Least-squares pressure recovery in ROM for incompressible flows

Mejdi Azaïez

In collaboration with Tomás Chacón, Mourad Oulghelou, Isabel Sánchez

CFM 2025, Metz, August. 25-29, 2025

Contents

- 1 Motivation: the need of pressure recovery.
- **2** The least-squares procedure.
- 3 Analysis: well possedness.
- 4 Error estimates for evolution Navier-Stokes.
- 5 Numerical tests

Outline

- 1 Motivation
- 2 Least squares pressure recovery
- 3 Error estimates
- 4 Numerical results

Motivation: the need of pressure recovery in ROMs

- In Reduced Order Modelling of incompressible flows it is a common practice to use weakly divergence-free velocities, thus dropping the pressure from the equations.
- Knowing the pressure is needed for a number of applications: calculation of forces on walls or immersed boundaries, code/model calibration with pressure data.
- There basically are two techniques to recover the reduced pressure once the reduced velocity is known:
 - Poisson pressure equation (PPE). It is obtained as the divergence of the momentum conservation equation.
 - Momentum equation recovery (MEQ). The momentum conservation equation is directly considered as an equation for the pressure.

Fast survey of pressure recovery procedures

Both methods come from the momentum equation written as

$$\nabla \mathbf{p} = -\partial_t \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u} + \mu \Delta \mathbf{u} + \mathbf{f}.$$

Poisson pressure equation (PPE) (Noack, Papas, Monkewitz, 2005):

$$-\Delta p = \nabla \cdot (\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \mu \Delta \mathbf{u} - \mathbf{f}), \text{ or } -\Delta p = \nabla \cdot (\mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{f}).$$

- Solved by Galerkin method on reduced pressure space.
- Boundary conditions are needed.
 - If no terms are dropped, the natural condition

$$\nabla p \cdot \mathbf{n} = -(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \mu \Delta \mathbf{u} + \mathbf{f}) \cdot \mathbf{n}$$
 holds

Fast survey of pressure recovery procedures

Notation: X_h , M_h : FO spaces. X_r , M_r : Reduced spaces.

Momentum equation recovery (MEQ) (Rovas &Patera, 2004, Kean & Schneier, 2020):

Look for $p_r \in M_r$ such that

$$(\mathbf{p}_r, \nabla \cdot \mathbf{v}_r) = (\partial_t \, \mathbf{u}_r + \mathbf{u}_r \cdot \nabla \mathbf{u}_r, \nabla \mathbf{v}_r) + \mu(\nabla \mathbf{u}_r, \nabla \mathbf{v}_r) - \langle \mathbf{f}, \mathbf{v}_r \rangle, \quad \forall \mathbf{v}_r \in \mathbf{S}_r.$$

QUEL CHOIX POUR S,

The pressure gradient supremizers are added to the original velocity space to achieve the inf-sup condition for reduced (enriched velocity, pressure M_r) spaces: For any basis function q_r of M_r , find $s_r \in X_h$ such that

$$(\mathbf{s}_r, \mathbf{v}_h)_{H^1(\Omega)} = -(\nabla \cdot \mathbf{v}_r, \mathbf{q}_r), \quad \forall \mathbf{v}_h \in \mathbf{X}_h.$$

• s_r (the "supremizer") is the representation of ∇q_r (eventually + b. c.) on X_h by the Theorem of Riesz.

Outline

- 1 Motivation
- 2 Least squares pressure recovery
- 3 Error estimates
- 4 Numerical results

Least squares procedure: Tools

• Gradient operator "au sens faible/distribution" $G: M_h \mapsto \mathbf{H}^{-1}(\Omega)$ given by

$$\langle G q_h, \mathbf{v}_h \rangle = -(\nabla \cdot \mathbf{v}_h, q_h)_0, \quad \forall q_h \in M_h, \, \forall \mathbf{v}_h \in \mathbf{X}_h. \tag{1}$$

Note that $\langle G q_h, \mathbf{v}_h \rangle = \langle \nabla q_h, \mathbf{v}_h \rangle - \int_{\Gamma_N} q_h \mathbf{v}_h \cdot \mathbf{n}$ and thus, if $\Gamma_N = \emptyset$, the operator G would be the gradient operator "au sens faible".

