Borel-Laplace resummation and a wavelet-based method for the incompressible Navier–Stokes equation

S. Kadri-Harouna

Laboratoire de Mathématiques, Image et Applications (MIA) Avenue Michel Crépeau, 17042 La Rochelle

Joint work with Aziz Hamdouni and Dina Razafindralandy, LaSIE (La Rochelle University, France).

1 Introduction and motivation

1 Introduction and motivation

2 Navier-Stokes resolution with time series decomposition

- Introduction and motivation
- 2 Navier-Stokes resolution with time series decomposition
- 3 Divergence free wavelet and Helmholtz-Hodge decomposition

- Introduction and motivation
- 2 Navier-Stokes resolution with time series decomposition
- 3 Divergence free wavelet and Helmholtz-Hodge decomposition
- 4 Divergence-free wavelet-based time series resummation method

- Introduction and motivation
- 2 Navier-Stokes resolution with time series decomposition
- 3 Divergence free wavelet and Helmholtz-Hodge decomposition
- Divergence-free wavelet-based time series resummation method
- 5 Preliminary numerical results.

Introduction and motivation

Turbulent flow simulation:

- Parameters depend on Reynolds number: $Re^{\frac{9}{4}}$ in 3d and $Re^{\frac{6}{4}}$ in 2d.
- Large CPU ressources and computation times.

Numerical methods:

- Spectral methods: fast, efficient, effective ≠ physical boundary conditions.
- Finite element method, finite volume method or finite difference method: complex geometries ≠ expensive in time and CPU memory.
- . .

Introduction and motivation

Turbulent flow simulation:

- Parameters depend on Reynolds number: $Re^{\frac{9}{4}}$ in 3d and $Re^{\frac{6}{4}}$ in 2d.
- Large CPU ressources and computation times.

Numerical methods:

- Spectral methods: fast, efficient, effective ≠ physical boundary conditions.
- Finite element method, finite volume method or finite difference method: complex geometries ≠ expensive in time and CPU memory.
- ...
- — Competitive methods in Lagrangian formulation.

Introduction and motivation

Turbulent flow simulation:

- Parameters depend on Reynolds number: $Re^{\frac{9}{4}}$ in 3d and $Re^{\frac{6}{4}}$ in 2d.
- Large CPU ressources and computation times.

Numerical methods:

- Spectral methods: fast, efficient, effective ≠ physical boundary conditions.
- Finite element method, finite volume method or finite difference method: complex geometries ≠ expensive in time and CPU memory.
- ...
- — Competitive methods in Lagrangian formulation.

Objective: High-order method in both time and space, with lowest numerical cost.

Incompressible Navier Stokes equations

$$\begin{cases} \partial_{t}\mathbf{v} - \nu\Delta\mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p = \mathbf{f}, & \mathbf{x} \in \Omega \subset \mathbb{R}^{d}, & t > 0, \\ \nabla \cdot \mathbf{v} = 0, & \mathbf{x} \in \Omega \subset \mathbb{R}^{d}, \\ + Boundary & conditions. \end{cases}$$
(1)

where \mathbf{v} is the fluid velocity field, \mathbf{p} the pressure and \mathbf{v} the kinematic viscosity.

Boundary conditions:

```
Periodic, Free-slip \to \mathbf{v} \cdot \mathbf{n} = 0, No-slip \to \mathbf{v}|_{\partial\Omega} = 0, Dirichlet \to \mathbf{v}|_{\partial\Omega} = g.
```

 \longrightarrow The unknowns are the velocity **v** and the pressure **p**.

Navier-Stokes resolution with time series decomposition

The unknowns \mathbf{v} , \mathbf{p} and the force \mathbf{f} are supposed to be formal series in time t:

$$\mathbf{v}(t,\mathbf{x}) = \sum_{n=0}^{+\infty} t^n \mathbf{v}^n(\mathbf{x}), \qquad p(t,\mathbf{x}) = \sum_{n=0}^{+\infty} t^n p^n(\mathbf{x}), \qquad \mathbf{f}(t,\mathbf{x}) = \sum_{n=0}^{+\infty} t^n \mathbf{f}^n(\mathbf{x}). \quad (2)$$

Inserting these expressions into equation (1), we obtain:

$$\begin{cases} (n+1)\mathbf{v}^{n+1} + \sum_{k=0}^{n} (\mathbf{v}^{k} \cdot \nabla)\mathbf{v}^{n-k} + \nabla p^{n} = \nu \Delta \mathbf{v}^{n} + \mathbf{f}^{n}, \\ \nabla \cdot \mathbf{v}^{n+1} = 0. \end{cases}$$
(3)

For each n, both p^n and \mathbf{v}^{n+1} must be computed.

