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What is Topological Data Analysis (TDA)?

Modern data carry complex, but important, geometric/topological structure!

[Sensors (Sysnav courtesy)][Cell population -
cytometry - MetaFora

courtesy]

[Force fields in granular media (Krama et al)]



What is Topological Data Analysis (TDA)?

[Sensors (Sysnav courtesy)]

Topological Data Analysis (TDA) is a recent field whose aim is to:

• infer relevant topological and geometric features from complex data,

• take advantage of topological/geometric information for further Data
Analysis, Machine Learning and AI tasks:
- using topological features in ML pipelines,
- taking advantage of topological information to improve ML pipelines.

[Cell population -
cytometry - MetaFora

courtesy]

[Force fields in granular media (Krama et al)]



The classical TDA pipeline
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Data Filtration
Persistent
homology

Multiscale topol.
structure

Topol.
information

1. Build a multiscale topol. structure on top
of data: filtrations.

2. Compute multiscale topol. signatures:
persistent homology

3. Take advantage of the signature for further
Machine Learning and AI tasks: Statistical
aspects and representations of persistence

Representations of
persistence

Machine
Learning / AI



Persistent homology

Starting with a few examples

• 90′s: size theory (P. Frosini et al), framed Morse complex and stability (S.A. Barannikov).

• 2002− 2005: persistent homology (H. Edelsbrunner et al, Carlsson et al).

• important mathematical and practical developments since the 2000’s.
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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• Tracking and encoding the evolution of the connected components (0-dimensional
homology) of the sublevel sets of a function

• The family of sublevel sets of a function is an example of filtration.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Persistent homology for functions
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Persistent homology for functions
z

M

a1σ1

a2σ2

a3

a4
σ3

Tracking and encoding the evolution of the connected components (0-dimensional
homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional
cycles through a vector space (or a group), the homology group whose dimension is
the number of ”independent” cycles (the Betti number).
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What if f is slightly perturbed?

Stability properties



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
m∈D1

‖m− γ(m)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Comparing persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2

Rmk: in many applications, the so-called Wasserstein distance between diagrams is used:
Wp(D1, D2) = infγ∈Γ

∑
m∈D1

‖m− γ(m)‖, p ≥ 1.
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What if f is slightly perturbed?

Theorem (Stability):
For any tame functions f, g : X→ R, dB(Df ,Dg) ≤ ‖f − g‖∞.

Stability properties

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG
09], [C., de Silva, Glisse, Oudot 12]



Simplicial complexes, filtrations,

homology and persistent homology



Simplicial complexes

Given a set P = {p0, . . . , pk} ⊂ Rd of k + 1 affinely independent points, the k-
dimensional simplex σ, or k-simplex for short, spanned by P is the set of convex
combinations

k∑
i=0

λi pi, with

k∑
i=0

λi = 1 and λi ≥ 0.

The points p0, . . . , pk are called the vertices of σ.

0-simplex:
vertex

1-simplex:
edge

2-simplex:
triangle

3-simplex:
tetrahedron

etc...



Simplicial complexes

A (finite) simplicial complex K in Rd is a (finite) collection of simplices such that:

1. any face of a simplex of K is a simplex of K,

2. the intersection of any two simplices of K is either empty or a common face
of both.

The underlying space of K, denoted by |K| ⊂ Rd is the union of the simplices of K.



Abstract simplicial complexes

Let P be a set. An abstract simplicial complex
K with vertex set P is a set of finite subsets of
P satisfying the two conditions :

1. The elements of P belong to K.

2. If τ ∈ K and σ ⊆ τ , then σ ∈ K.

The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces
(good for top./geom. inference) and as combinatorial objects (abstract simplicial
complexes, good for computations).



Homology in a nutshell (with coeff. in Z/2Z)

Formalize the notion of connected components, cycles/holes, voids... in a topological
space.

• 2 connected components (0-dim homology)

• 4 cycles (1-dim homology)

• 1 void (2-dim homology)

Empty torus



Homology in a nutshell (with coeff. in Z/2Z)

Let K be a d-dimensional simplicial complex. Let k ∈ {0, 1, · · · , d} and
{σ1, · · · , σp} be the set of k-simplices of K.

k-chain:

c =

p∑
i=1

εiσi with εi ∈ Z/2Z = {0, 1}

Sum of k-chains:

c+ c′ =

p∑
i=1

(εi + ε′i)σi and λ.c =

p∑
i=1

(λε′i)σi

where the sums εi + ε′i and the products λεi are modulo 2.

The space of k-chains:



Homology in a nutshell (with coeff. in Z/2Z)

The boundary operator:

The boundary ∂σ of a k-simplex σ is the sum of its (k − 1)-faces. This is a
(k − 1)-chain.

