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The source of this talk is a paper (1958) by Souriau
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@ After not easy to read mathematical preliminaries, he proposes a
complete and detailed formulation of Hyperelasticity (matiere parfaite)
in General Relativity.

o His mindset is clearly Gauge theory, which is the common mathematical
framework of High Energy Physics and Quantum Mechanics.

@ Most of this work has since been rediscovered (with or without some
gaps) by many authors (Carter—Quintana, 1972, Kijowski—-Magli, 1992,
1997, Beig—Schmidt, 2003), but Souriau is almost never cited.
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OUTLINE

@ Geometric frameworks for Continuum Mechanics

e Lagrangian formulation of Relativistic Hyperelasticity
© Spacetime structures

e Relativistic Hyperelasticity in Schwarzschild spacetime

e 4D Newton-Cartan Galilean limit of Relativistic Hyperelasticity

@ Conclusion
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OUTLINE

@ Geometric frameworks for Continuum Mechanics
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3D FORMALISM FOR CONTINUUM MECHANICS
TRUESDELL AND NOLL (1965)
e A configuration is an embedding p : (%A, u) — (&, q), where

» 2 (the body) is a 3D compact oriented manifold (with boundary),
> u is a volume form (the mass measure),

» & is the ambiant 3-space,

» g is the Euclidean metric.

@ By pull-back, we get a Riemannian metric v = p*q on %A

e By push-forward, we get a mass measure p.j on €, = p(Z). The mass
density p is defined by p.p = pvol,.

P ﬂ‘)4’=r°rl'
p

M
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3D HYPERELASTICITY
NOLL (1972, 1978), ROUGEE (1991, 2006)

Hyperelasticity is then formulated by the definition of an elastic energy

W() :Z/gg¢(v)u, 922%,

where 8 = ¢*(o/p) and o is the Cauchy stress tensor.

Hyperelasticity on a reference configuration

In Mechanics, one usually prefers to work on a reference configuration
Qo = po(A), rather than on the abstract body 4 itself, and using
¢:=pop, ! rather than p itself. Then,
o v ~ C = ¢*q (Right Cauchy—Green tensor)
@ 6 ~ S = ¢*(o/p) (Second Piola—Kirchhoff tensor)
o

_ _ L,
° 9 =25 ~S=27¢.
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4D FORMALISM FOR CONTINUUM MECHANICS
SOURIAU (1958-1964)

@ The modeling of perfect matter adopted by Souriau is inspired by Gauge
theory, where matter fields are described by sections of some vector
bundle (here a trivial vector bundle).

@ A perfect matter field is a smooth vector valued function
U4 — V=R,

where .# is the Universe, a four dimensional manifold, endowed with a
Lorentzian metric g.

@ The notation U for the matter field is on purpose: V¥ is the wave function
in Quantum Mechanics.
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THE BODY, THE MASS MEASURE AND THE WORLD TUBE

@ A continuous medium is then described by a 3D compact orientable
manifold with boundary % C R?, the body, which labels the particles
and is endowed with a volume form g, the mass measure.

e It is further assumed that 7;,V is of rank 3 at each point m of U~!(%).
Thus, # := U~!(2) is fibered by the particles World lines ¥~!(X),
X € A, and is called for this reason the body’s World tube.

V)

)
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A POINT OF VIEW REVERSE TO 3D FORMALISM

@ In 3D formalism, a configuration is an embedding
p:AB—E

from the 3D body Z to the 3D space &.

@ In the present 4D formalism, the main concept is a mapping
V: M — B

from the 4D Universe .# to the 3D body 4.

A key difference is that, in Classical Continuum Mechanics, the embedding p
and its tangent map
F=Tp: T# —>T&

are invertible, whereas here, the matter field ¥ and its tangent map 7'V are not.
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CURRENT OF MATTER

@ The pullback by ¥ of the mass measure x4 on the body %, V*pu, is a
3-form. Since T,V is assumed to be of rank 3 at each point of #, there
exists a nowhere vanishing (quadri-)vector field P on %, such that

\IJ*M = iPVOIg,
where ip means the contraction of P with vol,. This vector field P is the

current of matter.

