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Integrability
Liouville–Arnold theorem (complete integrability):
Let n smooth functions Fi on a 2n-dimensional manifold M be in
involution: {Fi ,Fj} = 0. Consider the level set of functions Fi
Mf = {(q,p) : Fi (q,p) = fi , i = 1, . . . , n}.
Let the functions Fi be independent on Mf . Then:

• Mf is invariant under the phase flow with the hamiltonian
function H = F1(q,p) (ṗi = − ∂H

∂qi
, q̇i = ∂H

∂pi
).

• If Mf is compact, then each connected component of it is
diffeomorphic to an n-dimensional torus
Tn = {(ϕ1, . . . , ϕn) mod 2π}
• The phase flow with the hamiltonian H defines on Mf a

quasi-periodic motion: ϕ̇ = ω(f) (action-angle variables)
• Canonical hamiltonian equations can be integrated in

quadratures.

In this case the system is called completely integrable or
integrable in Liouville–Arnold sense



Algebraic obstructions to integrability

• Polynomial first integrals:
Yoshida H, Cel. Mech., 31, 363, 00/1983.
• Meromorphic first integrals – monodromy

Ziglin S L, Fun. Anal. Appl, 16 and 17, 1982.
• Meromorphic first integrals – differential Galois

Morales-Ruiz J J, Ramis J-P, Meth. Appl. Anal. 8(1), 33-95,
97-111, 2001.
• Galois / Malgrange groupoid,

Casale G., Ann. Institut Fourier 56 n 3 (2006)



Variational equations

Consider in C2n a system

ẋ = v(x) (1)

with complex time. Fix some particular solution x0(t) of (1). Plug
x = x0 + ξ to (1) and obtain

ξ̇ = A(t)ξ + . . . , A =
∂v

∂x
(x0(t))

Then the linearized system

ξ̇ = A(x0(t))ξ

is called a system of variational equations along a particular
solution x0(·).



Theorem 1. (Ziglin’s Lemma)

Let the monodromy groupM of a curve x0 contain a
non-resonant transformation. Then the number of meromorphic
first integrals of hamiltonian equations in the connected
neighbourhood of x0 functionally independent with H is less than or
equal to the number of rational invariants ofM.

Theorem 2. (Ziglin)

Let the monodromy groupM of a curve x0 contain a
non-resonant transformation g . Then for the hamiltonian equations
to have (n − 1) meromorphic first integrals in a connected
neighbourhood of x0, functionally independent with H, it is
necessary that, any transformation g ′ ∈M preserves the fixed
point of g and maps all the eigendirections of g to eigendirections.
If moreover no set of eigenvalues of g ′ forms a regular polygon
centered in 0 on a complex plane, (with number of vertices ≥ 2),
then g ′ preserves eigendirections of g (i.e. commutes with g).



Monodromy group (simple algebraic example)

Consider the equation

ξ5 + ξx + 1 = 0

The solution of ξ = ξ(x) –
5-valued function.

Change x along a closed loop (avoiding multiple roots)
⇒ possible permutation of roots.

Group structure: “product” = concatenation of loops,
“inverse” = following the loop in the opposite direction.
Monodromy groupM = all permutations of 5 elements.



Monodromy group
Initial system: ẋ = v(x) with a particular solution x0(t) – Riemann
surface. Variational equations along x0: ξ̇ = A(x0(t))ξ

Two
mathematicians
talking:
– I lost the key
from the door, how
do I get back
home?..
– Is it a real door?
– Sure, why?
– Go to the
complex space, go
around it, then
come back.

Mγ : (ξ1, . . . , ξn)→ (ξ̃1, . . . , ξ̃n), M = {Mγ ,∀γ ∈ π1(x0)}



Properties

• Elements of the monodromy group are symplectic affine
transformations ⇒ eigenvalues go in couples: λ, λ−1.

• Monodromy measures the difference of neighboring trajectories

• ξ̇ = A(x0(t))ξ.
Consider K = differential field of coefficients, L = extension of
K by the solutions and all their derivatives.
Fact: The Monodromy group is a subset (subgroup) of
differential automorphisms of L acting trivially on K .



Ziglin’s method

Standard application procedure:

1. For a given (initial) complexified system of differential
equations construct an explicit particular solution.

2. Write down the system of variational equations. If possible
reduce the order of this system to normal variational equations.

3. Find the singular points of the particular solution. (Not the
branching points of the particular solution of time, but
singularities on a Riemann surface).

4. Construct the monodromy matrices, corresponding to the
loops around these singularities – they will generate the
monodromy group.

5. Having computed the commutators of these matrices conclude
on the possible integrability.



Difficulties
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Ways out

• “Richer” group (e.g. Morales–Ramis method via differential
Galois theory = maximal group s.t. the fact above is true)



Morales–Ramis

Lemma. If the system of equation possesses a meromorphic first
integral in the neighbourhood of a curve x0 (particular solution),
then the differential Galois group G of the system of normal
variational equations possesses a rational first integral.

Theorem (Morales–Ramis) Let the hamiltonian system be
Liouville–Arnold integrable in the neighbourhood of its particular
solution. Then the identity component of the differential Galois
group of the corresponding system of normal variational equations
is abelian.

Remark 1.M⊂ G, but construction of G is less explicit.

Remark 2. Kovacic algorithm for G (second order equation).