• Riesz representation : $\Pi_h^{(k)}$: $\mathbf{H}^{-1}(\Omega) \mapsto \mathbf{X}_h$ defined by

$$(\Pi_h^{(k)}\varphi, \mathbf{v}_h)_k = \langle \varphi, \mathbf{v}_h \rangle, \quad \forall \varphi \in \mathbf{H}^{-1}(\Omega), \forall \mathbf{v}_h \in \mathbf{X}_h, \text{ for either } k = 0 \text{ or } k = 1.$$
 (2)

Observe that from (2) and (1),

$$(\Pi_h^{(k)}(G\,q_h),\mathbf{v}_h)_k=-(\nabla\cdot\mathbf{v}_h,q_h)_0,\quad\forall q_h\in M_h,\,\forall \mathbf{v}_h\in \mathbf{X}_h.$$

Least squares procedure : Formulation

We propose to obtain the pressure by minimisation of the dual discrete norm of the residual,

$$\frac{p_r}{q_r \in M_r} = \arg \min_{\boldsymbol{q}_r \in M_r} J(\boldsymbol{q}_r) := \|G\boldsymbol{q}_r - T(\boldsymbol{u}_r)\|_{\boldsymbol{X}_h'}^2,$$

where $T(\mathbf{u}) = -(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \mu \Delta \mathbf{u} - \mathbf{f})$.

• The norm in X'_h is computed via a Riesz representation operator:

$$p_r = \arg\min_{\boldsymbol{q}_r \in M_r} J(\boldsymbol{q}_r) := \|\Pi_h^{(k)} \left(G \, \boldsymbol{q}_r - T(\boldsymbol{u}_r) \right)\|_k^2, \tag{3}$$

• $\Pi_h^{(k)}$ is a supremizer (rather maximizer) operator:

$$\|\Pi_{h}^{(k)}\varphi\|_{H^{k}(\Omega)} = \max_{\mathbf{v}_{h}\in\mathbf{X}_{h}} \frac{(\Pi_{h}^{(k)}\varphi,\mathbf{v}_{h})_{H^{k}(\Omega)}}{\|\mathbf{v}_{h}\|_{H^{k}(\Omega)}} = \max_{\mathbf{v}_{h}\in\mathbf{X}_{h}} \frac{\langle \varphi,\mathbf{v}_{h}\rangle}{\|\mathbf{v}_{h}\|_{H^{k}(\Omega)}}$$
$$\implies \|\Pi_{h}^{(k)}\varphi\|_{H^{k}(\Omega)} = \|\varphi\|_{\mathbf{X}_{h}'}$$

Least squares procedure

If the FOM (velocity, pressure) spaces satisfy an inf-sup condition, then the pressure recovery problem admits a unique solution.

• It satisfies the normal equations,

$$(\Pi_h^{(k)}(\nabla p_r) - \Pi_h^{(k)}T(\mathbf{u}_r), \Pi_h^{(k)}(\nabla q_r))_{H^k(\Omega)} = 0, \forall q_r \in M_r.$$

• It is equivalent to a linear system, that is assembled in the off-line stage.

Algebraic expression of pressure recovery problem

- Let $\{\phi_i\}_{i=1}^{n_h}$ be a basis of X_h ,
- Let $\{\psi_i\}_{i=1}^{n_r}$ be a basis of M_r ,

then problem (10) is equivalent to : Find $p_r = \sum_{i=1}^{m} p_i \psi_i \in M_r$ s. t.