@ To describe perfect matter, Souriau assumes furthermore that P is
timelike,
IP|> = g(P,P) <0 on the World tube %/

Remark

At each point m € #/, the tangent vector P(m) spans the one-dimensional
subspace ker T,,,¥:
T,,¥.P(m) =0,
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RELATIVISTIC MASS CONSERVATION

Lemma (Souriau, 1958)

divé P = 0.

@ We can write
P=pU, with [U]=-1.

@ This defines, on the World tube #, the rest mass density
2
pr =/~ IPIZ,

The equation
divé P = div¥(p,U) =0

is then considered as the relativistic mass conservation (more precisely,
conservation of number density of idealized particles of the medium).
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CONFORMATION

The conformation H has been introduced by Souriau in 1958.
It is the cornerstone of the formulation of Relativistic Hyperelasticity at large
scale, such as in the modeling of neutron stars (with a solid crust).

Definition

The conformation is the vector-valued function

H:.# — S*V), m s H(m) := (T,,¥) g, (T,,¥)*.

e For each m € %, H(m) is a positive definite quadratic form on V*
(consequence of U timelike).

@ Since the mapping ¥ : # — 4 is not invertible,
H is not the pushforward of g~ .
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OUTLINE

Q Lagrangian formulation of Relativistic Hyperelasticity
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VARIATIONAL RELATIVITY

@ Souriau has proposed a clear and detailed formulation of Hyperelasticity
in the framework of General Relativity, which is part of his Variational
Relativity.

@ This formulation is inspired by Gauge Theory formulation of General
Relativity (Palatini’s Method).

@ His approach consists in adding Lagrangians i.e., functionals depending
on tensorial fields:

» the metric g,

» Gauge potentials A, T',...

» matter fields W, ...,
each of them describing a physical phenomena, and looking for critical
points of the total Lagrangian (Principle of Least Action).
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EINSTEIN’S EQUATION IN THE VACUUM

o The starting point is the Hilbert-Einstein functional

o The L?-gradient of % is the symmetric second order covariant tensor
field

1 1
grad / = aRic, — E(aRg +b)g = T (G +Ag),

where G, := Ric, — 5R, g is the Einstein tensor.

@ The critical points of Jf are the solutions of Einstein’s equation in the
vacuum (with cosmological constant)

G, +Ag=0
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EINSTEIN’S EQUATION IN THE MATTER

e To introduce the presence of matter in this framework, a functional
Z" (g, ¥) (depending of the matter field W), is added to 7 to build a
new Lagrangian

L(g, V) =H(g) +L"(g, V).

@ Following Souriau (1958, 1964), for Relativistic continua, one assumes
that the Lagrangian for perfect matter ¥ (g, V) depends only on the
0-jet of the metric g and of the 1-jet of the matter field W:

1
gm(g7 \I}) /Lm (gMVv \III Z\I}u> VOlg‘

@ The function L™ is called the Lagrangian density of the functional .Z".
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THE STRESS-ENERGY TENSOR
EINSTEIN-HILBERT, 1915
@ The Euler-Lagrange stationary equation §.Z = 0 leads to

O 0L
o8 6g

@ It recasts as the Einstein field equation
f -1 _
G, + Ag~" = kT,
where G5 = g'G,¢~!, and

s.Lm
0g

T ——2

il

is the stress-energy tensor (the source term in Einstein’s equation).

o T is a symmetric contravariant second-order tensor field.
It can be considered as a 4D generalization of the stress tensor
of 3D Classical Continuum Mechanics.
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GENERAL COVARIANCE

The main postulate of General Relativity is precisely that
Physical laws must be independent of the choice of coordinates.

e This means that the Lagrangian . must be invariant by a (local)
diffeomorphism ¢, i.e.,

ZL(p g, ¢"V) = L(g,¥),
where

g = (Te)* (gop)(Ty), and @"¥=Wop.

