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In the previous episodes. ..



Instead of conclusion — big puzzle and questions
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And what precisely about mechanics? What phenomena?
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skip recap



What is the conceptual difference?

Beyond: port-Hamiltonian systems; constraints

A lot of examples
(ask Antoine Falaize, David Roze) :

) } C D ' )/%\ > l Conjecture (VS): Everything is port-Hamiltonian,

Geometry behind: Courant algebroids, Dirac structures
On E = TM® T*M (or more generally F & F*)

\)/ Symmetric pairing: < v @1, v' @ 1 >=n(v') +1/(v),

Dorfman bracket: [v &1, ' & 1/]p = [v, V']uie @ (L7 — dn(v'))

Y45 A Dirac structure D is a maximally isotropic (Lagrangian)
i, O subbundle of E closed w.rt. [-]p
R
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Dn = graph(T¥) = {(Paa)} Do = graph(s?) = {(v,10)}

Same place, 20 minutes earlier skip recap



Season 2, Episode 1:
What is Dirac dynamics?
Main ingredients.



Geometry behind: Courant algebroids, Dirac structures

On TM = TM & T*M (or more generally E & E*)
Symmetric pairing: < v @ n, v @ n' >=n(v')+17'(v),
Dorfman bracket: [v @& n, v/ @ 7']p = [v, V']Lie ® (Lvn' — dn(V")).

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of TM closed w.r.t. [-,]p
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Dn = graph(M¥) = {(Mfa, o)} D,, = graph(w’) = {(v, ,w)}



Dirac structures: general

Choose a metricon M = TMe T*"M=TM @ TM,

Introduce the eigenvalue subbundles Ex = {v & £v}

of the involution (v, &) — (o, v). Clearly, Ex = E_ = TM.
(Almost) Dirac structure — graph of an

e=m orthogonal operator O € I'(End(TM)):

(v,0) = ((id — O)w, g((id + O)w, ))

Dirac structure = almost Dirac +

(Jacobi-type) integrability condition:

g (07'V(ia-0)e,(0)é2, &3) + cycl(1,2,3) = 0

Remark. If the operator (id + O) is invertible, one recovers Dp with

n= ig 4__8 (Cayley transform), integrability < [, M]sy = 0.

Remark. Lie algebroid structure:
p=(id=0), Cf = (id — O)Tk,; — (i ¢ j) + O Opi

Remark. The same, using degree 1 DG-manifolds ( Q -siwcﬂéw)



Reminder about Lie algebroids

Definition

Let M be a smooth manifold. A Lie algebroid (A, p, [, ]) is given
by a finite-dimensional vector bundle A, a vector bundle morphism
p:A— TM, called anchor and a (R-bilinear) Lie bracket on the

sections of A
[,]] : T(A) x T(A) = T'(A)

satisfying for all f € C®(M), s,s" € [(A):

[s,fs'] = f[s,s'] + p(s)(f) - s

(,ng&/Z @~LOM//S/ O (osse zac/f)



Fun facts about Lie algebroids

e Lie algebroids can be alternatively defined as differential graded
manifolds of degree 1. In particular, there is a degree 1
(Lichnerowicz) differential da : T(A®*A*) — [(A®A*):

(dA77)(€1,--~,§n+1)*Z( 1) p(&) (&, s i - nt1))
+Z I+J [5/751] 617‘ '751'7"'7&7"75!74-1)

i<j

It satisfies d2 = 0 and induces the so-called Lie algebroid
cohomology and H*(A).

The anchor p induces a morphism H3,(M) — H*(A).

e A Lie algebroid always induces a singular foliation on M:
p(A) C TM is involutive, hence M = | |, N, such that

TNy = p(A)|n,, for all N, (immersed connected submanifolds).
Moreover, the bracket on A restricts to well-defined brackets on
Aln,,, turning Aln, — N, into Lie algebroids.