 $\vec{p} \in \mathbb{R}^{n_r}$ with $(\vec{p})_i = p_i$ is the solution of the linear system:

$$\mathcal{M}\vec{p} = \vec{r}$$
 with $\mathcal{M} = \mathcal{B}\mathcal{G}^{-1}\mathcal{B}^t$ and $\vec{r} = \mathcal{B}\mathcal{G}^{-1}\vec{R}$, (4)

where

$$\mathcal{B} \in \mathbb{R}^{n_r \times n_h} : \mathcal{B}_{ij} = -(\nabla \cdot \phi_j, \psi_i),$$
 $\mathcal{G} \in \mathbb{R}^{n_h \times n_h} : \mathcal{G}_{ij} = (\phi_j, \phi_i)_{H^k(\Omega)}$
 $\vec{R} \in \mathbb{R}^{n_h} : \vec{R}_i = \langle T(\mathbf{u}_t), \phi_i \rangle.$

The pressure gradient supremisers revisited

The supremisers procedure consists in solving the mixed problem (we consider the Stokes problem with homogeneous Dirichlet b. c.)

$$\begin{cases} \textit{Find } \mathbf{u}_r \in \mathbf{X}_r \text{ and } p_r \in M_r \text{ such that} \\ (\nabla \mathbf{u}_r, \nabla \mathbf{v}_r) - (\nabla \cdot \mathbf{v}_r, p_r) = \langle \mathbf{f}, \mathbf{v}_r \rangle, \quad \forall \mathbf{v}_r \in \mathbf{X}_r, \\ (\nabla \cdot \mathbf{u}_r, q_r) = 0, \quad \forall q_r \in M_r, \end{cases}$$

where the velocity space X_r has been enriched with the pressure gradient supremisers:

$$X_r = S_r \oplus X_{0r},$$

with

$$m{S}_r = \{\Pi_h^{(k)}(
abla q_r) \text{ such that } q_r \in M_r\} \subset m{X}_h,$$
 $m{X}_{0r} = \{m{v}_h \in m{X}_r \text{ such that } (
abla \cdot m{v}_r, q_r) = 0, \, orall q_r \in M_r\}.$

The pressure gradient supremizers revisited

The mixed problem is equivalent to the sequence of two problems

$$(\nabla \boldsymbol{u}_r, \nabla \boldsymbol{v}_r) = \langle \boldsymbol{f}_r, \, \boldsymbol{v}_{0r} \rangle, \quad \forall \, \boldsymbol{v}_{0r} \in \boldsymbol{X}_{0r};$$

$$(\Pi_h^{(k)}(\nabla p_r), \, \Pi_h^{(k)}(\nabla q_r))_{H^k(\Omega)} = (\Pi_h^{(k)}(T(\boldsymbol{u}_r)), \Pi_h^{(k)}(\nabla q_r))_{H^k(\Omega)}, \, \forall \, \boldsymbol{q}_r \in M_r,$$
 with $\boldsymbol{u}_r \in \boldsymbol{X}_{0r}, \, p_r \in M_r.$

That is, the pressure obtained by the supremisers procedure is the one obtained by the least-squares procedure.

• This also occurs for the full-order solution.

Outline

- 1 Motivation
- 2 Least squares pressure recovery
- 3 Error estimates
- 4 Numerical results

Error estimates

Theorem

Assuming that the discrete inf-sup condition holds, then the pressure obtained by the least-squares recovery procedure satisfies

$$\|p_h-p_r\|_0 \leq C_h\left(d_{L^2(\Omega)}(p_h,M_r)+\|T(\mathbf{u}_h)-T(\mathbf{u}_r)\|_{\mathbf{H}^{-1}(\Omega)}\right),$$

where

If k=0, C_h is the smallest constant appearing in the inverse estimate $\|\nabla \mathbf{v}_h\|_0 \le C_h \|\mathbf{v}_h\|_0$, $\forall \mathbf{v}_h \in \mathbf{X}_h$. If k=1, C_h is independent of h

Error estimates for unsteady Navier-Stokes

Assuming that the incompressible flow takes place during a time interval [0, T], we consider the problem