→ The series in equation (2) do not necessarily converge.

Navier-Stokes resolution with time series decomposition

Projection method allows to decouple the computation of \mathbf{v}^n from p^n :

$$\begin{cases} (n+1)\tilde{\mathbf{v}}^{n+1} + \sum_{k=0}^{n} (\mathbf{v}^{k} \cdot \nabla)\mathbf{v}^{n-k} = \nu \Delta \mathbf{v}^{n} + \mathbf{f}^{n}, \\ (n+1)(\mathbf{v}^{n+1} - \tilde{\mathbf{v}}^{n+1}) + \nabla p^{n} = 0. \end{cases}$$
(4)

The intermediate velocity $\tilde{\mathbf{v}}^{n+1}$ is not necessarily divergence-free and in practice, the computation of \mathbf{v}^{n+1} leads to Poisson equation:

$$\frac{1}{n+1}\Delta p^n = \nabla \cdot \tilde{\mathbf{v}}^{n+1} \neq 0, \quad \nabla p^n \cdot \mathbf{n} = 0 \quad \text{and} \qquad \nabla p^n \cdot \mathbf{t} = 0 \quad \text{on} \quad \partial \Omega. \tag{5}$$

where $\bf n$ and $\bf t$ are the unit normal and the unit tangent to $\partial \Omega$, respectively.

- → Poisson solver can't incorporate both boundary conditions of (5).
- \longrightarrow **Another objective:** change the projection step in (5), using divergence-free wavelet basis, to project $\tilde{\mathbf{v}}^{n+1}$ onto:

$$\mathcal{H}_{div}(\Omega) = \{ \mathbf{v} \in (L^2(\Omega))^d : \ \nabla \cdot \mathbf{v} = 0, \ \mathbf{v} \cdot \mathbf{n} = 0 \}, \ \mathcal{H}_{div,0}(\Omega) \to \mathbf{v}|_{\partial\Omega} = 0.$$

Principle of the divergence-free wavelet construction

- (i) Starting with 1D regular biorthogonal MRA of $L^2(0,1)$: (V_j^1, \tilde{V}_j^1) .
- (ii) Construct a 1D biorthogonal MRA (V_i^0, \tilde{V}_i^0) linked to (V_i^1, \tilde{V}_i^1) by:

$$\frac{d}{dx}V_j^1 = V_j^0$$
 and $\frac{d}{dx}\tilde{V}_j^0 = \tilde{V}_j^1$

(iii) Construct the divergence-free multiresolution analysis by:

$$\mathbf{V}_j^{div} = \mathbf{curl}[V_j^1 \otimes V_j^1]$$

$$\longrightarrow div[curl(u)] = 0$$
 and $curl[grad(u)] = 0$

Biorthogonal wavelet basis (BMRA) of $L^2(\mathbb{R})$.

- $\cdots V_0 \subset \cdots \subset V_j \subset V_{j+1} \cdots \subset L^2(\mathbb{R}), \quad \cap V_j = \{0\}$
- $\forall j, V_j = \text{span} < \varphi_{j,k} = 2^{\frac{j}{2}} \varphi(2^j x k), k \in \mathbb{Z} > \varphi \text{ scaling function}).$
 - ightarrow There is another sequence $ilde{V}_j$ with the same structure.
- $\bullet \quad \cdots \tilde{V}_0 \subset \cdots \subset \tilde{V}_j \subset \tilde{V}_{j+1} \cdots \subset L^2(\mathbb{R}), \quad \cap \tilde{V}_j = \{0\}$
- $\forall j, \ \tilde{V}_j = \operatorname{span} < \tilde{\varphi}_{j,k} = 2^{\frac{j}{2}} \tilde{\varphi}(2^j x k), \ k \in \mathbb{Z} > \ (\tilde{\varphi} \text{ dual scaling function}).$

Biorthogonality means:

• $\forall j, \ L^2(\mathbb{R}) = V_j \oplus \tilde{V}_j^{\perp} \Leftrightarrow \langle \varphi_{j,k}, \tilde{\varphi}_{j,k'} \rangle = \delta_{k,k'}$

◆母 > ∢ ≧ > ∢ ≧ > りへ○

Biorthogonal wavelet basis

Biorthogonal wavelet basis:

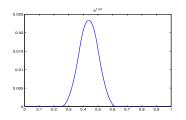
- ullet Basis for the detail spaces: $W_j = V_{j+1} \cap ilde{V}_j^\perp$ and $ilde{W}_j = ilde{V}_{j+1} \cap V_j^\perp$.
- $W_j = \operatorname{span} < \psi_{j,k} = 2^{\frac{j}{2}} \psi(2^j x k), \ k \in \mathbb{Z} >$ $(\psi \text{ wavelet generator})$
- \longrightarrow The space $ilde{W}_j$ has the same structure (with $ilde{\psi}$ dual wavelet generator)

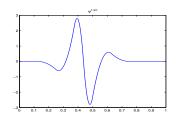
Finite dimensional spaces on [0,1]:

$$\#V_j = \#\tilde{V}_j = I_j < +\infty$$
 and $\#W_j = \#\tilde{W}_j = 2^j$

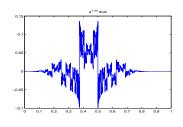
Biorthogonal B-Spline wavelets (3 vanishing moments)

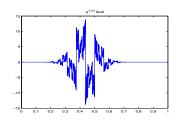
Primal scaling function (left) and associated wavelet (right):





Dual scaling function (left) and associated wavelet (right):





- Start with (V_i^1, \tilde{V}_i^1) regular MRA of $L^2(0,1)$ associated to $(\varphi^1, \tilde{\varphi}^1)$.
- Polynomial reproduction at boundaries 0 and 1:

$$0 \leq \ell \leq r-1, \quad \frac{2^{j/2}(2^{j}x)^{\ell}}{\ell!} = \Phi_{j,\ell}^{1,\flat}(x) + \sum_{k=k_0}^{2^{j}-k_1} p_{\ell}^{1}(k) \ \varphi_{j,k}^{1}(x) + \Phi_{j,\ell}^{1,\sharp}(1-x)$$

with $\varphi_{j,k}$ internal scaling functions, $\Phi_{j,\ell}^{1,\flat}$ and $\Phi_{j,\ell}^{1,\sharp}$ the edge scaling functions.

• Similar structure for \tilde{V}^1_j with $\tilde{\varphi}_{j,k}$, $\tilde{\Phi}^{1,\flat}_{j,\ell}$ and $\tilde{\Phi}^{1,\sharp}_{j,\ell}$.

• Homogeneous boundary conditions:

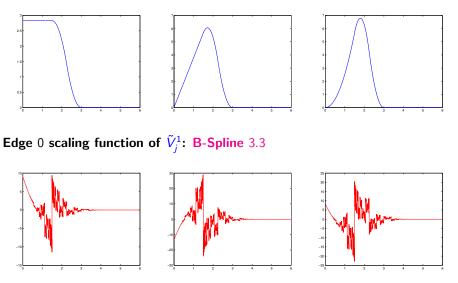
-
$$f^{(\lambda)}(\alpha) = 0$$
 for $0 \le \lambda \le r - 1$ and $\alpha = 0$ ou $\alpha = 1$

• It suffices to remove from V_j^1 , the scaling functions:

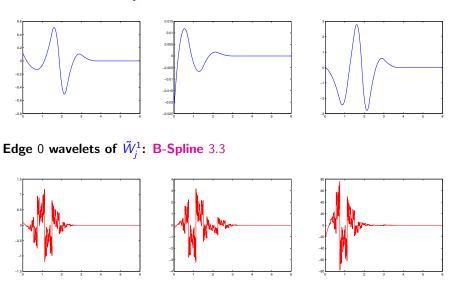
-
$$\{\Phi_{j,\ell}^{1,\flat}\}_{\ell=\lambda+1}$$
 if $\alpha=0$ or $\{\Phi_{j,\ell}^{1,\sharp}\}_{\ell=\lambda+1}$ if $\alpha=1$

- ullet The dual space dimension must be adjusted $ilde{V}_j^1$:
- One can proceed similarly for $ilde{V}_j^1$.