@ There is also an equivalent infinitesimal formulation of general
covariance (Noether, 1918), which is given by

ow
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GENERAL COVARIANCE OF HILBERT-EINSTEIN FUNCTIONAL

@ Hilbert-Einstein’s functional .57 is general covariant

H(p'g) = / (aRypeg + b) VOl ey = / o [(aRq + b) vol,] = H(g).
@ A direct consequence of this invariance is the fundamental property that
divé(Gy + Ag) = divé G, =0,

and thus that the stress-energy tensor T (verifying Einstein equation
Gg + Ag~! = kT) satisfies the conservation law

dive T = 0. )

@ As observed by Einstein himself: “div T = 0, that’s mechanics”.
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GENERAL COVARIANCE OF A PERFECT MATTER LAGRANGIAN

Theorem (Souriau (1958))

Suppose that the Lagrangian
ZL"(g, V) = /Lo(gm, U(m),T,¥) vol,
is general covariant. Then, its Lagrangian density can be written as

L"(g, ¥, TV) = L(V,H),

for some function L, where H = (TV) g=! (TV)* is the conformation.

In Classical Continuum Mechanics, the energy density depends on the

deformation ¢ only through the right Cauchy—Green tensor C = ¢*q.
Here, H plays the role of C™.
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A STRESS-ENERGY TENSOR FOR PERFECT MATTER

The following splitting has been introduced by Souriau (1958, 1964) and De
Witt (1962),

L(U,H) = p,¢* + E(W,H) = p,c? + pre(V, H),

where p, is the rest mass density, and E is the internal energy density. Then,

0L

T=-2 =pfUQU-S=LU®U-X,

where

S:=Eg'— 2g1(T\If)*§—§(T\I/)g1, SU =EU,

e

D= =208 (TO) 5 (TW)g ™,

S0 =0,

correspond to two choices of a (4D) relativistic stress tensor.
B. Kolev et R. Desmorat (LMPS)
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OUTLINE

© Spacetime structures
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TIME FUNCTION AND SPACELIKE HYPERSURFACES

INTRODUCTION OF AN OBSERVER (ARNOWITT ET AL, 1962, YORK, 1979, GOURGOULHON, 2012)

@ There is no Mechanics without the proper definition of time and space.

@ In General Relativity, one introduces a time function 7 on the Universe
. with a timelike gradient everywhere.

@ This defined a foliation (a spacetime structure) of .# by spacelike
hypersurfaces

Q:={me A; i(m) =1},

@ When a spacetime is defined by one chart and coordinates (x*), the time
function is chosen as #(m) = x°(m)/c, and we set

Q=7 N {x"(m) =ct}.
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FOLIATION OF # BY SPACELIKE HYPERSURFACES (),

2=k — T N WCM
K

L
772 5. ¥ X8

—_— —

— —

3

.2
2,2, 2

The 3D submanifolds 2, play the role of the configuration manifolds

2 = Q) of Classical Continuum Mechanics.

The restriction W, : €2, — 2 is not necessarily a diffeomorphism but its
differential 7V, is always a linear isomorphism.
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ORTHOGONAL DECOMPOSITION OF A SPACETIME

@ The unit normal (future-oriented) to the hypersurfaces {2, is

rad 7
N:=— & =.
— ngad iH
@ Given a spacetime structure on ./, we have thus, at each point m € .#,
the orthogonal decomposition

Tt = (N(m)) & T, ,

For mechanicians, it is worth to notice that this orthogonal decomposition is
very similar to the one used in Thick Shell theory. J
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ORTHOGONAL DECOMPOSITION OF U

Consider that

o perfect matter is present and represented by a matter field W, defining a
unit timelike quadrivector U (with P = p,U),

@ a spacetime structure is defined on the Universe .#, with unit normal N,
which we can assume defines the same time orientation as U, i.e.

(U,N), < 0.
Then, the orthogonal decomposition of U is written as

U=U"+U", U'=—(UN)N,

e U": normal component of U,

e U' € TQ,: tangential component of U.
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GENERALIZED LORENTZ FACTOR AND SPATIAL VELOCITY

o Introducing

V= _<U7 N>g

and setting U' = vu /c, we can write

u=1(x+2)

o v := —(U,N), is called the generalized Lorentz factor, since

1-— —, because ||U||§ =—

@ The spatial velocity u can be expressed on €2, as
u=—-cFTYN on

where F is the inverse of F~! = T, the restriction of 70 on €.
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ORTHOGONAL DECOMPOSITION OF T

Stress-energy tensor T

1
T=ExN®N+ E(N®p+p®N) +s.
o FEiy is the total energy density,
@ p is the momentum density vector field,

@ and s is the spatial part of T (related to the stress field).

