Approche variationnelle de la dynamique de Dirac

Vladimir Salnikov





In the previous episodes...

Instead of conclusion - big puzzle and questions



And what precisely about mechanics? What phenomena?

# La Rochelle, France, 08/07/2021, 11:40

skip recap

# What is the conceptual difference?



#### Beyond: port-Hamiltonian systems; constraints

Conjecture (VS): Everything is port-Hamiltonian.

#### Geometry behind: Courant algebroids, Dirac structures

On  $E = TM \oplus T^*M$  (or more generally  $F \oplus F^*$ ) Symmetric pairing:  $\langle v \oplus \eta, v' \oplus \eta' \rangle = \eta(v') + \eta'(v)$ , Dorfman bracket:  $[v \oplus \eta, v' \oplus \eta']_D = [v, v']_{\text{Lie}} \oplus (\mathcal{L}_v \eta' - d\eta(v'))$ .

A Dirac structure D is a maximally isotropic (Lagrangian) subbundle of E closed w.r.t.  $[\cdot, \cdot]_D$ 



 $\mathcal{D}_{\Pi} = graph(\Pi^{\sharp}) = \{(\Pi^{\sharp}\alpha, \alpha)\} \qquad \mathcal{D}_{\omega} = graph(\omega^{\flat}) = \{(v, \iota_v \omega)\}$ 

# Same place, 20 minutes earlier

skip recap

Season 2, Episode 1: What is Dirac dynamics? Main ingredients.

## Geometry behind: Courant algebroids, Dirac structures

On  $\mathbb{T}M = TM \oplus T^*M$  (or more generally  $E \oplus E^*$ ) Symmetric pairing:  $\langle v \oplus \eta, v' \oplus \eta' \rangle = \eta(v') + \eta'(v)$ , Dorfman bracket:  $[v \oplus \eta, v' \oplus \eta']_D = [v, v']_{\text{Lie}} \oplus (\mathcal{L}_v \eta' - d\eta(v'))$ .

A *Dirac structure*  $\mathcal{D}$  is a maximally isotropic (Lagrangian) subbundle of  $\mathbb{T}M$  closed w.r.t.  $[\cdot, \cdot]_D$ 



### Dirac structures: general

Choose a metric on  $M \Rightarrow TM \oplus T^*M \cong TM \oplus TM$ , Introduce the eigenvalue subbundles  $E_{\pm} = \{v \oplus \pm v\}$ of the involution  $(v, \alpha) \mapsto (\alpha, v)$ . Clearly,  $E_+ \cong E_- \cong TM$ .



(Almost) Dirac structure – graph of an orthogonal operator  $\mathcal{O} \in \Gamma(\text{End}(TM))$ :  $(v, \alpha) = ((\text{id} - \mathcal{O})w, g((\text{id} + \mathcal{O})w, \cdot))$ <u>Dirac structure</u> = almost Dirac + (Jacobi-type) integrability condition:

$$g\left(\mathcal{O}^{-1}\nabla_{(\mathrm{id}-\mathcal{O})\xi_1}(\mathcal{O})\xi_2,\xi_3\right)+cycl(1,2,3)=0$$

Remark. If the operator (id + O) is invertible, one recovers  $D_{\Pi}$  with  $\Pi = \frac{id - O}{id + O} \text{ (Cayley transform), integrability} \Leftrightarrow [\Pi, \Pi]_{SN} = 0.$ Remark. Lie algebroid structure:  $\rho = (id - O), C_{ij}^{k} = (id - O)_{i}^{m} \Gamma_{mj}^{k} - (i \leftrightarrow j) + O_{j}^{m;k} O_{mi}$ Remark. The same, using degree 1 DG-manifolds (Q-structures)

# Reminder about Lie algebroids

### Definition

Let *M* be a smooth manifold. A Lie algebroid  $(A, \rho, [\cdot, \cdot])$  is given by a finite-dimensional vector bundle *A*, a vector bundle morphism  $\rho : A \to TM$ , called anchor and a ( $\mathbb{R}$ -bilinear) Lie bracket on the sections of *A* 