G = Graded
Q:= D%W&W{[q( &raz(u/

A: = Al}ébroic/

For graded good

— "Folkloric" applications in geometry

Flashback, La Rochelle 2021


https://arxiv.org/abs/1412.2719

G = Graded
Q= D%Zﬂ&%fq( lrroded

A= Af}eéroz:{

For graded good

— "Folkloric" applications in geometry



https://arxiv.org/abs/1412.2719

Season 2, Episode 2:
Variational approach

O. Cosserat, C. Laurent-Gengoux, A. Kotoy, L. Ryvkin, V. Salnikov,
On Dirac structures admitting a variational approach,
Preprint: arXiv:2109.00313



Horizontal cohomology of Lie algebroids

Definition Let A - TM be a Lie algebroid over the smooth
manifold M. We define:
- The subspace of p-horizontal forms at m € M as:

(AN A Yhor = fa e NA* | Lya =0 Vv € ker(pm : Am — TmM)}

- The subspaces of p-horizontal forms:

F(A®A*)hor = o € T(A®A*) | a;m and (dac)m are horizontal for all m}

- The horizontal cohomology of A as the quotient

24 ( ) o ker(dA : r(/\'A*)hOf - r(/\.A*)hOr)
hor o Image(dA : r(/\-A*)hor N r(AoA*)hor)




Horizontal forms — fun facts

Lemma

Let A be an algebroid, N C M a leaf of A and n € I'((AKA*)hor) a
p-horizontal form.

- n|n is a horizontal k-form on the restricted Lie algebroid
Aly — N, i.e. it induces a unique k-form ny € QK(N).

- n is completely determined by the collection
{nn | N leaf of A}.

- When 7 is horizontal, we have (dan)n = dnn.

- Let [n] = 0 € HE_(A), then [ny] = 0 € HAL(N) for all leaves
N of the algebroid A.



The natural horizontal two-cocycle of a Dirac structure

Let D C TM be a Dirac structure. We define wp € I(A2D*) by

wo((v,a), (w,B)) = a(w) = B(v).

Since D is isotropic, wp((v, @), (w, B)) = 2a(w) = —25(v), i.e.
wp is horizontal.

Since D is involutive wp is closed in Dirac cohomology, i.e.
dpwp = 0, and hence wp is horizontal. It thus yields a natural class

in H2,,(D). Hence, in view of Lemma on horizontal forms:

Lemma Let D C TM be a Dirac structure.

- There is a naturally induced horizontals cocycle
wp € [(A2D*)*"" associated to any Dirac structure D.
- If [wp] = 0 € H3.+(D), then for any leaf N of D,
[(wp)n] =0 € Hig(N).



Dirac paths

Theorem 1. Let D C TM be a Dirac structure over M,
H € C*°(M) be a Hamiltonian function and v a path on M.

Assume that the basic 2-class [wp] vanishes, and let § € [(D*)"°r
be such that dpf = wp, then the following statements are

equivalent:

(i) The path v is a Hamiltonian curve, i.e. (¥(t), dH,)) € D for
all t.

(ii) All Dirac paths ¢ : I — D over v (i.e. p(¢) =) are critical
points among the Dirac paths with the same end points of the

following functional:

w/ L o(C(8) + H( (1)) dt (1)



Inspiration from Tulczyjew's business
Definition. Let L: TQ — R a (possibly degenerate) Lagrangian.

a) Tulczyjew's differential — map u — DL := k(d,L), where
K: T*TQ — T*T*Q is the Tulczyjew isomorphism. Its image
is a submanifold of T*T*Q.

b) Legendre — map from TQ to T*Q: FL(v) for every v € T4Q:

pn t:OL(v + tw) = (FL(v), w)

c) We denote by £eg = FL(TQ) C T*Q the image of FL.

d) We call partial vector fields on Leg sections® of [(TT*Q)|gcq-

c) An integral curve of a partial vector field X on £eg is a path
t — up € TQ such that SLFL(u) = Xpy(y,)-

d) An implicit Lagrangian system for an almost Dirac structure
D cC TT*Q is a pair (X, L), with X a partially defined vector
field on Leg, such that (X(FL(u)),DyL) € D for all uin TQ.

