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Kolmogorov linear n-width

We are interested in approximating general functions u ∈ V , where V is a Banach
space, by simpler functions v picked from a linear subspace Vn ⊂ V of finite
dimension n.

Classical Banach spaces : Lebesgue Lp(Ω), Sobolev Wm,p(Ω) for Ω ⊂ Rd .

Classical linear subspaces : algebraic or trigonometric polynomials of some prescribed
degree, splines or finite elements on some given mesh, span of the n first elements
{e1, . . . , en} from a given basis (ek )k≥1 of V .

Model class reflecting the properties the target function : u ∈ K, where K is a
compact set of V . In parametrized PDEs, the set K is the solution manifold that
gathers all solutions u(y) ∈ V as the parameter vector y varies.

Best choice of approximation spaces for this model class ?

The space Vn approximate K with uniform accuracy

dist(K,Vn)V := max
u∈K

min
v∈Vn

‖u − v‖V

A.N. Kolmogorov (1936) defines the linear n-width of K in the metric V as

dn(K)V := inf
dim(Vn)=n

dist(K,Vn)V
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Intuition

The optimal space achieving the infimum in

dn(K)V = inf
dim(Vn)=n

max
u∈K

min
v∈Vn

‖u − v‖V .

may not exist. One often assumes it exists in order to avoid limiting arguments.

The quantity dn(K)V can be viewed as a benchmark/bottleneck for numerical
methods applied to the elements from K that create approximations from linear
spaces : interpolation, projection, least squares, Galerkin methods for solving PDEs...
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An analog concept in the stochastic framework : PCA

Assume that V is a Hilbert space and u is a random variable taking its value in V .

Optimal spaces in the mean-square sense.

κ2
n = κn(u)

2
V := min

dim(Vn)=n
E
(
‖u − PVnu‖

2
V

)
.

The space achieving the minimum is easily characterized by principal component
analysis : consider the covariance operator

v 7→ Rv = E(〈u, v〉u),

which is compact, when assuming that E(‖u‖2
V ) <∞. Diagonalized in the

Karhunen-Loeve basis (ϕk )k≥1 with eigenvalues λ1 ≥ λ2 ≥ · · ·→ 0.

Then Vn := span{ϕ1, . . . , ϕn} and κ2
n =
∑

k>n λk .

Note that κn(u)2
V ≤ dn(K)2

V when u is supported in K.
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Variants to n-width : realization of the approximation

The best approximation un = argmin{‖u − v‖V : v ∈ Vn} is the orthogonal projection
if V is a Hilbert space.

For a general Banach space, the map u 7→ un is not linear, and may even not be
continuous (non-uniqueness of best approximation).

This motivates alternate definitions of widths where we impose linearity or continuity
of the approximation process.

Approximation numbers are defined as

an(K)V := inf
L

max
u∈K
‖u − Lu‖V ,

with infimum taken over all linear maps L such that rank(L) ≤ n.

In a general Banach space dn ≤ an ≤
√
ndn and right equality may hold.

On the other hand one can prove that

dn(K)V := inf
F

max
u∈K
‖u − F (u)‖V ,

with infimum taken over all continuous maps F such that rank(F ) ≤ n.
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Behaviour of n-widths of smoothness classes

Typical compact sets in V = Lp(Ω) are balls of smoothness spaces. The behaviour of
n-width is well understood for such sets. Example : V = L∞(I ) where I = [0, 1] ⊂ R

and
K = U(Lip(I )) = {u : max{‖u‖L∞ , ‖u ′‖L∞ } ≤ 1},

Then one can prove

dn(K)V =
1

2n
, n ≥ 1, .

More generally when V = W t,p(Ω) for some bounded Lipschitz domain Ω ⊂ Rd and
K is the unit ball of W s,p(Ω) with s > t, one can prove

cn−(s−t)/d ≤ dn(K)V ≤ Cn−(s−t)/d , n ≥ 1.

Curse of dimensionality : exponential growth in d of the needed n to reach accuracy ε.

Proof of upper bound : use a standard approximation method (piecewise polynomials,
finite elements, or splines, on uniform partitions of Ω)

Proof of lower bound ? Two systematic approaches.



Bernstein width

Lemma : let BW = {u ∈W : ‖u‖V ≤ 1} be the unit ball of a subspace W ⊂ V of
dimension n + 1, then dn(BW )V = 1.