Following Eckart (1940) and Souriau (1958), there exists 2 ways to define a
spatial stress o, which generalizes the 3D stress, using either S or X.
They provide two alternative Relativistic Hyperelasticity laws.
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FIRST MODELING CHOICE

The 3D stress tensor o is defined as the spatial part of

_ , Oe
S=-2p¢ 1(T\IJ) OH

and is given by

2 3D\ o — de 1, 3p 72E
=—= F*——F 1=
o 7p(g ) 5H (&) 2 uou

(T9)g™' ~EU®U  (suchasS.U" = EU),

Associated (3+1)-decomposition of T = p,c’U®@ U — S
Eot = 'YPCZ +E(1 + clz ||”||2) - Cizub "o ub7
p=(yp*+Eu—o- -,

S=vpuQLu— o,

where p = 7yp, is the relativistic mass density.
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SECOND MODELING CHOICE

The 3D stress tensor o is defined as the spatial part of

0
X =-2p g_l(T‘If)*a—Ii(T\I')g_1 (such as U = 0),

and is given by

2 _, Oe
o= 2ol o

173D\t

Associated (3+1)-decompositionof T= LU U — X

1
Etot = ’}/ZL = C—zub -0 - ub,

b

)

p=7Lu—o-u

2
s=LLlu®u—o,

where v2L = v* (p,c* + E) = ypc* + E(1 + Cli ).

4
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OUTLINE

@ Relativistic Hyperelasticity in Schwarzschild spacetime
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RELATIVISTIC HYPERELASTICITY IN SCHWARZSCHILD SPACETIME

We will extend Souriau’s results on Relativistic Hyperelasticity (in flat
Minkowski spacetime) by taking into account gravity. J

We neglect the influence of the continuous medium/the structure under study
(represented by the matter field W) as a source of the gravity field. J

@ The exterior Schwarzschild metric (1916) is a static solution g of
Einstein equation G, = 0 in the vacuum (with A = 0).

o It is representative of the gravity field around a spherical and nonrotating
planet (or a blackhole) of mass M and radius rg, such as the Earth.

@ In this model, the rotation of the Earth as a potential source of the
gravitation field has been neglected.
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SCHWARZSCHILD METRIC
In the so-called Cartesian isotropic coordinates (x° = ct, x'), with ¢ the time,

Lor/ry’ 2dt2+<1+rs>4 Fi= ) Gyxixd
= - c = 7= X1
§ 1+ 7 /7 7 A

1 —7r/7
8= _t/VZCzdtz +83D> N = vV —800 = _S/_7 J
I £ 77

e g0 is the spatial (conformal) metric,
3D, iq.j _ s\
8 —kq—k(S,-jdxdx, k=1(14+= .
7
e 7 = 0 at the center of the planet, 7 ~ rg on its surface,

@ Reduced Schwarzschild radius (7s =~ 2 mm for the Earth):

1 GM
ol
@ The Minkowski spacetime is the limit case M = 0 (thus 75 = r¢ = 0).

Fg 1=
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PARTICULARIZATION FOR SCHWARZSCHILD SPACETIME

@ 3D velocity u and Generalized Lorentz factor:

1 ov 1
u=—— a, V=
N0t /1 _ k,é_z
where u? := ||u||? is the Euclidean squared norm and k = (1 + 5 4.
a q ;

@ Relativistic mass density: p = vyp,.

@ Conformation:
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PARTICULARIZATION FOR SCHWARZSCHILD SPACETIME

@ 3D velocity u and Generalized Lorentz factor:

1 F@\Il 1
u=—— .0 V=
N0t /1 —klé—;
where u? := ||u||? is the Euclidean squared norm and k = (1 + 5 4.
a q ;

@ Relativistic mass density: p = vyp,.
@ Conformation:

1 1
H = F_l <%q_1 — C—2u X u) F_*.

@ For the two choices of a 3D stress o, in the coordinate system (z, X )s

L, 1,
T _ C2 (/11/2 tot C2 JVP
2P s
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PARTICULARIZATION FOR SCHWARZSCHILD SPACETIME

@ When the stress tensor o is defined as the spatial part of S:

Eioc = ypc +E( —{—k’C‘—Z)—C%ub-a-ub,
p=(p?+Eu—o-w,
=ypuRuU—o

* Oe F—lq—l

— 2 I 0e _2E
0= "SP4 F OH Fuou.