Find a velocity field $\mathbf{u}(\mu): \Omega \times (0,T) \to \mathbb{R}^d$ and a pressure $\mathbf{p}(\mu): \Omega \times (0,T) \to \mathbb{R}$ such that

$$\begin{cases} \partial_{t} \mathbf{u}(\mu) + \mathbf{u}(\mu) \cdot \nabla \mathbf{u}(\mu) - \mu \Delta \mathbf{u}(\mu) + \nabla p(\mu) = \mathbf{f} & \text{in } \Omega \times (0, T), \\ \nabla \cdot \mathbf{u}(\mu) = 0 & \text{in } \Omega \times (0, T), \\ \mathbf{u}(\mu) = \mathbf{0} & \text{on } \Gamma_{D} \times (0, T), \\ -\mu \nabla \mathbf{u}(\mu) \cdot \mathbf{n} + p(\mu)\mathbf{n} = 0 & \text{on } \Gamma_{N} \times (0, T), \\ \mathbf{u}(\mu, 0) = \mathbf{u}_{0}, & \text{in } \Omega, \end{cases}$$
(5)

where \mathbf{u}_0 is a initial field velocity given.

We consider the implicit Euler time discretization of problem (5) with constant time-step size $\Delta t = T/N$: Given the initialization $\mathbf{u}^0(\mu) = u_0$.

$$\begin{cases} \textit{Find } \mathbf{u}^{n}(\mu) \in \mathbf{H}^{1}_{D}(\Omega) \textit{ and } \mathbf{p}^{n}(\mu) \in L^{2}_{0}(\Omega) \textit{ such that} \\ a(\mathbf{u}^{n}(\mu), \mathbf{u}^{n}(\mu), \mathbf{v}; \mu) - (\nabla \cdot \mathbf{v}, \mathbf{p}^{n}(\mu)) = \langle \mathbf{f}^{n}, \mathbf{v} \rangle, \quad \forall \mathbf{v} \in \mathbf{H}^{1}_{D}(\Omega), \\ (\nabla \cdot \mathbf{u}^{n}(\mu), q) = 0 \quad \forall q \in L^{2}_{0}(\Omega), \\ \forall n = 1, 2, \dots N. \end{cases}$$

$$(6)$$

where
$$\mathbf{f}^n = \mathbf{f} + \frac{1}{\Delta t} \mathbf{u}^{n-1}$$
.

We consider FE FOM and ROM approximations,

- FOM approximation : $(\boldsymbol{u}_h^n(\mu), \boldsymbol{p}_h^n(\mu)) \in \boldsymbol{X}_h \times \boldsymbol{M}_h$ such that

$$\begin{cases}
a(\boldsymbol{u}_{h}^{n}(\mu), \boldsymbol{u}_{h}^{n}(\mu), \boldsymbol{v}_{h}; \mu) - (\nabla \cdot \boldsymbol{v}_{h}, \boldsymbol{p}_{h}^{n}(\mu)) = \langle \boldsymbol{f}_{h}^{n}, \boldsymbol{v}_{h} \rangle, & \forall \boldsymbol{v}_{h} \in \boldsymbol{X}_{h}, \\
(\nabla \cdot \boldsymbol{u}_{h}^{n}(\mu), \boldsymbol{q}_{h}) = 0 & \forall \boldsymbol{q}_{h} \in \boldsymbol{M}_{h},
\end{cases} (7)$$

- ROM aproximations : $(\boldsymbol{u}_r^n(\mu), \boldsymbol{p}_r^n(\mu)) \in \boldsymbol{X}_r \times \boldsymbol{M}_r$, where the reduced velocity $\boldsymbol{u}_r^n(\mu)$ is computed by problem

$$a(\boldsymbol{u}_r^n(\mu), \boldsymbol{u}_r^n(\mu), \boldsymbol{v}_r; \mu) = \langle \boldsymbol{f}_r^n, \boldsymbol{v}_r \rangle, \quad \forall \, \boldsymbol{v}_r \in \boldsymbol{X}_r,$$
(8)

where the reduced pressure $p_r^n(\mu)$ is recovered from the reduced velocity by the L-S method (10).

