Éclatement des feuilletages singuliers à travers des algébroïdes de Lie infinies universelles

Ruben LOUIS

ENS Paris Saclay

23-25 Novembre 2022

Introduction

"Differential equations"

Many differential equations induce a partition of manifold: $x \sim y$ are reachable using the differential equation

Ruben LOUIS (ENS Paris Saclay)

In differential geometry, Singular foliations arise as

- Lie group actions
- Symplectic leaves of a Poisson manifold

• • • •

A singular foliation on a smooth, real analytic, or complex manifold M or Zariski open subset $\mathcal{U} \subseteq \mathbb{C}^d$ is a subspace $\mathfrak{F} \subseteq \mathfrak{X}(M)$ that fulfills the following conditions

A singular foliation on a smooth, real analytic, or complex manifold M or Zariski open subset $\mathcal{U} \subseteq \mathbb{C}^d$ is a subspace $\mathfrak{F} \subseteq \mathfrak{X}(M)$ that fulfills the following conditions

• Stability under Lie bracket: $[\mathfrak{F},\mathfrak{F}] \subseteq \mathfrak{F}$.

A singular foliation on a smooth, real analytic, or complex manifold M or Zariski open subset $\mathcal{U} \subseteq \mathbb{C}^d$ is a subspace $\mathfrak{F} \subseteq \mathfrak{X}(M)$ that fulfills the following conditions

- Stability under Lie bracket: $[\mathfrak{F},\mathfrak{F}]\subseteq\mathfrak{F}$.
- Stability under + and multiplication by functions $C^{\infty}(M)$.

A singular foliation on a smooth, real analytic, or complex manifold M or Zariski open subset $\mathcal{U} \subseteq \mathbb{C}^d$ is a subspace $\mathfrak{F} \subseteq \mathfrak{X}(M)$ that fulfills the following conditions

- Stability under Lie bracket: $[\mathfrak{F},\mathfrak{F}] \subseteq \mathfrak{F}$.
- Stability under + and multiplication by functions $C^{\infty}(M)$.
- Locally finitely generateness:

$$X \in \mathcal{F} \Longrightarrow X = \sum_{i} f_i X_i$$

Example

• Consider a polynomial function $\varphi \in C[x_1, \ldots, x_n]$.

$$\mathcal{F} = \left\{ \frac{\partial \varphi}{\partial x_i} \frac{\partial}{\partial x_j} - \frac{\partial \varphi}{\partial x_i} \frac{\partial}{\partial x_j}, 1 \le i < j \le n \right\}$$

is a singular foliation.

Example

• Consider a polynomial function $\varphi \in C[x_1, \ldots, x_n]$.

$$\mathcal{F} = \left\{ \frac{\partial \varphi}{\partial x_i} \frac{\partial}{\partial x_j} - \frac{\partial \varphi}{\partial x_i} \frac{\partial}{\partial x_j}, 1 \le i < j \le n \right\}$$

is a singular foliation.

• (Concentric spheres). The the singular foliation generated by the vector fields,

$$x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}, \ y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}, \ z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}.$$

An anchored vector bundle is a pair (A, ρ) made of a vector bundle $A \rightarrow M$, and a vector bundle morphism called its *anchor map*.

An anchored vector bundle is a pair (A, ρ) made of a vector bundle $A \rightarrow M$, and a vector bundle morphism called its *anchor map*.

Definition (Anchored bundle over \mathcal{F})

Let \mathcal{F} be a singular foliation on M. We say that an anchored bundle (A, ρ) is over \mathcal{F} if $\rho(\Gamma(A)) = \mathcal{F}$.

Let ${\mathcal F}$ be a singular foliation on M. There exists an anchored bundle (A,ρ) over ${\mathcal F}.$

Let ${\mathcal F}$ be a singular foliation on M. There exists an anchored bundle (A,ρ) over ${\mathcal F}.$

Definition (Almost Lie algebroids)

Let (A, ρ) be an anchored vector bundle over M. We call *almost-Lie algebroid bracket* a skew-symmetric bilinear (over \mathbb{K}) map

$$[\cdot, \cdot]_A : \Gamma(A) \land \Gamma(A) \longrightarrow \Gamma(A)$$

that satisfies the Leibniz identity,

 $[x, fy]_A = \rho(x)[f]y + f[x, y]_A, \quad \text{for all } x, y \in \Gamma(A), f \in C^{\infty}(M) \quad (1)$

and the anchor condition:

$$\rho([x,y]_A) = [\rho(x), \rho(y)], \quad \text{for all } x, y \in \Gamma(A).$$
(2)

Every anchored vector bundle (A, ρ) over M such that $\rho(\Gamma(A)) = \mathcal{F}$ can be endowed with an almost-Lie algebroid bracket.