© When the stress tensor o is defined as the spatial part of 3:

Ewot = ypc -I-E(l +k72” ) — Cizubﬁ'-u",
p= (7,00 +E(1 +k’yz':—2))u —o-uw,
= <7p+iE( +kfyzﬁ)>u®u—a,

a:_#qulF *6eF 1
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PARTICULARIZATION FOR SCHWARZSCHILD SPACETIME

@ Conservation law for the current of matter

1
divé P = 72—+d1vg (pu) + pu-dln.A = 0.

@ Conservation laws for the stress-energy tensor T,

(div8 T)" = R —l—c J/dlvg p+2 </V ~dln.A" = 0.
1 op tot ~1
g o g’ -
(divé T) " T +div¥ s+s-dlnA + i dln./ = 0.
Remark

In York (1970) and Gourgoulhon (2012), these balance laws are expressed for
the more general case of a non zero shift vector 5 = go; dx', in so-called
(3 4 1) formalism in General Relativity.
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OUTLINE

e 4D Newton-Cartan Galilean limit of Relativistic Hyperelasticity
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GALILEAN STRUCTURE AND NEWTON-CARTAN LIMIT
DIXON (1975), HAVAS (1964), KUNZLE (1976), DUVAL-KUNZLE (1977), DUVAL (1985)

@ A Galilean structure on .# is a pair (g, #), where

» g: a symmetric 2nd-order contravariant tensor of signature (0, +, +,+) ,
» 0: a one-form which spans the kernel of g.

The structure is integrable if df = 0 (and thus, at least locally, § = dr).
@ A Galilean structure (g, f) can be obtained as a limit of a one-parameter
family of smooth Lorentz metrics § such that

gl =g+ e+ 00,

with g of signature (0, +, +, +), and 6 € ker g.

e Ifdf = 0, then, V* converges to a symmetric covariant derivative V°
(Kiinzle, 1976), with Vg = 0 and V6§ = 0.
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NEWTON-CARTAN LIMIT OF SCHWARZSCHILD METRIC

Y= NP kg, A= -

ct’
where
1 GM 4 1 GM 4
‘/VZI_C_ZT_I_O(l/C)’ :14-;74-0(1/6').

o Co-metric
gl =g+ Ak+00\)
—q ' - C—lz((at)2 + 2GTMq“) +0(1/cY).
@ Riemannian volume form associated with the metric §
Volg =cfdt Avol,, where f= JVk% =1+ 2 GM

25 + 0(1/04).
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Galilean structure limit of Schwarzschild spacetime

GM
g :q—l’ K= —(3z)2—27q_1, 0 = dr.

o This structure integrable, the time function is the same, in either the
relativistic context or the Galilean one.

o The foliation by the hypersurfaces €); is common to both structures.

e However, the relativistic normal N* — 0 as ¢ — oo.

The conformation vs Right Cauchy—Green tensor C := F*¢g F

The conformation converges to

A
lim H=Fl¢g'F*=C",

c— 00

the inverse of the right Cauchy—Green tensor.
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COVARIANT DERIVATIVE V» AND ITS LIMIT V°

The Christoffel symbols of the Newtonian limit V are all vanishing except

: : GM x'
i, =-¢, g:= —’7—2)%8)5 (Newtonian gravity).

Divergences
A oP" oP 2 _ . . A
divP = at +%+z(sl]gpl+0(l/c )7
A or"  orY
(leT)t = 7 =+ W —+ 0(1/C4),
vy < T T

oL" g 2
5 + B g'T"+ 0(1/c).
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A
CURRENT OF MATTER FOR THE METRIC g

The 3-form W*p does not depend on ¢ (the matter field ¥ and the mass
measure 4 do not depend on ¢, which is only introduced through the metrics). J

Since

U™ = ipavoly = cf ipx df A voly = iypx df A voly = ipyo dt A volg,
g
we get

L | 1 2 GM
cP = —(cP)’, where 7= 1— c_ZGT +0(1/c").