To obtain error estimates for the reduced pressure we introduce the following discrete functions (we omit the dependency on the parameters for brevity):

- $lackbox{\textbf{u}}_h:[0,T]
 ightarrow oldsymbol{X}_h$ is the piecewise linear in time function such that $oldsymbol{u}_h(t_n) = oldsymbol{u}_h^n$.
- $\mathbf{u}_r:[0,T]\to \mathbf{X}_r$ is the piecewise linear in time function such that $\mathbf{u}_r(t_n)=\mathbf{u}_r^n$.
- $ightharpoonup p_r: [0,T] o M_r$ is the piecewise constant in time function that takes the value p_r^n on (t_{n-1},t_n) .

Theorem

Assume that the pair of spaces (X_h, M_h) satisfy the discrete inf-sup condition, then

• If k = 0,

$$\|p_h - p_r\|_{L^1(L^2(\Omega))} \le C_h \left(d_{L^1(L^2(\Omega))}(p_h, M_r) + \|\mathbf{u}_h - \mathbf{u}_r\|_{L^2(\mathbf{H}^1_D(\Omega))}\right),$$

• If k = 1,

$$\begin{split} \| p_h - \mathbf{p}_r \|_{L^1(L^2(\Omega))} &\leq C \left(d_{L^1(L^2(\Omega))}(p_h, M_r) + \| \mathbf{u}_h - \mathbf{u}_r \|_{L^2(\mathbf{H}^1_D(\Omega))} + \\ &+ \| D_t(\mathbf{u}_h - \mathbf{u}_r) \|_{L^1(\mathbf{H}^{-1}(\Omega))} \right), \end{split}$$

where
$$D_t \mathbf{v} = \frac{1}{\Delta t} (\mathbf{v}(t_n) - \mathbf{v}(t_{n-1})).$$

Outline

- 1 Motivation
- 2 Least squares pressure recovery
- 3 Error estimates
- 4 Numerical results

Flow past a cylinder Re = 100.

We have tested the LS pressure recovery using the velocity computed with a POD solution of two academic flows.

- **Test 1:** Flow past a cylinder at Re = 100.
 - The flow is considered in a channel of rectangular shape with height H=30D and length 45D, with a cylindric hole of diameter D placed at $L_1=10D$ from the left boundary and H/2 from the bottom wall.
 - At the inflow boundary, a horizontal velocity is imposed. On the remaining boundaries, we set a free-slip condition on the horizontal walls, a no-slip condition on the cylinder, and a normal stress free condition on the outflow boundary to allow the fluid to exit through the outlet of the channel.

Flow past a cylinder Re = 100.

- Regarding the computational aspects, we use a space-time discretizations consisting of a non-uniform triangular mesh made of 21174 cells, and a first order semi-implicit Euler integration scheme of step $\Delta t = 10^{-2}$.
- The resulting flow shows a creation of alternating low-high pressure vortices downstream the cylinder, triggering the generation of periodic Von Karman vortex pattern in the wake region.

Flow past a cylinder Re = 100: Example of snapshot

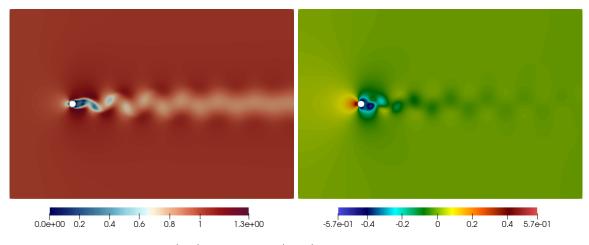


Figure: High fidelity velocity (left) and pressure (right) solutions of the flow past a cylinder, Re = 100

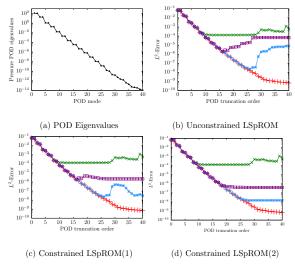
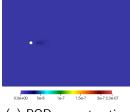
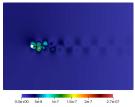


Figure: Pressure errors for the flow past a cylinder at Re = 100.