Proof : trivial if V is a Hilbert space. Follows from Borsuk-Ulam antipodality theorem
in the Banach space case : for any continuous application F from an n-sphere
Sn = ∂BW to an n dimensional space Vn, there exists x ∈ Sn such that F (x) = F (−x).

It follows that dn(K)V ≥ r if K contains the rescaled ball rBW of an n + 1-dimensional
space W . In other words

dn(K)V ≥ bn(K)V , n ≥ 1,

where the Bernstein n-width bn(K)V is defined as the largest r ≥ 0 such that there
exists W ⊂ V of dimension n + 1 with rBW ⊂ K.
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Entropy numbers

Define εn(K)V as the smallest ε such that K can be covered by 2n balls of radius ε :

K ⊂
⋃

i=1,...,2n

B(ui , ε), B(ui , ε) := {u : ‖u − ui‖V ≤ ε}.

Related to lossy coding : Elements of K can be encoded with n bits up to precision εn.

Carl’s inequality : for all s > 0 one has

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sdm(K)V , n ≥ 0

In particular
dn(K)V <∼ n−s , n ≥ 0 =⇒ εn(K)V <∼ n−s , n ≥ 0.
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Reduced modeling for parametrized PDEs

Complex problems are often modelled by PDEs involving several physical parameters
y = (y1, . . . , yd ) ∈ Y ⊂ Rd .

P(u, y) = 0,

For each y ∈ Y , we assume well-posedness and therefore existence of a unique
solution u(y) ∈ V .

In certain applications (optimization, inverse problems, uncertainty quantification), we
may need to solve y 7→ u(y) for many instances of y ∈ Y : requires computational
methods that are uniformly cheap and efficient, uniformly over y ∈ Y .

We are interested in well approximating the solution manifold

K := {u(y) : y ∈ Y } ⊂ V ,

which we assume to be compact.

Reduced modeling usually involves two steps :

1. In a (costly) offline stage, we search for spaces Vn of dimension n that approximate
as best as possible the set K (benchmark dn(K)V ). These spaces are quite different
from classical finite element spaces.

2. In a (cheap) online stage, for any required y ∈ Y we may compute an accurate
approximation un(y) ∈ Vn of u(y), for example by the Galerkin method.



Estimating n-width of solution manifolds

An instructive example : consider the steady-state diffusion equation

−div(a∇u) = f ,

on a 2d domain Ω (+ boundary conditions), with piecewise constant diffusion function
a = a(y) having value a+ yj on subdomain Ωj , where y = (y1, . . . , yd ) ∈ Y = [−c, c]d .

How large is the n-width of K = {u(y) : y ∈ Y } ⊂ V = H1(Ω) ?

Solutions u(y) are bounded in Hs iff s < 3/2 and dn(U(Hs ))H1 ∼ n−(s−1)/2>
∼ n−1/4.

In fact dn(K)H1 decreases faster than O(exp(−cn1/d )) : approximate by power series

max
y∈Y

∥∥∥u(y) − ∑
|ν|≤k

uνy
ν
∥∥∥
H1
≤ C exp(−ck), yν = yν1

1 . . . y
νd
d ,

and use Vn = span{uν : |ν| ≤ k} of dimension n =
(k+d

k

)
.
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A general result for infinite dimensional parameter dependence

Theorem (Cohen-DeVore, 2016) : Let V1 and V2 be two complex valued Banach
spaces and K1 ⊂ V1 be a compact set. Let

F : V1 → V2,

be a map that is holomorphic on an open neighbourhood of K1. Then, with
K2 := F (K1), one has for all s > 1

sup
n≥0

nsdn(K1)V1
<∞ =⇒ sup

n≥0
ntdn(K2)V2

<∞, t < s − 1.

Note that if F was a continuous linear map, one would simply have

dn(K2)V2
≤ Cdn(K1)V1

, C = ‖F‖V1→V2
.

The proof goes by expanding a ∈ K1 in a suitable basis a = a(y) =
∑

j≥1 yjψj with

decay properties on the ‖ψj‖V1
and then approximate F (a(y)) by polynomials in y .

This induces a loss of 1 in the rate of decay. Open problem : same rate t = s ?