Every anchored vector bundle (A, ρ) over M such that $\rho(\Gamma(A)) = \mathcal{F}$ can be endowed with an almost-Lie algebroid bracket.

kind	Alsmost kind	Wicked, ugly
Regular	Debord=projective	Irregular with plenty of relations

Let $E \to M$ a vector bundle of rank d over a manifold M (or an algebraic variety).

Definition (Tautological subbundle)

The Grassmann bundle Π : $\operatorname{Gr}_{-r}(E) \longrightarrow M$ comes equipped with a canonical vector bundle $\mathcal{V}^E \subset \Pi^* E$ over it whose <u>fiber</u> over $(V, x) \in \operatorname{Gr}_{-r}(E|_x)$ is (V, x) itself.

Let $E \to M$ a vector bundle of rank d over a manifold M (or an algebraic variety).

Definition (Tautological subbundle)

The Grassmann bundle Π : $\operatorname{Gr}_{-r}(E) \longrightarrow M$ comes equipped with a canonical vector bundle $\mathcal{V}^E \subset \Pi^* E$ over it whose <u>fiber</u> over $(V, x) \in \operatorname{Gr}_{-r}(E|_x)$ is (V, x) itself.

Also, it comes with a universal quotient bundle $A^E\simeq \Pi^*E/\mathcal{V}^E$ together with the exact sequence

$$0 \longrightarrow \mathcal{V}^E \longrightarrow \Pi^* E \longrightarrow A^E \longrightarrow 0. \tag{3}$$

We need these properties

Ruben LOUIS (ENS Paris Saclay)

We need these properties

• Diffeomorphism on regular points

We need these properties

- Diffeomorphism on regular points
- Less singular

We need these properties

- Diffeomorphism on regular points
- Less singular
- The same number of leaves

Let $(A, [\cdot, \cdot]_A, \rho)$ be an almost Lie algebroid over \mathfrak{F} . Denote by $M_{\operatorname{reg}, \mathfrak{F}}$ be the set of regular points of \mathfrak{F}

Let $(A, [\cdot, \cdot]_A, \rho)$ be an almost Lie algebroid over \mathfrak{F} . Denote by $M_{\operatorname{reg}, \mathfrak{F}}$ be the set of regular points of \mathfrak{F} and r the dimension of the regular leaves.

Let $(A, [\cdot, \cdot]_A, \rho)$ be an almost Lie algebroid over \mathfrak{F} . Denote by $M_{\operatorname{reg}, \mathfrak{F}}$ be the set of regular points of \mathfrak{F} and r the dimension of the regular leaves.

A construction

Consider the natural section defined by :

$$\sigma \colon M_{\operatorname{reg},\mathfrak{F}} \longrightarrow \operatorname{Gr}_{-r}(A), \ x \longmapsto (\ker \rho_x, x)$$

2 Let $\widetilde{M} := \overline{\sigma(M_{reg}, \mathfrak{F})}$ be the closure of the graph of σ in $Gr_r(A)$.

Idea

- M becomes (maybe) weird!
- ${f 2}$ ${f \mathfrak{F}}$ becomes easy

Idea

- *M* becomes (maybe) weird!
- **2** \mathfrak{F} becomes easy

A surprising result! : Under <u>one</u> blowup, any singular foliation becomes projective!

Geometric resolutions of a singular foliation

Let (A, ρ) be an anchord bundle such that $\rho(\Gamma(A)) = \mathcal{F}$.

 $\ \ \, {\rm Onsider \ the \ kernel \ ker}(\rho) \ \, {\rm of} \ \ \,$

$$\rho\colon \Gamma(A)\longrightarrow \mathfrak{X}(M).$$

2 Under some good conditions, there exists a second vector bundle $B \to M$ and a vector bundle morphism $d: B \longrightarrow A$ such that

 $\mathrm{d}\left(\Gamma(B)\right)=\ker(\rho)$

Geometric resolutions of a singular foliation

Let (A, ρ) be an anchord bundle such that $\rho(\Gamma(A)) = \mathcal{F}$.