 $[\cdot,\cdot]: \Gamma(A) \times \Gamma(A) \to \Gamma(A)$ 

satisfying for all  $f \in C^{\infty}(M)$ ,  $s, s' \in \Gamma(A)$ :

$$[s, fs'] = f[s, s'] + \rho(s)(f) \cdot s'.$$

(Recall R. Laris, O. Cosse rat)

# Fun facts about Lie algebroids

• Lie algebroids can be alternatively defined as differential graded manifolds of degree 1. In particular, there is a degree 1 (Lichnerowicz) differential  $d_A : \Gamma(\Lambda^{\bullet}A^*) \to \Gamma(\Lambda^{\bullet}A^*)$ :

$$(d_A\eta)(\xi_1,...,\xi_{n+1}) = \sum_i (-1)^{i+1} \rho(\xi_i)(\eta(\xi_1,...,\hat{\xi}_i,...,\xi_{n+1})) \\ + \sum_{i < j} (-1)^{i+j} \eta([\xi_i,\xi_j],\xi_1,...,\hat{\xi}_i,...,\hat{\xi}_j,...,\xi_{n+1})$$

It satisfies  $d_A^2 = 0$  and induces the so-called Lie algebroid cohomology and  $H^{\bullet}(A)$ .

The anchor  $\rho$  induces a morphism  $H^{\bullet}_{dR}(M) \to H^{\bullet}(A)$ .

• A Lie algebroid always induces a singular foliation on M:  $\rho(A) \subset TM$  is involutive, hence  $M = \bigsqcup_{\alpha} N_{\alpha}$  such that  $TN_{\alpha} = \rho(A)|_{N_{\alpha}}$  for all  $N_{\alpha}$  (immersed connected submanifolds). Moreover, the bracket on A restricts to well-defined brackets on  $A|_{N_{\alpha}}$ , turning  $A|_{N_{\alpha}} \to N_{\alpha}$  into Lie algebroids.



# Flashback, La Rochelle 2021



Season 2, Episode 2: Variational approach

O. Cosserat, C. Laurent-Gengoux, A. Kotov, L. Ryvkin, V. Salnikov, On Dirac structures admitting a variational approach, Preprint: arXiv:2109.00313

# Horizontal cohomology of Lie algebroids

**Definition** Let  $A \xrightarrow{\rho} TM$  be a Lie algebroid over the smooth manifold M. We define:

- The subspace of  $\rho$ -horizontal forms at  $m \in M$  as:

$$(\Lambda^{\bullet}A_m^*)^{hor} := \{ \alpha \in \Lambda^{\bullet}A_m^* \mid \iota_{\nu}\alpha = 0 \ \forall \nu \in \ker(\rho_m : A_m \to T_m M) \}$$

- The subspaces of  $\rho$ -horizontal forms:

 $\Gamma(\Lambda^{\bullet}A^{*})^{hor} = \{ \alpha \in \Gamma(\Lambda^{\bullet}A^{*}) \mid \alpha_{m} \text{ and } (d_{A}\alpha)_{m} \text{ are horizontal for all } m \}$ 

- The horizontal cohomology of A as the quotient

$$\mathcal{H}^{\bullet}_{hor}(A) = \frac{\ker(d_A: \Gamma(\Lambda^{\bullet}A^*)^{hor} \to \Gamma(\Lambda^{\bullet}A^*)^{hor})}{\operatorname{Image}(d_A: \Gamma(\Lambda^{\bullet}A^*)^{hor} \to \Gamma(\Lambda^{\bullet}A^*)^{hor})}$$

# Horizontal forms - fun facts

### Lemma

Let A be an algebroid,  $N \subset M$  a leaf of A and  $\eta \in \Gamma((\Lambda^k A^*)^{hor})$  a  $\rho$ -horizontal form.

- $\eta|_N$  is a horizontal k-form on the restricted Lie algebroid  $A|_N \to N$ , i.e. it induces a unique k-form  $\eta_N \in \Omega^k(N)$ .
- $\eta$  is completely determined by the collection  $\{\eta_N \mid N \text{ leaf of } A\}.$
- When  $\eta$  is horizontal, we have  $(d_A \eta)_N = d\eta_N$ .
- Let  $[\eta] = 0 \in \mathcal{H}_{hor}^k(A)$ , then  $[\eta_N] = 0 \in H_{dR}^k(N)$  for all leaves N of the algebroid A.