This result applies to elliptic equations such as −div(a∇u) = f for the map F : a→ u
with V1 = L∞ and V2 = H1. Also applies to parabolic equations, nonlinear problems
such as Navier-Stokes equations, and to these problems set on parametrized domains.
It does not apply to hyperbolic equations.
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The reduced basis algorithm

Idea : use particular instances ui = u(y i ) ∈ K for generating Vn = span{u1, . . . , un}.

Greedy selection in offline stage : having generated u1, . . . , uk−1, select next instance

‖uk − PVk−1
uk‖V = max

u∈K
‖u − PVk−1

u‖V ,

where PVk−1
is the orthogonal projection. Here we assume V to be a Hilbert space.

In practice, weak selection ‖u − PVk−1
uk‖V ≥ γmaxu∈K ‖u − PVk−1

u‖V , for fixed

γ ∈]0, 1[, and maximization on a large finite training set K̃ ⊂ K.
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Approximation performances

For the greedily generated spaces Vn, we would like to compare

σn(K)V = dist(K,Vn)V = max
u∈K
‖u − PVnu‖V ,

with the n-widths dn(K)V that correspond to the optimal spaces.

Direct comparison is deceiving.

Buffa-Maday-Patera-Turinici (2010) : σn ≤ n2ndn.

For all n ≥ 0 and ε > 0, there exists K such that σn(K)V ≥ (1 − ε)2ndn(K)V .

Comparison is much more favorable in terms of convergence rate.

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s > 0,

sup
n≥1

nsdn(K)V <∞⇒ sup
n≥1

nsσn(K)V <∞,
and

sup
n≥1

ecn
s
dn(K)V <∞⇒ sup

n≥1
e c̃n

s
σn(K)V <∞,
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Failure of linear reduced modeling

Linear reduced modeling for parametrized hyperbolic PDEs suffers from a slow decay
of Kolmogorov n-width.

Simple example : consider the univariate linear transport equation

∂tu + a∂xu = 0,

with constant velocity a ∈ R and initial condition u0 = u(x , 0) = χ[0,1](x).

Parametrize the solution by the velocity a ∈ [amin, amax] and consider the solution
manifold at final time T = 1,

H = {χ[a,a+1] : a ∈ [amin, amax]}.

It can be proved that for 1 ≤ p <∞,

dn(H)Lp ∼ n−1/p .

In particular, we cannot hope for a good performance of reduced basis methods (not
better than piecewise constant approximation on uniform meshes).
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better than piecewise constant approximation on uniform meshes).



Nonlinear approximation

For such problems, one expects improved performance by nonlinear methods.

Non-linear approximation : the function u is approximated by simpler function v ∈ Σn
that can be described by O(n) parameters, however Σn is not a linear space.

- Rational fractions : Σn =
{

p
q
; p, q ∈ Pn

}
.

- Best n-term / sparse approximation in a basis (ek )k≥1 : pick approximation from the
set Σn = {

∑
k∈E ckek : #(E ) ≤ n}.

- Piecewise polynomials, splines, finite elements on meshes generated after n step of
adaptive refinement (select and split an element in the current partition).

- Neural networks : functions v : Rd → Rm of the form

v = Ak ◦ σ ◦ Ak−1 ◦ σ ◦ Ak−2 ◦ · · · ◦ σ ◦ A1,

where Aj : Rdj → Rdj+1 is affine and σ is a nonlinear (rectifier) function applied
componentwise, for example σ(x) = RELU(x) = max{x , 0}. Here Σn is the set of such
functions when the total number of parameters does not exceed n.

Is there a natural notion of width describing optimal nonlinear approximation ?
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Library widths

A library Ln is a finite collection of linear spaces Vn ⊂ V of dimension at most n.

We approximate u by picking a space from Ln, resulting in the error

e(u,Ln)V = min
Vn∈Ln

min
v∈Vn

‖u − v‖V .

Temlyakov (1998) defines the library width

dN,n(K)V := inf
#(Ln)≤N

max
u∈K

e(u,Ln)V .

Note that d1,n = dn.

The interesting regime is when N >> n. Typical choices that have been studied are
N = An or N = nan for some A > 1 or a > 0.

Remark : optimal library approximation amounts in splitting the set K into N different
component Kj , each of them being approximated by some optimal n-dimensional

space V j
n picked from the library.

This type of width is well adapted to describe optimality for best n-term approximation
or adaptive refinements, but not for neural networks or rational fractions.
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Manifold widths

Naive idea : replace linear spaces Vn of dimension n by smooth manifolds Mn of
dimension n in the definition of dn.