 $\textbf{O} \ \ \mathsf{Consider} \ \mathsf{the} \ \mathsf{kernel} \ \mathsf{ker}(\rho) \ \mathsf{of} \ \\$

$$\rho\colon \Gamma(A)\longrightarrow \mathfrak{X}(M).$$

2 Under some good conditions, there exists a second vector bundle $B \to M$ and a vector bundle morphism d: $B \longrightarrow A$ such that

$$d\left(\Gamma(B)\right) = \ker(\rho)$$

In particular, we have $\rho \circ d = 0$, and

Geometric resolutions of a singular foliation

Definition

Let $\mathcal{F}\subseteq\mathfrak{X}(M)$ be a singular foliation on a manifold M. A complex of vector bundles

is said to be a geometric resolution of \mathcal{F} if the following complex of is exact:

$$\longrightarrow \Gamma(E_{-i-1}) \stackrel{\mathrm{d}^{(i+1)}}{\longrightarrow} \Gamma(E_{-i}) \stackrel{\mathrm{d}^{(i)}}{\longrightarrow} \Gamma(E_{-i+1}) \longrightarrow \cdots \longrightarrow \Gamma(E_{-1}) \stackrel{\rho}{\longrightarrow} \mathcal{F}.$$

Theorem (LGL, LLS)

Denote by \mathfrak{F} be a singular foliation over M. Any geometric resolution

$$\cdots \xrightarrow{d} \Gamma(E_{-3}) \xrightarrow{d} \Gamma(E_{-2}) \xrightarrow{d} \Gamma(E_{-1}) \xrightarrow{\rho} \mathfrak{F} \longrightarrow 0$$
(4)

comes equipped with a unique (up to homotopy) almost graded Lie algebroid structure over \mathfrak{F} whose unary bracket is $\ell_1 := d$.

Settings: Let \mathfrak{F} be a singular foliation that admits a geometric resolution.

$$(E, \mathbf{d}, \rho): \quad \cdots \stackrel{\ell_1 = \mathbf{d}^{(4)}}{\longrightarrow} E_{-3} \stackrel{\ell_1 = \mathbf{d}^{(3)}}{\longrightarrow} E_{-2} \stackrel{\ell_1 = \mathbf{d}^{(2)}}{\longrightarrow} E_{-1} \stackrel{\rho = \mathbf{d}^{(1)}}{\longrightarrow} TM.$$

Settings: Let \mathfrak{F} be a singular foliation that admits a geometric resolution.

$$(E, \mathbf{d}, \rho): \quad \cdots \stackrel{\ell_1 = \mathbf{d}^{(4)}}{\longrightarrow} E_{-3} \stackrel{\ell_1 = \mathbf{d}^{(3)}}{\longrightarrow} E_{-2} \stackrel{\ell_1 = \mathbf{d}^{(2)}}{\longrightarrow} E_{-1} \stackrel{\rho = \mathbf{d}^{(1)}}{\longrightarrow} TM.$$

$$\sigma_i \colon M_{\operatorname{reg},\mathfrak{F}} \longrightarrow \operatorname{Gr}_{-r_i}(E_{-i}), \ x \longmapsto \left(\operatorname{im}(\operatorname{d}_x^{(i+1)}), x\right) \tag{5}$$

2 Let $\widetilde{M}_i := \overline{\sigma_i(M_{\text{reg}},\mathfrak{F})}$ be the closure of the graph of σ_i in $\text{Gr}_{-r_i}(E_{-i})$.

Theorem (Part I)

- Solution For each i, the projection π_i: M_i → M is invertible on an open dense subset, proper and onto.
- For all $x \in M$, $\pi_i^{-1}(x) \subseteq \operatorname{Gr}_{r_i \operatorname{rk}\left(\operatorname{d}_x^{(i)}\right)}(H^{-i}(\mathfrak{F}, x))$
- Solution of 𝔅.
 Solution of 𝔅.

Theorem (Part II)

Let \widetilde{M}_i be as Theorem (Part I) for $i \ge 1$. If \mathfrak{F} is a polynomial singular foliation on $M \in \{\mathbb{C}^N, \mathbb{R}^N\}$, then \widetilde{M}_i is a locally affine variety. Moreover,

• for every $i \ge 1$, \mathfrak{F} is <u>lifted</u> to a singular foliation $\tilde{\mathfrak{F}}_i$ on the locally affine variety \widetilde{M}_i ,

Theorem (Part II)

Let \widetilde{M}_i be as Theorem (Part I) for $i \ge 1$. If \mathfrak{F} is a polynomial singular foliation on $M \in \{\mathbb{C}^N, \mathbb{R}^N\}$, then \widetilde{M}_i is a locally affine variety. Moreover,

• for every $i \ge 1$, \mathfrak{F} is <u>lifted</u> to a singular foliation $\tilde{\mathfrak{F}}_i$ on the locally affine variety \widetilde{M}_i ,

Also,

\$\tilde{\vec{s}}_1\$ rises as the action of a Lie algebroid over \$\tilde{M}_1\$ whose anchor is innjective on an open dense subset.

Proof. It uses the 2-ary bracket & the canonical bundle ${\cal A}^{E_{-1}}$.

Thank you for your attention!