{K})_V \leq \mathit{r}^{\mathrm{det}}_m(\mathcal{K})_V \text{ and } \rho^{\mathrm{rand}}_m(\mathcal{K})_V \leq \rho^{\mathrm{det}}_m(\mathcal{K})_V.$ 

Gelfand numbers: replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ .

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}$ .



Linear and nonlinear widths measure the approximability of a class K by linear or nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class  $\mathcal{K}$  from n point evaluations (critical quantity when such evaluations are costly).

 $\mathsf{Deterministic \ sampling} : r_m^{\det}(\mathcal{K})_V := \inf_{\mathbf{x}, \Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \lVert u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1), \dots, u(\mathbf{x}^m)) \rVert_V,$ 

where infimum is taken on all  $\mathbf{x}=(x^1,\dots,x^m)\in D^m$  and maps  $\Phi_{\mathbf{x}}:\mathbb{R}^m o V$ 

Randomized sampling:  $r_m^{\mathrm{rand}}(\mathcal{K})_V^2 := \inf_{\mathbf{x},\Phi_{\mathbf{x}}} \max_{u \in \mathcal{K}} \mathbb{E}_{\mathbf{x}}(\|u - \Phi_{\mathbf{x}}(u(\mathbf{x}^1),\dots,u(\mathbf{x}^m))\|_V^2),$  where infimum is taken on all random variable  $\mathbf{x} \in D^m$  an  $\Phi_{\mathbf{x}} : \mathbb{R}^m \to V$ .

Linear recovery : define  $\rho_m^{\det}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V$  similarly but imposing  $\Phi_{\mathbf{x}}$  linear.

 $\text{Obviously}: \textit{r}^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}} \leq \rho^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}} \text{ and } \textit{r}^{\operatorname{rand}}_{\textit{m}}(\mathcal{K})_{\textit{V}} \leq \rho^{\det}_{\textit{m}}(\mathcal{K})_{\textit{V}}.$ 

Also :  $r_m^{\mathrm{rand}}(\mathcal{K})_V \leq r_m^{\mathrm{det}}(\mathcal{K})_V$  and  $\rho_m^{\mathrm{rand}}(\mathcal{K})_V \leq \rho_m^{\mathrm{det}}(\mathcal{K})_V$ .

Gelfand numbers : replace point evaluation  $u(x^i)$  by general linear measurement  $\ell_i(u)$ .

More realistic : the linear functionals  $\ell_i$  are picked from a restricted dictionnary  $\mathcal{D}$ .



Positive results for linear widths : let  $V = L^2(D, \mu)$  for some measure  $\mu$ .

Cohen-Dolbeault (2021) :  $\rho_{C_0n}^{\mathrm{rand}}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_V$  for some fixed  $C_0, C_1 > 1$ .

Temlyakov (2020) : if  $\mu(D) < \infty$ , then  $\rho_{C_0 n}^{\det}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_{L^{\infty}}$  with  $C_0 = 1 + \epsilon$ .

These results use weighted least squares as reconstruction and point sparsification techniques due to Spielman, Markus, Srivastava, Nitzan, Olevskii, Ulanovskii.

Negative results for nonlinear widths : there exists classes  $\mathcal K$  such that sampling numbers  $r_n^{\mathrm{det}}(\mathcal K)_V$  and  $r_n^{\mathrm{rand}}(\mathcal K)_V$  decay much slower that quantities  $\delta_{n,L}(\mathcal K)_V$  or  $\varepsilon_n(\mathcal K)_V$  measuring nonlinear approximation capabilities.

Example : with  $V = L^2([0,1])$ , consider the class  $\mathcal{K} := \{\chi_{[a,b]} : a,b \in [0,1]\}$ .