Ifσ = [v0, · · · , vk] then ∂kσ =
k∑
i=0

(−1)i[v0 · · · v̂i · · · vk]

The boundary operator is the linear map defined by

∂k : Ck(K) → Ck−1(K)
c → ∂kc =

∑
σ∈c ∂kσ

∂k∂k+1 := ∂k ◦ ∂k+1 = 0



Homology in a nutshell (with coeff. in Z/2Z)

Cycles and boundaries:

The chain complex associated to a complex K of dimension d

∅ → Cd(K)
∂→ Cd−1(K)

∂→ · · · Ck+1(K)
∂→ Ck(K)

∂→ · · · C1(K)
∂→ C0(K)

∂→ ∅

k-cycles:

Zk(K) := ker(∂ : Ck → Ck−1) = {c ∈ Ck : ∂c = ∅}

k-boundaries:

Bk(K) := im(∂ : Ck+1 → Ck) = {c ∈ Ck : ∃c′ ∈ Ck+1, c = ∂c′}

Bk(K) ⊂ Zk(K) ⊂ Ck(K)



Homology in a nutshell (with coeff. in Z/2Z)

Homology groups and Betti numbers:

Bk(K) ⊂ Zk(K) ⊂ Ck(K)

• The kth homology group of K: Hk(K) = Zk/Bk

• Tout each cycle c ∈ Zk(K) corresponds its homology class c+Bk(K) =
{c+ b : b ∈ Bk(K)}.

• Two cycles c, c′ are homologous if they are in the same homology class:
∃b ∈ Bk(K) s. t. b = c′ − c(= c′ + c).

• The kth Betti number of K: βk(K) = dim(Hk(K)).



Non homologous 1-cycles

Two homologous 1-cycles

A 1-boundary

Not a cycle

Cycles and boundaries



Topological invariance and singular homology

Theorem: If K and K ′ are two simplicial complexes with homeomorphic
supports then their homology groups are isomorphic and their Betti num-
bers are equal.

• This is a classical result in algebraic topology but the proof is not
obvious.

• Rely on the notion of singular homology→ defined for any topological
space.

β0 = 1, β1 = 2, β2 = 0



Topological invariance and singular homology

σ

X

Let ∆k be the standard simplex in Rk. A singular k-simplex in a topological
space X is a continuous map σ : ∆k → X.

The same construction as for simplicial homology can be done with singular
complexes → Singular homology

Important properties:

• Singular homology is defined for any topological space X.

• If X is homotopy equivalent to the support of a simplicial complex, then
the singular and simplicial homology coincide!



Topological invariance and singular homology

σ

X

Homology and continuous maps:

• if f : X → Y is a continuous map and σ : ∆k → X a simplex in X,
then f ◦ σ : ∆k → Y is a simplex in Y ⇒ f induces a linear maps
between homology groups:

f] : Hk(X)→ Hk(Y )

• if f : X → Y is an homeomorphism or an homotopy equivalence then
f] is an isomorphism.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex S
with vertex set X s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Persistent homology of a filtered simplicial complexe encodes the evolution of the
homology of the subcomplexes.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ T), T ⊆ R, of subcomplexes of some fixed simplicial complex S
with vertex set X s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of topological spaces indexed by T.

Many examples and ways to design filtrations depending on the application and
targeted objectives : sublevel and upperlevel sets, Čech complex,...



Sublevel set filtration associated to a function

• f a real valued function defined on the vertices of K

• For σ = [v0, · · · , vk] ∈ K, f(σ) = maxi=0,··· ,k f(vi)

• The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

0

1

2

3



Sublevel set filtration associated to a function

• f a real valued function defined on the vertices of K
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• The simplices of K are ordered according increasing f values (and di-
mension in case of equal values on different simplices).

0

1

2

3

2

3

3

3

2

3



The Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex Rips(V ) is the filtered simplicial complex indexed
by R whose vertex set is V and defined by:

σ = [p0p1 · · · pk] ∈ Rips(V, α) iff ∀i, j ∈ {0, · · · , k}, d(pi, pj) ≤ α

Easy to compute and fully determined by its 1-skeleton

Rips



Persistent homology for point cloud data

• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.
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Persistent homology for point cloud data

• Filtrations allow to construct “shapes”
representing the data in a multiscale
way.

• Persistent homology: encode the evo-
lution of the topology across the scales
→ multi-scale topological signatures.

Persistence barcode

Persistence diagram

radius



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X,Y are compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ 2dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
thm).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Hausdorff distance

Let A,B ⊂M be two compact subsets of a metric space (M,d)

dH(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)}

where d(b, A) = supa∈A d(b, a).



Persistent homology of filtered simplicial complexes

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplicices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .
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Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])
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let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices: Sai \ Sai−1 = σai .

Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1: adding σai to Sai−1 creates a
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⇒ the birth of a k-dim feature is registered.
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Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplicices and
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to the simplex σaj that gave birth to the
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Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1: adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).
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to the simplex σaj that gave birth to the
killed feature.

(σaj , σai) : persistence pair

(aj , ai) ∈ R2: point in the per-
sistence diagram

→
→



Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration:

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1: adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1

σai

⇒ the birth of a k-dim feature is registered.

Case 2: adding σai to Sai−1 kills a
(k− 1)-dimensional topological feature
in Sai (homology class in Hk−1).

Sai−1

σai

⇒ persistence algo. pairs the simplex σai
to the simplex σaj that gave birth to the
killed feature.

