The Hamilton-de Donder-Weyl equations : from classical field theories to multisymplectic geometry

Mini-Symposium Rencontres Mathématiques-Mécanique

Tilmann Wurzbacher

Institut Élie Cartan de Lorraine Université de Lorraine

August 27, 2025

Contents

- Back to the (18)90s
- All equations are HDW
- Oarboux or not Darboux
- 4 A short walk on the wild side
- 6 References

In coordinates the **Hamilton-Volterra equations** (*) for $\Psi : \mathbb{R}^n \supset \Sigma \to \mathbb{R}^N \times \mathbb{R}^{Nn}$ are given as follows :

$$\forall \mu \in \{1, ..., n\} \text{ and } \forall a \in \{1, ..., N\},$$

$$\frac{\partial \mathcal{H}}{\partial q^{a}}(\Psi(x)) = \sum_{\mu=1}^{n} \frac{\partial (p_{a}^{\mu} \circ \Psi)(x)}{\partial x^{\mu}},$$
$$-\frac{\partial \mathcal{H}}{\partial p_{a}^{\mu}}(\Psi(x)) = \frac{\partial (q^{a} \circ \Psi)(x)}{\partial x^{\mu}}.$$

Time derivatives are replaced by partials in coordinate directions x^{μ} of Σ , replacing the time interval I of (time-dependant) mechanics.

Modern formulation of Volterra's equations for certain variational problems, here for n-dimensional sources and fields Ψ with values in a N-dimensional "configuration space" Q (or better appropriate sections) :

$$\Sigma^n \leftarrow^{\pi} \Sigma^n \times Q = E \leftarrow \Lambda_2^n T^* E = M(\pi)$$

where $\Lambda_2^n T^* E = \{ \eta \in \Lambda^n T^* E \mid \iota_{\nu} \iota_{w} \eta = 0 \, \forall v, w \in \ker \pi_* \subset TE \}$ is the (twisted affine) dual of the first jet bundle of π with tautological *n*-form θ and $\omega = -d\theta$.

Equivalent to the Hamilton-Volterra equations is the

dynamical Hamilton-De Donder-Weyl equation:

(**)
$$(\psi_*)(\gamma^{\Sigma}) \perp \omega_{\psi(t)} = -dH_{\psi(t)}$$
 typically with $H = \mathcal{H} - p$.

Here γ^{Σ} is a co-volume on Σ , and $\mathcal H$ is a function on $P(\pi) = \Lambda_2^n T^* E/\Lambda_1^n T^* E$, with p a fibre coordinate on $M(\pi) = \Lambda_2^n T^* E \to \Lambda_2^n T^* E/\Lambda_1^n T^* E = P(\pi)$, and ψ a section of $M(\pi) \to \Sigma$.

Remark. $(*) \Leftrightarrow (**)$.

References for the preceding : [Volterra]; [Román-Roy]; [Wagner and Wurzbacher 1]

Definition

A "multisymplectic" manifold (M,ω) is a pair, where M is a manifold, $n \geq 1$ and $\omega \in \Omega^{n+1}(M)$ is a closed differential form satisfying the following non-degeneracy condition: The map

$$\iota_{\bullet}\omega: TM \to \Lambda^n T^*M, \quad v \mapsto \iota_v \omega = v \lrcorner \omega$$

is injective. For fixed degree n+1 of the form such manifolds are also called "n-plectic".

Remarks. A 1-plectic manifold is a symplectic manifold. $M(\pi) = \Lambda_2^n T^* E$ is the "standard multisymplectic manifold", for n=1 it equals $T^*(I\times Q)$, modelling time-dependent mechanics.

Dynamics are now expressed via

• an equation for an unknown multivector field X_H , given a function H on $M(\pi)$, the

Hamilton-De Donder-Weyl (HDW) equation:

$$X_{H} \perp \omega = -dH$$
.

Solving them is not enough for finding a "solution", since if n>1 going from HDW to a map is an extra step (that is trivially assured by the existence of flows of vector fields, as opposed to multivector fields)!

• generalization to $(Z, \eta) \in \mathfrak{X}^k(M) \oplus \Omega^{n-k}(M)$ s.th.

$$Z \lrcorner \omega = -d\eta.$$

 the dynamical Hamilton-De Donder-Weyl equation (see above).

The Klein-Gordon equation.