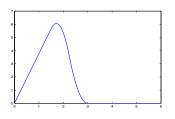
Edge 0 scaling function of V_j^1 : B-Spline 3.3

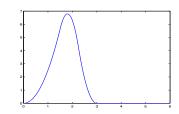


Edge 0 wavelets of W_i^1 : B-Spline 3.3

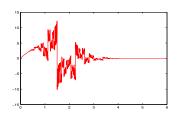


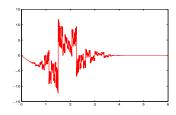
Edge 0 scaling functions with Dirichlet: B-Spline 3.3



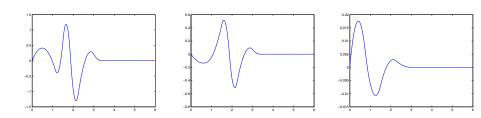


Edge 0 dual scaling functions with Dirichlet: B-Spline 3.3

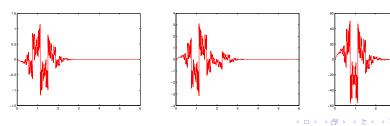




Edge 0 wavelets with Dirichlet: B-Spline 3.3



Edge 0 dual wavelets with Dirichlet: B-Spline 3.3



Wavelet basis for $\mathcal{H}_{div}(\Omega)$

• Divergence-free Multiresolution Analysis $\mathbb{V}_{j}^{\mathit{div}}$:

$$\mathbb{V}_{j}^{div} = \operatorname{span} < \Phi_{j,\mathbf{k}}^{div}; \ \mathbf{k} \in \mathbb{Z}^{2} >, \quad j \in \mathbb{Z}$$

• Divergence-free scaling functions:

$$\begin{array}{ll} \boldsymbol{\Phi}_{j,\mathbf{k}}^{\textit{div}} &= & \mathbf{curl}[\varphi_{j,k_1}^1 \otimes \varphi_{j,k_2}^1] = \left| \begin{array}{c} \varphi_{j,k_1}^1 \otimes (\varphi_{j,k_2}^1)' \\ -(\varphi_{j,k_1}^1)' \otimes \varphi_{j,k_2}^1 \end{array} \right| \end{array}$$

$$(\mathsf{As}: \tfrac{d}{d\mathsf{x}} V_j^1 = V_j^0) \\ \longrightarrow \ \mathbb{V}_i^{\mathit{div}} = (V_i^1 \otimes V_i^0) \times (V_i^0 \otimes V_i^1) \cap \mathcal{H}_{\mathit{div}}(\Omega) \ \longrightarrow \ \mathsf{FWT}!$$

Anisotropic divergence-free wavelets:

$$\Psi^{\textit{div}}_{\mathbf{j},\mathbf{k}} = \mathbf{curl}[\psi^1_{j_1,k_1} \otimes \psi^1_{j_2,k_2}] = \begin{vmatrix} 2^{j_2} \psi^1_{j_1,k_1} \otimes \psi^0_{j_2,k_2} \\ -2^{j_1} \psi^0_{j_1,k_1} \otimes \psi^1_{j_2,k_2} \end{vmatrix} \quad (\psi^0_{j,k} = 2^{-j} (\psi^1_{j,k})')$$

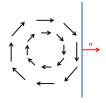
$$\mathbf{j} = (j_1, j_2), \ \mathbf{k} = (k_1, k_2) \in \mathbb{Z}^2.$$

ロト 4 団 ト 4 重 ト 4 重 - りへで

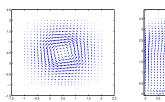
Wavelet basis for $\mathcal{H}_{div}(\Omega)$

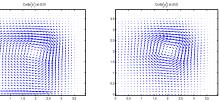
Boundary conditions for $\mathcal{H}_{div}(\Omega)$

- Free-slip: $V_j^d = V_j^1 \cap H_0^1(0,1) \longrightarrow \Phi_{j,\mathbf{k}}^{div} \cdot \vec{\mathbf{n}} = 0$
- ullet No-slip: $V_j^d=V_j^1\cap H_0^2(0,1)\longrightarrow \Phi_{j,m{k}}^{div}|_{m{\Gamma}}=0$

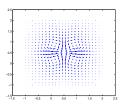


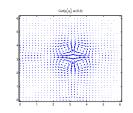
Example of free-slip generators

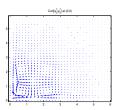




- (a) Div-free scaling int (b) Div-free scaling edge (c) Div-free scaling edge







- (d) Div-free wavelet int (e) Div-free wavelet edge (f) Div-free wavelet edge
- $\cdot \vec{\mathbf{n}} = 0$ and $\Psi_{\cdot \cdot \cdot \cdot \cdot}^{div} \cdot \vec{\mathbf{n}} = 0$

Helmholtz-Hodge decomposition

Practical computation:

$$\mathbf{u} = \mathbf{u}_{div} + \mathbf{u}_{curl} + \mathbf{u}_{har} = \mathbf{u}_{div} + \nabla q$$
.