The natural horizontal two-cocycle of a Dirac structure

Let  $D \subset \mathbb{T}M$  be a Dirac structure. We define  $\omega_D \in \Gamma(\Lambda^2 D^*)$  by

$$\omega_D((\mathbf{v},\alpha),(\mathbf{w},\beta)) = \alpha(\mathbf{w}) - \beta(\mathbf{v}).$$

Since D is isotropic,  $\omega_D((v, \alpha), (w, \beta)) = 2\alpha(w) = -2\beta(v)$ , i.e.  $\omega_D$  is horizontal.

Since *D* is involutive  $\omega_D$  is closed in Dirac cohomology, i.e.  $d_D\omega_D = 0$ , and hence  $\omega_D$  is horizontal. It thus yields a natural class in  $\mathcal{H}^2_{hor}(D)$ . Hence, in view of Lemma on horizontal forms:

**Lemma** Let  $D \subset \mathbb{T}M$  be a Dirac structure.

- There is a naturally induced horizontals cocycle  $\omega_D \in \Gamma(\Lambda^2 D^*)^{k \circ r}$  associated to any Dirac structure D.

- If 
$$[\omega_D] = 0 \in \mathcal{H}^2_{hol}(D)$$
, then for any leaf  $N$  of  $D$ ,  $[(\omega_D)_N] = 0 \in H^2_{dR}(N)$ .

# Dirac paths

**Theorem 1.** Let  $D \subset \mathbb{T}M$  be a Dirac structure over M,  $H \in C^{\infty}(M)$  be a Hamiltonian function and  $\gamma$  a path on M.

Assume that the basic 2-class  $[\omega_D]$  vanishes, and let  $\theta \in \Gamma(D^*)^{hor}$  be such that  $d_D \theta = \omega_D$ , then the following statements are equivalent:

- (i) The path  $\gamma$  is a Hamiltonian curve, i.e.  $(\dot{\gamma}(t), dH_{\gamma(t)}) \in D$  for all t.
- (ii) All Dirac paths  $\zeta : I \to D$  over  $\gamma$  (i.e.  $\rho(\zeta) = \dot{\gamma}$ ) are critical points among the Dirac paths with the same end points of the following functional:

$$\zeta \mapsto \int_{I} \left( \theta_{\gamma(t)}(\zeta(t)) + H(\gamma(t)) \right) dt \tag{1}$$

# Inspiration from Tulczyjew's business

**Definition.** Let  $L: TQ \to \mathbb{R}$  a (possibly degenerate) Lagrangian.

- a) Tulczyjew's differential map  $u \mapsto \mathcal{D}_u L := \kappa(d_u L)$ , where  $\kappa : T^*TQ \to T^*T^*Q$  is the Tulczyjew isomorphism. Its image is a submanifold of  $T^*T^*Q$ .
- b) Legendre map from TQ to  $T^*Q$ :  $\mathbb{F}L(v)$  for every  $v \in T_qQ$ :

$$\frac{\partial}{\partial t}\Big|_{t=0}L(v+tw)=\langle \mathbb{F}L(v),w\rangle$$

- c) We denote by  $\mathfrak{Leg} = \mathbb{F}L(TQ) \subset T^*Q$  the image of  $\mathbb{F}L$ .
- d) We call partial vector fields on  $\mathfrak{Leg}$  sections<sup>1</sup> of  $\Gamma(TT^*Q)|_{\mathfrak{Leg}}$ .
- c) An integral curve of a partial vector field X on  $\mathfrak{Leg}$  is a path  $t \mapsto u_t \in TQ$  such that  $\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{F}L(u_t) = X_{\mathbb{F}L(u_t)}$ .
- d) An implicit Lagrangian system for an almost Dirac structure  $\mathbb{D} \subset \mathbb{T}T^*Q$  is a pair (X, L), with X a partially defined vector field on  $\mathfrak{Leg}$ , such that  $(X(\mathbb{F}L(u)), \mathcal{D}_u L) \in \mathbb{D}$  for all u in TQ.