Spacetime decompositions of cP

A
P =00 +pu — (cP)°=pd +pu.
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STRESS-ENERGY TENSOR

In the coordinate system (7, x')

if we assume that
lim (E/c*) = 0.

c—00

The energy density Ei, linear momentum p and spatial part s behave as

Eio A L [o Lo oy 4
C%V:p+§<E+ym>+OUﬁ%
1 0 1
P hie ((E+§z&2>a_3.&b> L o(1)ch,

s=pu@i—o+0(1/c),
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LIMITS OF THE BALANCE LAWS

A A A
Q@ Atorder 0in \: div(cP) = % + div(?)ﬁ) + c%g pu+ 0(1/c¢*) =0, and
(div? TA)" = 0 converge to usual (3D) expression of mass conservation

0. J

A
@ Atorder 0in \: the spatial part (divT*)" = 0 converges to the linear
momentum balance,

% div(pu)
ot P

a 00 . 00 0 0 0
a—t(pu)—i—dlv (pu@u—a‘) —pg=0. J

A

A A A
@ Atorder 1in A: 2[4/ (div T)" — div(cP)] converges to usual (3D)
energy balance,

ot

2

g0 1 o 1
g (B 30i7) v (B4 3pi)ii— 6 i2) ~ py-ii =0, J
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LIMITS AT ¢ — o0 GIVE THE USUAL EXPRESSION

OF CLASSICAL CONTINUUM MECHANICS

Omitting the superscripts 0:

@ is mass conservation

dp . _
N + div(pu) = 0.

@ recasts as the linear momentum balance

7]
p (8_1: + V,m) =divo + pg,

where V is the covariant derivative for the Euclidean metric g.

© recasts as the internal energy balance

e — oy ._1 b b\ %
p(E—%Vue)_o-.d, d._2<Vu +(Vu)>,

with no heat transfer, and where e := E/p is the specific internal energy.
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OUTLINE

@ Conclusion
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CONCLUSION

Souriau’s Lagrangian General relativity formulation of Hyperelasticity
Mindset: Gauge theory, Geometrization of Physics

Key role of the body % (of the mass measure u and the fixed metric ~yg)
Key role of the conformation (as strain)

Proper definition of a stress

Even if the full theory is 4D, Hyperelasticity constitutive laws are 3D
Accounts for gravity (here in Schwarzschild spacetime)

Newton-Cartan formulation of Galilean Relativity obtained as ¢ — oo

y

il = = — Tyt
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CONCLUSION

Souriau’s Lagrangian General relativity formulation of Hyperelasticity
Mindset: Gauge theory, Geometrization of Physics

Key role of the body % (of the mass measure u and the fixed metric ~yg)
Key role of the conformation (as strain)

Proper definition of a stress

Even if the full theory is 4D, Hyperelasticity constitutive laws are 3D
Accounts for gravity (here in Schwarzschild spacetime)

Newton-Cartan formulation of Galilean Relativity obtained as ¢ — oo
Some authors introduce the orthogonal decomposition w.r.t. U of the metric,
g=h-UeU, g¢gl'l=m-UgU  KU=0.

Since TW.U = 0, h, h* and the conformation H are simply related as

H= (TO) ¥ (TV)*,  h=ghtg= (TO)"H Y(TD).

o = (o}

4
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RELATIVISTIC PERFECT FLUID

The stress-energy tensor of a Relativistic perfect fluid,
T=(L+P)URU+Pg !, L=pc?+E,
corresponds to an internal energy density of the form

E = pre(pr),

where
P = pie(pr)-

S=-Pg ' —PU®U=—PK,
S=X-EUU=-Pg!—(E+PUxU.
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MASS CONSERVATION IN HYPERELASTICITY
Lemma (Souriau, 1958)

Let 7y be a fixed Riemannian metric on the body 9. Then, the rest mass
density p, can be written as

pr = pao (¥)/det [H(~g o W),

where WV is the matter field, H is the conformation, and p~, = i

vol,,

The fixed mass density p~, (W.r.t. 7p) is defined on the body %.

Mass conservation in Classical Continuum Mechanics (on €2)

po=(pod)J,  J:=,/det(g~'C),

¢: Qo — 2 is the deformation
C := ¢*q is the right Cauchy—Green tensor.
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