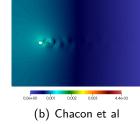
Flow past a cylinder Re = 100: Errors behaviors

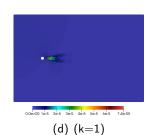


(a) POD reconstruction



(c) (k=0)





Flow in a lid driven cavity Re = 10000

- **Test 2**: Lid-driven cavity flow at Re = 10.000.
 - The flow is considered in a cavity of square shape $]0, D[\times]0, D[$ where the fluid is driven by a tangential velocity of magnitude acting on its top wall. No-slip conditions are imposed on the remaining walls.
 - To perform the numerical computations, we used a triangular mesh composed of 32928 cells and a first order semi-implicit Euler scheme of step $\Delta t = 10^{-3}$ for time integration.
 - The resulting flow is cyclic, where in the lower and upper left corners, the secondary vortex separates into two small vortices that periodically reincorporate.

Flow in a lid driven cavity Re = 10000: Example of snapshot

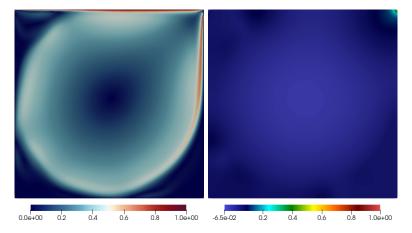
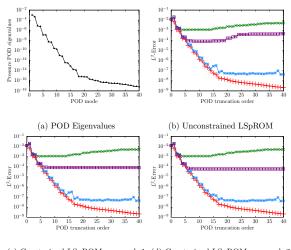


Figure: High fidelity velocity (left) and pressure (right) solutions of the cavity flow, Re = 10000



(c) Constrained LSpROM approach 1 $\,$ (d) Constrained LSpROM approach 2 $\,$

Figure: Pressure errors for the flow in a Lid Driven Cavity Re = 10000.

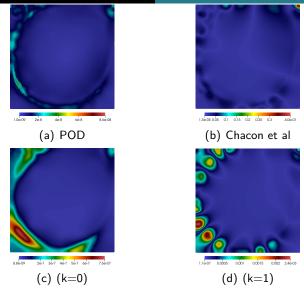


Figure: Pressure isovalues errors in the cavity flow Re = 10000, by taking 40 modes for velocity and pressure

Conclusions & work in progress

We have

- Introduced a least-squares method to recover the reduced pressure for incompressible flows.
- Given some fundamental theoretical results concerning the existence and uniqueness of the solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable.
- Proved an optimal error estimate for the reduced pressure.
- Proved that our method is equivalent to the pressure gradient supremizers and to the Momentum Equation Recovery techniques.

We intend to

- Apply the method to snapshots including time differentiation.
- Extend to solving general saddle point problems.
- Recover the pressure for full model by LS procedures.

Bibliography

- Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136 1161 (2015)
- Noack, B.R., Papas, P., Monkewitz, P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339 365 (2005)
- Chacón Rebollo, T, Rubino, S., Oulghelou, M., Alléry, C.: Error analysis of a residual-based stabilization-motivated POD-ROM for incompressible flows. CMAME 401, 115627 (2022)
- Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. CMAME 196(7), pp. 1244-1260 (2007), DOI 10.1016/j.cma.2006.09.005.
- Kean, K., Schneier, M.: Error analysis of supremizer pressure recovery for pod based reduced-order models of the time-dependent Navier–Stokes equations. SIAM J. NUMER. ANAL, Vol. 58, No. 4, pp. 2235–2264 (2020)
- Rovas, D. V.: Reduced-Basis output bound methods for parametrized PDEs. Ph D Thesis, MIT. (Advisor: A. Patera) (2003).

Motivation
Least squares pressure recovery
Error estimates
Numerical results

Thanks for your attention!