Let $d \geq 1$, $\Sigma \subset \mathbb{R}^{d+1}$ an open subset with coordinates (x^0, x^1, \dots, x^d) and $\pi : E = \Sigma \times \mathbb{R} \to \Sigma$, i.e., $Q = \mathbb{R}$ with coordinate q. Furthermore $P(\pi) = \Lambda_2^n T^* E / \Lambda_1^n T^* E \cong E \times \mathbb{R}^{d+1} = \Sigma \times \mathbb{R} \times \mathbb{R}^{d+1}$ with coordinates $(x^0, x^1, \dots, x^d, q, p^0, p^1, \dots, p^d)$. We take

$$\mathcal{H}_{KG}(x,q,p) = \frac{1}{2}(-(p^0)^2 + \sum_{k=1}^d (p^k)^2) + V(q),$$

where $V: \mathbb{R} \to \mathbb{R}$ is a differentiable function.

The associated Hamilton-Volterra equations are then:

$$\frac{\partial q}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{KG}}{\partial p^{\mu}} = \pm p^{\mu}$$

$$\sum_{i=1}^{d} \frac{\partial p^{\mu}}{\partial x^{\mu}} = -\frac{\partial \mathcal{H}_{KG}}{\partial a} = -\frac{\partial V}{\partial a}.$$

Upon relabelling $x^0 = t$ we get the Klein-Gordon equation :

$$\Box q = -\frac{\partial^2 q}{\partial t^2} + \sum_{k=1}^d \frac{\partial^2 q}{\partial (x^k)^2} = -\frac{\partial V}{\partial q}.$$

The Poisson equation.

Let $\Sigma \subset \mathbb{R}^2$ an open subset with coordinates (x^1, x^2) and $Q = \mathbb{R}$ with coordinate q, i.e., $\pi : E = \Sigma \times \mathbb{R} \to \Sigma$. Then $P(\pi) = \Lambda_2^3 T^* E / \Lambda_1^3 T^* E \cong \Sigma \times \mathbb{R} \times \mathbb{R}^2$ with coordinates (x^1, x^2, q, p^1, p^2) . We take

$$\mathcal{H}_{Poisson}(x^{\mu},q,p^{
u},p) = rac{1}{2}((p^1)^2 + (p^2)^2) - f(x^1,x^2)q\,,$$

where $f: \Sigma \to \mathbb{R}$ is a differentiable function.

A direct calculation expresses the Hamilton-Volterra equations as follows

$$\frac{\partial q}{\partial x^{\mu}} = \frac{\partial \mathcal{H}_{KG}}{\partial p^{\mu}} = p^{\mu}$$

$$\frac{\partial p^1}{\partial x^1} + \frac{\partial p^2}{\partial x^2} = f(x^1, x^2),$$

i.e., we get Poisson's equation $\Delta_x q(x^1,x^2) = f(x^1,x^2)$.

More examples. (Compare also [Gieres].)

- (time-dependent) Hamilton equations on a symplectic manifold, notably for $\mathcal{H}:I\times T^*Q\to\mathbb{R}$
- Schrödinger equation on $\Omega \subset \mathbb{R}^3$ open subset; here $\Sigma = \mathbb{R} \times \Omega$, $E = \Sigma \times \mathbb{R}^2$ and $M_S = \{p_1^0 = q^2, p_2^0 = -q^1\} \subset \Lambda_2^4 T^* E \cong \mathbb{R} \times \Omega \times \mathbb{R}^2 \times \mathbb{R}^8$ and the ensueing HDW equation yields for $\psi = q : \Sigma \to \mathbb{C} \cong \mathbb{R}^2$:

$$i\frac{\partial \psi}{\partial t} = \Delta_{\mathsf{x}}\psi + V(\mathsf{x}) \cdot \psi$$

- minimal surface equation
- Korteweg-de Vries equation
- Maxwell's equations and Yang-Mills equations
- Einstein's equation
- "Exotic" equations (see below for the case of the six-sphere).

A 2k-dimensional symplectic (or now 1-plectic) manifold (M,ω) enjoys locally a standard normal form : for every $x \in M$ there is a local chart (U,ϕ) around x such that

$$\phi^*\left(\sum_{j=1}^k dq^j\wedge dp_j\right)=\omega|_U.$$

Such a "Darboux theorem" does not hold in general on a n-plectic, m-dimensional manifold. A first obstruction is given by the "linear type", i.e., the equivalence class of the (non-degenerated) (n+1)-form ω_x on the tangent space of $x \in M$ must be constant in x. But this is not enough: there are higher-order obstructions beyond closedness of the form ω (unlike in the symplectic case!) References: [Ryvkin and Wurzbacher]; [Ryvkin]

If U is open in M and allows for a Darboux chart ϕ , the HDW equations are given in terms of minors of the Jacobi matrix of a differentiable map $\mathbb{R}^n \supseteq \Sigma \xrightarrow{\Psi} \phi(U) \subseteq \mathbb{R}^m$, i.e., for certain real numbers a_J^r ,

$$\sum_{J} a_{J}^{r} \cdot \det_{J}(D\Psi)_{x}) = \frac{\partial H}{\partial y^{r}}(\Psi(x)) \quad \forall r = 1, \dots, m,$$

where J runs over the subsets of cardinality n of $\{1,\ldots,m\}$, and $\det_J(D\Psi)_x$ is the $(n\times n)$ -minor of the Jacobi-matrix $(D\Psi)_x$ (of size $m\times n$) defined by J, and H the Hamiltonian function on M, with coordinates $\phi=(y^1,\ldots,y^m)$ on U.