Then:

$$\langle \textbf{u}, \Psi_{\textbf{j},\textbf{k}}^{\textit{div}} \rangle = \langle \textbf{u}_{\textit{div}}, \Psi_{\textbf{j},\textbf{k}}^{\textit{div}} \rangle$$

Searching **u**_{div} in the divergence-free form:

$$\mathbf{u}_{div} = \sum_{\mathbf{j},\mathbf{k}} d_{\mathbf{j},\mathbf{k}}^{div} \ \Psi_{\mathbf{j},\mathbf{k}}^{div}$$

leads to:

$$(d_{\mathbf{j},\mathbf{k}}^{div}) = \mathbb{M}_{div}^{-1}(\langle \mathbf{u}, \Psi_{\mathbf{j},\mathbf{k}}^{div} \rangle)$$

 \mathbb{M}_{div} : Gram matrix of the basis $\{\Psi_{\mathbf{i},\mathbf{k}}^{div}\}$.

→ In the periodic case, one can use the Fourier basis!

Divergence-free wavelet time series resummation method Helmholtz-Hodge decomposition

$$\tilde{\mathbf{v}}^{n+1} = \mathbf{v}^{n+1} + \nabla \xi^{n+1}, \text{ with } \tilde{\mathbf{v}}^{n+1} \in (H_0^1(\Omega))^d.$$

• Prediction step:

$$\tilde{\mathbf{v}}^{n+1} + \sum_{k=0}^{n} (\mathbf{v}^{k} \cdot \nabla) \mathbf{v}^{n-k} = \nu \Delta \mathbf{v}^{n} + \mathbf{f}^{n}, \qquad \tilde{\mathbf{v}}^{n+1} = 0, \text{ on } \partial \Omega.$$
 (6)

Correction step:

$$\mathbf{v}^{n+1} = \mathbb{P}^{div,0}(\tilde{\mathbf{v}}^{n+1}). \tag{7}$$

— Consistent splitting and resummation is used to achieve convergence of:

$$\mathbf{v}(t,\mathbf{x}) = \sum_{n=0}^{+\infty} t^n \mathbf{v}^n(\mathbf{x}).$$

Borel-Laplace resummation

Let us assume that \mathbf{v}^n is Gevrey, ie, there is C, A > 0 such that:

$$\forall n \geq 0, \quad \|\mathbf{v}^n\| \leq CA^n n!. \tag{8}$$

The resummation consists first to calculate this Borel transform:

$$\mathcal{B}\mathbf{v}(\xi) = \sum_{l=0}^{\infty} B^l \xi^l \quad \text{with} \quad B^l = \frac{\mathbf{v}^{l+1}}{l!}, \quad l \ge 0.$$
 (9)

This serie converges at the origin and it is then analytically extended to a function $P(\xi)$. Finally, one applies the Laplace transform to $P(\xi)$ as 1/t, which is the formal inverse of the Borel transform. This gives the following representation of $\mathbf{v}(t)$:

$$S\mathbf{v}(t) = \mathbf{v}^0 + \int_0^{+\infty} P(\xi)e^{-\xi/t}d\xi.$$

Borel-Laplace resummation

Table: Borel-Laplace summation

In practice, the coefficients \mathbf{v}^n are only known up to a finite order N, then we have an approximation to order N of $S\mathbf{v}(t)$ valid for $t \in [0, \delta t]$, for a certain $\delta t > 0$.

Vortex Merging-2D

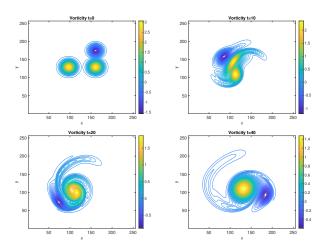


Figure: Vorticity contour, for $\nu = 1.8182 \times 10^{-5}$ and j = 8.

Vortex tubes collision-3D

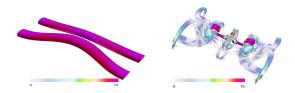


Figure: Vorticity snapshot: Q-criterion for j = 7.

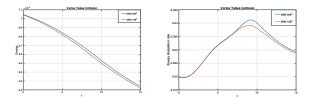


Figure: Evolution of the energy and its dissipation rate, $\nu_{c} = 4.5473 \times 10^{-5}$.

Thank you!