Then  $r_n^{\mathrm{det}}(\mathcal{K})_V \sim r_n^{\mathrm{rand}}(\mathcal{K})_V \sim d_n(\mathcal{K})_V \sim n^{-1/2}$ , but  $\delta_{n,L}(\mathcal{K})_V \sim \epsilon_n(\mathcal{K})_V \sim \exp(-cn)$ 

On the other hand, consider the class  $\mathcal{K} := \{\chi_{[0,a]} : a \in [0,1]\}$ 

Then  $d_n(\mathcal{K})_V \sim n^{-1/2}$  but  $r_n^{\text{det}}(\mathcal{K})_V \sim \exp(-cn)$  (use adaptive dichotomy)

Positive results for linear widths : let  $V = L^2(D, \mu)$  for some measure  $\mu$ .

Cohen-Dolbeault (2021) :  $\rho_{C_0n}^{\mathrm{rand}}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_V$  for some fixed  $C_0, C_1 > 1$ .

Temlyakov (2020) : if  $\mu(D) < \infty$ , then  $\rho_{C_0 n}^{\det}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_{L^{\infty}}$  with  $C_0 = 1 + \varepsilon$ .

These results use weighted least squares as reconstruction and point sparsification techniques due to Spielman, Markus, Srivastava, Nitzan, Olevskii, Ulanovskii.

Negative results for nonlinear widths : there exists classes  $\mathcal K$  such that sampling numbers  $r_n^{\det}(\mathcal K)_V$  and  $r_n^{\mathrm{rand}}(\mathcal K)_V$  decay much slower that quantities  $\delta_{n,L}(\mathcal K)_V$  or  $\varepsilon_n(\mathcal K)_V$  measuring nonlinear approximation capabilities.

Example : with  $V=L^2([0,1])$ , consider the class  $\mathcal{K}:=\{\chi_{[a,b]}\ :\ a,b\in[0,1]\}.$ 

Then 
$$r_n^{\mathrm{det}}(\mathcal{K})_V \sim r_n^{\mathrm{rand}}(\mathcal{K})_V \sim d_n(\mathcal{K})_V \sim n^{-1/2}$$
, but  $\delta_{n,L}(\mathcal{K})_V \sim \epsilon_n(\mathcal{K})_V \sim \exp(-cn)$ .

On the other hand, consider the class  $\mathcal{K} := \{\chi_{[0,a]} : a \in [0,1]\}$ 

Then  $d_n(\mathcal{K})_V \sim n^{-1/2}$  but  $r_n^{\text{det}}(\mathcal{K})_V \sim \exp(-cn)$  (use adaptive dichotomy)

Positive results for linear widths : let  $V = L^2(D, \mu)$  for some measure  $\mu$ .

Cohen-Dolbeault (2021) :  $\rho_{C_0n}^{\mathrm{rand}}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_V$  for some fixed  $C_0, C_1 > 1$ .

Temlyakov (2020) : if  $\mu(D) < \infty$ , then  $\rho_{C_0 n}^{\det}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_{L^{\infty}}$  with  $C_0 = 1 + \varepsilon$ .

These results use weighted least squares as reconstruction and point sparsification techniques due to Spielman, Markus, Srivastava, Nitzan, Olevskii, Ulanovskii.

Negative results for nonlinear widths : there exists classes  $\mathcal K$  such that sampling numbers  $r_n^{\det}(\mathcal K)_V$  and  $r_n^{\mathrm{rand}}(\mathcal K)_V$  decay much slower that quantities  $\delta_{n,L}(\mathcal K)_V$  or  $\varepsilon_n(\mathcal K)_V$  measuring nonlinear approximation capabilities.

Example : with  $V=L^2([0,1])$ , consider the class  $\mathcal{K}:=\{\chi_{[a,b]}\ :\ a,b\in[0,1]\}.$ 

Then 
$$r_n^{\mathrm{det}}(\mathcal{K})_V \sim r_n^{\mathrm{rand}}(\mathcal{K})_V \sim d_n(\mathcal{K})_V \sim n^{-1/2}$$
, but  $\delta_{n,L}(\mathcal{K})_V \sim \epsilon_n(\mathcal{K})_V \sim \exp(-cn)$ .

On the other hand, consider the class  $\mathcal{K}:=\{\chi_{[0,a]}\ :\ a\in[0,1]\}.$ 

Then  $d_n(\mathcal{K})_V \sim n^{-1/2}$  but  $r_n^{\text{det}}(\mathcal{K})_V \sim \exp(-cn)$  (use adaptive dichotomy).