The resulting fully nonlinear inhomogeneous Jacobian minor equations can be solved in certain cases by geometric methods.

A case study: 2-plectic dynamics on the six-sphere

Reference for this section: [Wagner and Wurzbacher 2]

- on \mathbb{R}^7 we have a vector product from the octonions and a 3-form $\tilde{\omega}(u,v,w)=< u,v\times w>$
- the inclusion $j: S^6 \hookrightarrow \mathbb{R}^7$ yields an exact 2-plectic form $\omega = j^*(\tilde{\omega})$ on the six-sphere
- ω is compatible with the standard almost complex structure on S^6 (defined by $J_p(u)=p\times u$), i.e., $\omega(Ju,v,w)=\omega(u,Jv,w)$ for all $p\in S^6$ and $u,v,w\in T_pS^6$

A short walk on the wild side

Result 1.

- (i) ω has constant linear type
- (ii) (S^6, ω) has nowhere Darboux coordinates.

Result 2.

The automorphisms of (S^6, ω) are given by the compact finite-dimensional Lie group G_2 .

Result 3.

A vector field $X \in \mathfrak{X}^1(S^6)$ solves the HDW equation on (S^6, ω) if and only if $X = X_{\xi}$ is a fundamental vector field associated to ξ in Lie(G_2).

Result 4.

Let H be a constant (Hamilton) function on S^6 . Then $\forall X \in \mathfrak{X}^1(S^6)$ one has $\iota_{X \wedge JX} \omega = dH$, i.e., the couple $(X \wedge JX, 0)$ solves the HDW equation.

Result 5.

Let H be a constant (Hamilton) function on S^6 . Then

(i) $\forall X \in \mathfrak{X}^1(S^6)$ with $\mathcal{L}_X J = 0$ there is a singular J-holomorphic foliation given by $D_p = \langle \langle X_p, J_p(X_p) \rangle \rangle_{\mathbb{R}}$ for all p in S^6 , whose leaves are the images of the solutions of the dynamical HDW equation associated to $(X \wedge JX, 0)$

$$F_p^{X,JX}(t^1,t^2) = \phi_{t^2}^{JX} \circ \phi_{t^1}^X(p)$$

(ii) if ξ, η are in Lie(G_2) and $H_{\xi,\eta} = \iota_{X_{\xi} \wedge X_{\eta}} \theta$ then $(X_{\xi} \wedge X_{\eta}, H_{\xi,\eta})$ is a solution of the HDW equation.

If furthermore $[\xi,\eta]=0$, then for all $p\in S^6$,

$$F_p^{\xi,\eta}(t^1,t^2) = \phi_{t^2}^{X_\eta} \circ \phi_{t^1}^{\xi}(p)$$

solves the dynamical HDW equation.

F. Gieres, Covariant canonical formulations of classical field theories, arXiv:2109.07330v4

N. Román-Roy, *Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories*, Symmetry, Integrability and Geometry. Methods and Applications 5, 25 p. (2009)

L. Ryvkin and T. Wurzbacher, *An invitation to multisymplectic geometry*, Journal of Geometry and Physics **142**, 9-36 (2019)

L. Ryvkin, *Darboux type theorems in multisymplectic geometry*, arXiv:2503.03672v3

V. Volterra, Sulle equazioni differenziali che provengono da questioni di calcolo delle variazioni, Rom. Acc. L. Rend. (4) VI, No. 1, 43-54 (1890).

Maxime Wagner and Tilmann Wurzbacher, *Notes on equivalent formulations of Hamiltonian dynamics on multicotangent bundles*, in "Geometric methods in Physics XLI Workshop, Białystok, Poland" (Eds. P. Kielanowski, T. Goliński, D. Fernández, A. Dobrogowska), Springer, 193-212 (2025); arXiv:2410.21068v2

Maxime Wagner and Tilmann Wurzbacher, *Hamiltonian* dynamics and geometry on the two-plectic six-sphere, Journal of Symplectic Geometry (to appear); arXiv:2502.00756v1