This would lead to the quantity

inf
dim(Mn)=n

max
u∈K

min
v∈V
‖u − v‖V ,

However its value is 0 even for n = 1 : space filling curves !

DeVore-Howard-Michelli (1989) : impose continuous selection by defining

δn(K)V := inf
D,E

max
u∈K
‖u − D(E (u))‖V ,

where infimum is taken on all continuous pairs E : V → Rn and D : Rn → V .
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Estimating nonlinear width

Both library and manifold widths match known rates of nonlinear approximation
(DeVore-Popov, 1980-1990’s) by wavelets or adaptive finite elements : if V = Lp(Ω)
and K = U(Bs

q,q(Ω)) for 1
q
< 1

p
+ s

d
, one has

dn,N (K)V ∼ δn(K)V ∼ n−s/d .

Upper bounds obtained by these classical nonlinear approximation results.

Library widths satisfy Carl’s inequality (for the regimes N = An or N = nan).

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sdm,N (K)V , n ≥ 0.

Manifold widths do not satisty Carl’s inequality but are bounded by below by
Bernstein widths (by the Borsuk-Ulam argument).

δn(K)V ≥ bn(K)V .

For example, if V = L∞(I ) and K = U(Lip(I )), one has δn(K)V ∼ n−1.

Yarotzki, Shen-Yang-Zhang (2020) : Neural networks approximation of functions in
Lip(I ) converge in L∞ with rate n−2 ! Parameter selection cannot be stable.
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Stable nonlinear widths

Cohen-DeVore-Petrova-Wojtaszczyk (2020) : for some fixed L > 1 define

δn,L(K)V := inf
D,E

max
u∈K
‖u − D(E (u))‖V ,

where the infimum is taken on all pairs E : V → Rn and D : Rn → V , that satisfy

‖D(x) − D(y)‖V ≤ L‖x − y‖n and ‖E (u) − E (v)‖n ≤ L‖u − v‖V , x , y ∈ Rn, u, v ∈ V .

Here ‖ · ‖n is an arbitrary norm on Rn.

This notion of stable width now satisfies Carl’s inequality : for any L > 1,

(n + 1)sεn(K)V ≤ Cs sup
m=0,...,n

(m + 1)sδm,L(K)V , n ≥ 0.

in addition to the lower bound by Gelfand width δn,L(K)V ≥ bn(K)V

Open problem : with V = Lp(Ω) and K = U(Bs
q,q(Ω)) for 1

q
< 1

p
+ s

d
, do we have

δn,L(K)V ∼ n−s/d ? Positive answer known only when p = 2.
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Stable widths and entropies

When V is a Hilbert space, stable widths are strongly tied to entropy numbers.

Theorem : Let V be a Hilbert space, then for any L > 1, there exists a constant
c = c(L) such that, for any compact set K,

δcn,L(K)V ≤ 3εn(K)V .

With L = 2 one can take c = 26.

Together with Carl’s inequality, this means that

sup
n≥0

nsδn,L(K)V <∞ ⇐⇒ sup
n≥0

nsεn(K)V <∞,
for all s > 0.

We do not know if this result holds for Banach spaces. Proof for Hilbert spaces :

1. Consider N an εn-net of K with #(N ) = 2n.

2. Johnson-Lindenstrauss projection as encoder : E = PW where dim(W ) ≤ cn

L−1‖ui − uj‖V ≤ ‖PW (ui − uj )‖V ≤ ‖ui − uj‖V , ui , uj ∈ N .

3. This gives an exact decoding map that is L-Lipschitz from PWN to N .

4. Extend this map from W ∼ Rcn to V with same Lipschitz constant (Kirszbraun).
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Stable width of solution manifolds

For the linear transport equation manifold H =
{
χ[a,a+1] : a ∈ [amin, amax]

}
it is

easily established that entropy numbers in Lp spaces have exponential decay

εn(H)Lp ≤ C exp(−cn), n ≥ 0.

This implies in particular that δn,L(H)L2 ≤ C̃ exp(−c̃n) while dn(H)L2 ∼ n−1/2.

Similar results hold for manifolds resulting from more general hyperbolic equations.

A general result : if F : V1 → V2 is a L-Lipschitz mapping between Banach spaces,
then an ε-net of K1 ⊂ V1 is mapped into an Lε-net of K2 := F (K1) and therefore

εn(K2)V2
≤ Lεn(K1)V1

, n ≥ 0.