YFor E a vector bundle over a manifold X and Y C X an arbitrary subset
(not necessarily a manifold), we denote by ['(E)|y restrictions to Y of smooth
sections of E in a neighborhood of Y in X.




Operations with Dirac structures

Definition Let D C TM be a subbundle.
- For all : M’ — M, we denote by ¢'D the set

@' Dy = {(x,qm) with X € T M, 8 € T}y MI(6:(X), 8) € D¢(m/)}

When D is an (almost-)Dirac structure call ¢'D the pullback of D.

- Let w be a 2-form w € Q?(M), we denote by e“D the set
e“D ={(v,B+ t,w) | (v,8) € D}
and call it the gauge transform of D.

Lemma Let D C TM be a Dirac structure and M’ be a manifold.
- For any smooth map ¢: M’ — M, ¢'D is a Dirac structure on M’.
- For any closed 2-form w € Q2(M), e*D is a Dirac structure on M.



Implicit Lagrangian systems with magnetic terms

Given D C TQ a Dirac structure on @, consider

(i) its pull back 7'D on T*Q through the canonical base map

m: T*Q — @, then

(ii) the gauge transformation e*7' D of this pull-back with respect
to the canonical symplectic 2-form Q.

Definition Let D C TQ be a Dirac structure on Q. We call
constrained magnetic Lagrangian system an implicit Lagrangian
system for the Dirac structure D = e%7'D  TT*Q as above.



Implicit Lagrangian systems with magnetic terms

Theorem 2. Let D C TQ be a Dirac structureand L: TQ — R a
Lagrangian. Assume that the 2-form wp € I'(A2D*)"°" admits a

basic primitive § € [(D*)°". Then for q : | — Q the following are
equivalent:

a) There exists a Dirac path ¢ : | — D such that p(¢) = ¢ which

is the critical point among Dirac paths with the same end
points of

[t + o)t @

/

b) For all t € I, the following condition holds.

((iFL(d(t)),Dq(t)L> €D =e?r'D. (3)



Example: constraints

e ﬂ'D—{(w @) € TT'QHTT*Q | m(w )EF a— waE*rr Y(F)°y



Instead of conclusion: work in progress
Poisson. (Vladimir's modest plans)
Let D C TM be the graph of a Poisson structure 7. Then the Lie
algebroid D is isomorphic to T*M and H*(D) = H32(M) is known
as the Poisson cohomology. The class of wp in H*(D) corresponds
to the class of  in H2(M). The class of w in the finer cohomology

*.<(D) is zero if and only if 7 € X?(M) admits a primitive

E € X(M) (a vector field E satisfying Lem = ), which is tangent
to the Poisson structure, i.e. is a section of p(D) C TM.
Question: reformulate the Theorem 2. / / OS(P‘/Z )

Other Dirac structure. Pick your favourite one.

Generalizations.

— Interpret obstructions / % RM/ ) 7 >

— Almost Dirac? — “almost classes’”

Discretization and numerics — very long story



Dirac structures in infinite dimension?..
(Vladimir’'s not modest plans)

On E=TM @ T*M (or more generally F & F*)
Symmetric pairing: < v @ n, v &1 >=n(v')+n'(v),
Dorfman bracket: [v @& n, v/ @ 1']p = [v, V]Lie ® (Lv7' — dn(V")).

A Dirac structure D is a‘maximally isotropic (Lagrangian)
subbundle of E closed w.r.t. [-,:]p

Remark! Lie algebroid structure:
= (id — O), CF=([d = O)rk, — (i ¢ J) + Ok Opy

Remark. The same, using degree 1 DG-manifolds (Q-structures)
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Flashback to Vladlmlr s childhood



Applications (Aziz’s serious questions / dreams)
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To be continued...
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