<sup>1</sup>For *E* a vector bundle over a manifold *X* and *Y*  $\subset$  *X* an arbitrary subset (not necessarily a manifold), we denote by  $\Gamma(E)|_Y$  restrictions to *Y* of smooth sections of *E* in a neighborhood of *Y* in *X*.

## Operations with Dirac structures

**Definition** Let  $D \subset \mathbb{T}M$  be a subbundle.

- For all  $\phi \colon M' \to M$ , we denote by  $\phi^! D$  the set

$$\phi^! D_{m'} := \Big\{ (X, \phi^* eta) ext{ with } X \in T_{m'} M', eta \in T^*_{\phi(m')} M | (\phi_*(X), eta) \in D_{\phi(m')} \Big\}$$

When D is an (almost-)Dirac structure call  $\phi^! D$  the pullback of D.

- Let  $\omega$  be a 2-form  $\omega \in \Omega^2(M)$ , we denote by  $e^\omega D$  the set

$$e^{\omega}D = \{(\mathbf{v}, eta + \iota_{\mathbf{v}}\omega) \mid (\mathbf{v}, eta) \in D\}$$

and call it the gauge transform of D.

**Lemma** Let  $D \subset \mathbb{T}M$  be a Dirac structure and M' be a manifold.

- For any smooth map  $\phi: M' \to M, \phi^! D$  is a Dirac structure on M'.
- For any closed 2-form  $\omega \in \Omega^2(M)$ ,  $e^{\omega}D$  is a Dirac structure on M.

# Implicit Lagrangian systems with magnetic terms

Given  $D \subset \mathbb{T}Q$  a Dirac structure on Q, consider (*i*) its pull back  $\pi^! D$  on  $T^*Q$  through the canonical base map  $\pi \colon T^*Q \to Q$ , then (*ii*) the gauge transformation  $e^{\Omega}\pi^!D$  of this pull-back with respect to the canonical symplectic 2-form  $\Omega$ .

**Definition** Let  $D \subset \mathbb{T}Q$  be a Dirac structure on Q. We call constrained magnetic Lagrangian system an implicit Lagrangian system for the Dirac structure  $\mathbb{D} = e^{\Omega} \pi^! D \subset \mathbb{T}T^*Q$  as above.

# Implicit Lagrangian systems with magnetic terms

**Theorem 2.** Let  $D \subset \mathbb{T}Q$  be a Dirac structure and  $L: TQ \to \mathbb{R}$  a Lagrangian. Assume that the 2-form  $\omega_D \in \Gamma(\Lambda^2 D^*)^{hor}$  admits a basic primitive  $\theta \in \Gamma(D^*)^{hor}$ . Then for  $q: I \to Q$  the following are equivalent:

a) There exists a Dirac path  $\zeta: I \to D$  such that  $\rho(\zeta) = \dot{q}$  which is the critical point among Dirac paths with the same end points of

$$\int_{I} (L(\rho(\zeta(t))) + \theta(\zeta(t))) dt.$$
(2)

b) For all  $t \in I$ , the following condition holds.

$$\left(\frac{\partial}{\partial t}\mathbb{F}L(\dot{q}(t)),\mathcal{D}_{\dot{q}(t)}L\right)\in\mathbb{D}=e^{\Omega}\pi^{!}D.$$
(3)



 $e^{\Omega}\pi^!D = \{(w,\alpha) \in TT^*Q \oplus T^*T^*Q \mid \pi_*(w) \in F, \alpha - \Omega^{\flat}w \in \pi^{-1}(F)^{\circ}\}$ 

# Instead of conclusion: work in progress

### Poisson.

# (Vladimir's modest plans)

Let  $D \subset \mathbb{T}M$  be the graph of a Poisson structure  $\pi$ . Then the Lie algebroid D is isomorphic to  $T^*M$  and  $H^{\bullet}(D) \cong H^{\bullet}_{\pi}(M)$  is known as the Poisson cohomology. The class of  $\omega_D$  in  $H^{\bullet}(D)$  corresponds to the class of  $\pi$  in  $H^2_{\pi}(M)$ . The class of  $\omega$  in the finer cohomology  $\mathcal{H}^{\bullet}_{has}(D)$  is zero if and only if  $\pi \in \mathfrak{X}^2(M)$  admits a primitive  $E \in \mathfrak{X}(M)$  (a vector field E satisfying  $L_F \pi = \pi$ ), which is tangent to the Poisson structure, i.e. is a section of  $\rho(D) \subset TM$ . (f. Oscar) Question: reformulate the Theorem 2.