This implies in particular that when V2 is a Hilbert space

sup
n≥0

nsδn,L(K1)V1
<∞ =⇒ sup

n≥0
nsδn,L(K2)V2

<∞.
Benchmark : develop concrete stable numerical methods that meet these rates.
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Recent results in this direction

Consider a dictionnary D in a Hilbert space V , such that ‖ϕ‖V ≤ 1 for all ϕ ∈ D, and
the model class

K :=
{
v =
∑

cjϕj : ϕj ∈ D,
∑

|cj | ≤ 1
}
.

The OMP algorithm recursively produces

un =

n∑
j=1

cjϕj = PVnu, Vn = span{ϕ1, . . . , ϕn},

by selecting ϕn ∈ D maximizing
〈u−PVn−1

u,ϕ〉
‖ϕ‖V

over ϕ ∈ D.

DeVore-Temlyakov (1998) : u ∈ K =⇒ ‖u − un‖V ≤ n−1/2.

Siegel-Xu (2021) : consider smoothly parametrized dictionnaries

D = {ϕ = P(θ) : θ ∈M},

where M is d-dimensional compact manifold and P is Cr . In this setting

u ∈ K =⇒ ‖u − un‖V <∼ n−s , s =
1

2
+

r

d
and εn(K)V <∼ n−s .

For certain examples (ridge functions) one has exactly εn(K)V ∼ n−s : optimal
nonlinear approximation rate achived by greedy algorithm.
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Sampling numbers

Linear and nonlinear widths measure the approximability of a class K by linear or
nonlinear families of complexity n (data compression).

Sampling numbers (IBC - optimal recovery) measure the approximability of a class K
from n point evaluations (critical quantity when such evaluations are costly).

Deterministic sampling : rdetm (K)V := inf
x,Φx

max
u∈K
‖u −Φx(u(x

1), . . . , u(xm))‖V ,

where infimum is taken on all x = (x1, . . . , xm) ∈ Dm and maps Φx : Rm → V .

Randomized sampling : r randm (K)2
V := inf

x,Φx

max
u∈K

Ex(‖u −Φx(u(x
1), . . . , u(xm))‖2

V ),

where infimum is taken on all random variable x ∈ Dm an Φx : Rm → V .

Linear recovery : define ρdetm (K)V and ρrandm (K)V similarly but imposing Φx linear.

Obviously : rdetm (K)V ≤ ρdetm (K)V and r randm (K)V ≤ ρdetm (K)V .

Also : r randm (K)V ≤ rdetm (K)V and ρrandm (K)V ≤ ρdetm (K)V .

Gelfand numbers : replace point evaluation u(x i ) by general linear measurement `i (u).

More realistic : the linear functionals `i are picked from a restricted dictionnary D.

Adaptive sampling numbers radapm (K)V : allow xk to depend on u(x1), . . . , u(xk−1).
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Are sampling numbers controlled by widths ?

Positive results for linear widths : let V = L2(D, µ) for some measure µ.

Cohen-Dolbeault (2021) : ρrandC0n
(K)V ≤ C1dn(K)V for some fixed C0,C1 > 1.

Temlyakov (2020) : if µ(D) <∞, then ρdetC0n
(K)V ≤ C1dn(K)L∞ with C0 = 1 + ε.

These results use weighted least squares as reconstruction and point sparsification
techniques due to Spielman, Markus, Srivastava, Nitzan, Olevskii, Ulanovskii.

Negative results for nonlinear widths : there exists classes K such that sampling
numbers rdetn (K)V and r randn (K)V decay much slower that quantities δn,L(K)V or
εn(K)V measuring nonlinear approximation capabilities.

Example : with V = L2([0, 1]), consider the class K := {χ[a,b] : a, b ∈ [0, 1]}.

Then rdetn (K)V ∼ r randn (K)V ∼ dn(K)V ∼ n−1/2, but δn,L(K)V ∼ εn(K)V ∼ exp(−cn).

On the other hand, consider the class K := {χ[0,a] : a ∈ [0, 1]}.

Then dn(K)V ∼ n−1/2 but rdetn (K)V ∼ exp(−cn) (use adaptive dichotomy).

Question : identify relevant classes of functions for which sampling number behave
much better than linear widths, closer to nonlinear widths and entropy numbers.
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