Positive results for linear widths : let  $V = L^2(D, \mu)$  for some measure  $\mu$ .

Cohen-Dolbeault (2021) :  $\rho_{C_0n}^{\mathrm{rand}}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_V$  for some fixed  $C_0, C_1 > 1$ .

Temlyakov (2020) : if  $\mu(D) < \infty$ , then  $\rho_{C_0 n}^{\det}(\mathcal{K})_V \leq C_1 d_n(\mathcal{K})_{L^{\infty}}$  with  $C_0 = 1 + \varepsilon$ .

These results use weighted least squares as reconstruction and point sparsification techniques due to Spielman, Markus, Srivastava, Nitzan, Olevskii, Ulanovskii.

Negative results for nonlinear widths : there exists classes  $\mathcal K$  such that sampling numbers  $r_n^{\det}(\mathcal K)_V$  and  $r_n^{\mathrm{rand}}(\mathcal K)_V$  decay much slower that quantities  $\delta_{n,L}(\mathcal K)_V$  or  $\varepsilon_n(\mathcal K)_V$  measuring nonlinear approximation capabilities.

Example : with  $V=L^2([0,1])$ , consider the class  $\mathcal{K}:=\{\chi_{[a,b]}\ :\ a,b\in[0,1]\}.$ 

Then 
$$r_n^{\mathrm{det}}(\mathcal{K})_V \sim r_n^{\mathrm{rand}}(\mathcal{K})_V \sim d_n(\mathcal{K})_V \sim n^{-1/2}$$
, but  $\delta_{n,L}(\mathcal{K})_V \sim \epsilon_n(\mathcal{K})_V \sim \exp(-cn)$ .

On the other hand, consider the class  $\mathcal{K} := \{\chi_{[0,a]} : a \in [0,1]\}.$ 

Then 
$$d_n(\mathcal{K})_V \sim n^{-1/2}$$
 but  $r_n^{\text{det}}(\mathcal{K})_V \sim \exp(-cn)$  (use adaptive dichotomy).

#### References

- A. Pinkus, *n*-width in Approximation Theory, Springer 2012.
- A. Cohen and R. DeVore, Approximation of high-dimensional PDEs, Acta Numerica, 2015.
- R. DeVore, R. Howard, C. Micchelli, Optimal nonlinear approximation, Manuscripta Mathematica, 1989.
- V. Temlyakov, Nonlinear Kolmogorov widths, Mathematical Notes, 1998.
- A. Cohen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Optimal stable nonlinear approximation, Foundation of Computational Mathematics, 2021.
- Zuowei Shen, Haizhao Yang, and Shijun Zhang, Deep network approximation characterized by number of neurons, Communications in Computational Physics, 2020.
- J. Siegel and J. Xu, Improved approximation properties of dictionaries and applications to neural networks, 2021.
- V. N. Temlyakov, On optimal recovery in  $L^2$ , 2020.
- A. Cohen and M. Dolbeault, Optimal pointwise sampling for  $L^2$  approximation, 2021.

# THANKS

### References

- A. Pinkus, *n*-width in Approximation Theory, Springer 2012.
- A. Cohen and R. DeVore, Approximation of high-dimensional PDEs, Acta Numerica, 2015.
- R. DeVore, R. Howard, C. Micchelli, Optimal nonlinear approximation, Manuscripta Mathematica, 1989.
- V. Temlyakov, Nonlinear Kolmogorov widths, Mathematical Notes, 1998.
- A. Cohen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Optimal stable nonlinear approximation, Foundation of Computational Mathematics, 2021.
- Zuowei Shen, Haizhao Yang, and Shijun Zhang, Deep network approximation characterized by number of neurons, Communications in Computational Physics, 2020.
- J. Siegel and J. Xu, Improved approximation properties of dictionaries and applications to neural networks, 2021.
- V. N. Temlyakov, On optimal recovery in  $L^2$ , 2020.
- A. Cohen and M. Dolbeault, Optimal pointwise sampling for  $L^2$  approximation, 2021.

# THANKS!