(σaj , σai) : persistence pair

(aj , ai) ∈ R2: point in the per-
sistence diagram

→
→

Important to remember: the
persistence pairs are determined by the

order on the simplices; the corresponding
points in the diagrams are determined by

the indices.



Persistent homology with the GUDHI library

GUDHI :

• a C++/Python open source software library for TDA,

• a developers team, an editorial board, open to external contributions,

• provides state-of-the-art TDA data structures and algorithms : design
of filtrations, computation of pre-defined filtrations, persistence dia-
grams,...

• part of GUDHI is interfaced to R through the TDA package.

http://gudhi.gforge.inria.fr/



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples: homology of filtrations gives rise to persistence modules.

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

• Given a metric space (X, dX) , H(Rips(X)) is a persistence module.

• If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]

Example: Let X be a compact metric space. Then H(Rips(X)) is q-tame.



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Algebraic perspective

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Exploiting persistent homology information



Motivation

Data

Topol. features
(e.g. persistence)

Strengths of topological information:

• robust, multiscale information,

• interpretable information (in some cases),

• benefit from a solid mathematical frame-
work (e.g. persistent homology theory).

But...



Motivation

Representations of
persistence

Machine
Learning / AI• Topological information is usually not well-suited for

direct statistical analysis and ML algorithms (e.g.
the space of PD is highly non linear)

• Not always clear which part of the topological fea-
tures carries the relevant information.

• An active research area, but still at a very early stage
(in particular regarding math. aspects).

Data

Topol. features
(e.g. persistence)



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

D = {( di+bi
2

, di+bi
2

)}i ∈ I For p = ( b+d
2
, d−b

2
) ∈ D,

Λp(t) =


t− b t ∈ [b, b+d

2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b

d
d+b

2

d+b
2

d−b
2

• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• Process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

• Provide a convenient way to process persistence information in deep neural
networks.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]

[Kim, Kim, Zaheer, Kim, C., Wasserman NeurIPS 2020,
Carrière, C., Ike, Lacombe, Royer, Umeda AISTAT 2020]



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by:

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel estimates of E[Ds[K(X)]].



• discrete measures: (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]



• discrete measures: (interesting statistical properties [Chazal, Divol 2018])

• polynomial roots or evaluations [Di Fabio Ferri 2015] [Kalǐsnik 2016]

• Collections of 1D functions

• finite metric spaces [Carrière Oudot Ovsjanikov 2015]

→ sliced on lines [Carrière Oudot Cuturi 2017]

→ convolution with Gaussian kernel [Reininghaus et al. 2015] [Chepushtanova et
al. 2015] [Kusano Fukumisu Hiraoka 2016-17] [Le Yamada 2018]

A zoo of representations of persistence

(non exhaustive list - see also Gudhi representations)

→ persistence images [Adams et al 2017]

→ landscapes [Bubenik 2012]

→ Betti curves [Umeda 2017]

Problem: How to chose the right representation?



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

• The space of measures is much nicer that the space of P. D. !

• In the general algebraic persistence theory, persistence diagrams
naturally appears as discrete measures in the plane.

• Many persistence representations can be expressed as

D(f) =
∑
p∈D

f(p) =

∫
fdD

for well-chosen functions f : R2 → H.

Motivations:

[C., de Silva, Glisse, Oudot 16]



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

Benefits:

• Interesting statistical properties

• Data-driven selection of well-adapted representations (supervised and
unsupervised, coming with guarantees)

• Optimisation of persistence-based functions

Many tools available and implemented in the GUDHI library



A few illustrative applications



Example of application: arrhythmia detection

Objective: Arrythmia detection from ECG data.

Betti curves pro-
cessed as 1D signal

- Improvement over state-of-the-art.
- Better generalization.

[Dindin, Umeda, C. Can. Conf. AI 2020].



TDA and Machine Learning for sensor data

(Multivariate) time-dependent data can be converted into point clouds:
sliding window, time-delay embedding,...



With landscapes: patient monitoring

Objective: precise analysis of movements and activities of pedestrians.

“Chaotic” time-dependent data

Applications: personal healthcare; medical studies; defense.

[Beaufils, C., Dindin, Grelet, Michel 2018]



With landscapes: patient monitoring

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

Example: Dyskinesia crisis detection and activity recognition:

Results on publicly available
data set (HAPT) - improve the

state-of-the-art.
Multi-channels CNN TDA neural network+

[Beaufils, C., Dindin, Grelet, Michel 2018]



Thank you for your attention!





Some applications (illustrations)

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]

τ
τ = 0

- Analysis of force fields in granular media [Kramar, Mischaikow et al ]



Some applications (illustrations)

- Hand gesture recognition

- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

[Li, Ovsjanikov, C. - CVPR’14]



Topology-based unsupervised classification and anomaly
detection on cytometry data for medical diagnosis

An innovative start-up specialized in biological
diagnosis from cytometry data.

Objective: unsupervised learning in large point clouds (several millions) in
medium/high dimensions (≈ 4→ 80)

Applications: medical diagnosis from blood samples (1 point = 1 blood cell)

Methodology: TDA based approaches, combined with dim. reduction methods to
identify relevant patterns and subsamples.
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