Other Dirac structure. Pick your favourite one.

### Generalizations.

- interpret obstructions Almost Dirac?  $\rightarrow$  "almost classes" (of Ruben?)

Discretization and numerics – very long story

Dirac structures in infinite dimension?..

# (Vladimir's not modest plans)

On  $E = TM \oplus T^*M$  (or more generally  $F \oplus F^*$ ) Symmetric pairing:  $\langle v \oplus \eta, v' \oplus \eta' \rangle = \eta(v') + \eta'(v)$ , Dorfman bracket:  $[v \oplus \eta, v' \oplus \eta']_D = [v, v']_{\text{Lie}} \oplus (\mathcal{L}_v \eta' - d\eta(v'))$ .

A Dirac structure D is a maximally isotropic (Lagrangian) subbundle of E closed w.r.t.  $[\cdot, \cdot]_D$ 

**Remark.** Lie algebroid structure:  $\rho = (id - O), \ C_{ij}^k = (id - O)_i^m \Gamma_{mj}^k - (i \leftrightarrow j) + O_j^{m;k} O_{mi}$ 

Remark. The same, using degree 1 DG-manifolds (Q-structures)

|--|

| ethods from HEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                             |                                                                     | <b>R R</b>                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|
| Quantization of Gaug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>e Systems</u>                                                                                                                            |                                                                     |                                                        |
| Marc<br>Claudio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Henneaux<br>and<br>Teitelboim                                                                                                               | $\begin{array}{c} g \\ g \\ Quarks \end{array}$                     |                                                        |
| <ul> <li>Chapter One. Constrained Hamiltonian Syst</li> <li>1.1. Gauge Invariance—Constraints</li> <li>1.1. The Lagrangian as a Starting Point:<br/>Primary Constraints</li> <li>1.1.2. Conditions on the Constraint Functions</li> <li>1.3. The Canonical Hamiltonian</li> <li>1.4. Action Principle in Hamiltonian Form</li> <li>1.1.5. Secondary Constraints</li> <li>1.1.6. Weak and Strong Equations</li> <li>1.1.7. Restrictions on the Lagrange Multipliers</li> <li>1.1.8. Irreducible and Reducible Cases</li> </ul> | tems 3 SU<br>3<br>4<br>6<br>9<br>11<br>12<br>13<br>13<br>13<br>13<br>14                                                                     | (3) symmetry<br>Important<br>graded g<br>differential<br>manifolds. | "tool":<br>geometry,<br>graded                         |
| <ul> <li>1.1.9. Total Hamiltonian</li> <li>1.1.10. First-Class and Second-Cla Equival</li> <li>1.2. First-Class Constraints as Gene<br/>Gauge Transformations</li> <li>1.2.1. Transformations That Do N<br/>Physical State. Gauge Tran</li> <li>1.2.2. A Counterexample to the I</li> <li>1.2.3. The Extended Hamiltonian</li> <li>1.2.4. Extended Action Principle</li> <li>1.3. Second-Class Constraints: The Dirac Bracket</li> </ul>                                                                                      | riant cohomology a<br>"equations of motior<br>"symmetries"<br>"gauge invariant"<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | and gauging in a<br>n" ↔ Q-mor<br>↔ Q-hom<br>↔ "equivariant         | nutshell<br>phisms<br>iotopies<br>ly <i>Q</i> -closed" |



# Merci pour votre attention!

Merci pour votre attention!

- Merci à tous les participants
- Merci aux organisateurs locaux!
- Paris automne 2023
- Suivez les annonces et répondez aux mails ;-)
- Pari de bière score:

12:5

L'abus d'alcool est dangereux pour votre santé, à consommer avec un modérateur.