Ways out

• “Richer” group (e.g. Morales–Ramis method via differential
Galois theory = maximal group s.t. the fact above is true)
• Higher variations (Ziglin–Morales–Ramis–Simo theory)
• Numerical methods:

– Roekaerts D, Yoshida H, J. Phys. A: Math. Gen. 21,
3547-3557, 1988.
– Maciejewski A J, Godźiewski K, Reports on Math. Phys. 44,
133-142, 1999.
– C. Simó . Computer assisted studies in dynamical systems.
In: Progress in nonlinear science. Vol. I:Mathematical problems
of nonlinear dynamics (Eds.: L. M. Lerman, L. P. Shilnikov).
Univ. Nizhny Novgorod Press, 2002, p. 152-165.

Remark. Only the second difficulty...
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– C. Simó . Computer assisted studies in dynamical systems.
In: Progress in nonlinear science. Vol. I:Mathematical problems
of nonlinear dynamics (Eds.: L. M. Lerman, L. P. Shilnikov).
Univ. Nizhny Novgorod Press, 2002, p. 152-165.

Remark. Only the second difficulty...



Difficulties
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Effective algorithm of application of the Ziglin’s method (1)

1) Write down an extended system of equations (not fixing any
particular solution)

ẋ = v(x)

Ξ̇ = A(x)Ξ, (2)

where the first line is the initial complexified system, second –
matrix equation, where A is the matrix of the system of
variational equations, depending explicitly on x , Ξ – unknown
2n × 2n matrix (for 2n – dimension of the phase space of the
initial system).

2) Choose a domain C and a grid Gr of points in it with some
distinguished point t0.



Monodromy group
Initial system: ẋ = v(x)
Variational equations: Ξ̇ = A(x)Ξ

Mγ : (ξ1, . . . , ξn)→ (ξ̃1, . . . , ξ̃n), M = {Mγ ,∀γ ∈ π1(x0)}



Effective algorithm of application of the Ziglin’s method (2)

3) For each point from Gr choose a closed loop, going around it
starting from t0. Integrate the system (2) along this loop for
the initial data Ξ(t0) = id . Three options are possible:
i. x and Ξ returned to initial values – this point gives trivial

transformation from the monodromy group.
ii. x didn’t return to the initial value (within a given

precision) – repeat integration along the same loop. If x
didn’t return to the initial value after several iterations,
analize the density of this trajectory in the phase space.

iii. Values of x returned to the initial data, but Ξ not – store
the obtained matrix Ξ, it will be one of the generators of
the monodromy group.

4) Compute pairwise commutators of the matrices from 3)iii. If
there are non-zero commutators, conclude meromorphic
non-integrability. If not, choose another point t0 in 2) or initial
value x(t0) in 3).



Effective algorithm steps 1-2



Effective algorithm step 3



Effective algorithm step 3



Effective algorithm step 3 outcome 3.i or 3.iii



Effective algorithm step 4



Application: Henon–Heiles system

H =
1

2
(p21 + p22)− q22(A + q1)− λ

3
q31

For λ 6= 0 not all the cases can be studied within the approach of
Morales–Ramis – we apply the algorithm above.

Example: for λ = 1, A = 0.25 and initial data
(q1, q2, p1, p2) = (1,−0.4,−1.25,−0.3), t0 = 1. The monodromy
matrices corresponding to the points (0.2 + 2.5i) and (0.2− 2.5i)
have the commutator

0.390− 0.913i 0.658− 3.463i −1.099 + 2.566i 0.655− 2.223i
−0.937 + 2.301i −0.637 + 2.599i 1.311− 1.866i −1.720 + 7.996i
0.315− 0.760i 0.274− 1.212i −0.520 + 0.878i 0.576− 2.514i
0.464− 1.079i 0.797− 4.199i −1.335 + 3.133i 0.765− 2.564i

 ,

that is meromorphic non-integrability.



Double pendulum – Ramis’ question

α1

α2

g

t1 = 0.5 + 0.9i
(3 times)

t2 = 0.5− 0.9i
(3 times)
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
20.72 − 17.12i 15.79 − 1.34i 4.94 + 29.46i −14.55 + 10.90i
−17.67 + 12.78i −12.24 − 0.06i −1.93 − 24.87i 12.91 − 7.99i
12.28 + 6.91i 3.55 + 7.78i −13.07 + 7.86i −8.18 − 5.42i

−11.84 − 12.56i −1.31 − 10.39i 19.32 − 4.06i 8.59 + 9.31i




−18.72 − 17.12i −15.79 − 1.34i −4.94 + 29.46i 14.55 + 10.90i
17.67 + 12.78i 14.24 − 0.06i 1.93 − 24.87i −12.91 − 7.99i
−12.28 + 6.91i −3.55 + 7.78i 15.07 + 7.86i 8.18 − 5.42i
11.84 − 12.56i 1.31 − 10.39i −19.32 − 4.06i −6.59 + 9.31i



Don’t commute ⇒ meromorphic non-integrability.



Application: Triple pendulum

(Reduced Routh system.)

Initial data (β1, β̇1, β2, β̇2) = (0.3,−1,−0.15, 0.5), t0 = 1, with
the value of cyclic integral Iβ = 1,

Loops around (0.2 + 0.5i) and (0.2− 0.5i) (6 times),
give the commutator

0.62− 0.62i 0.81 + 0.83i −0.24− 0.34i −0.02 + 0.34i
−0.07− 0.14i 1.04 + 0.10i −0.04 + 0.20i −0.02− 0.39i
0.02− 1.01i 0.25 + 1.52i 0.15 + 0.57i 0.86− 1.44i
−0.01 + 0.02i −0.02− 0.07i −0.02− 0.09i 1.03 + 0.11i

 ,

that is meromorphic non-integrability.

Remark. Balance between symbolic (Sage) and numerical
computation.



Details

• Controllable precision?
• Inequation condition ⇒ status of “computer assisted proof”
• Independent trajectories ⇒ Parallelization

V.S.: “Effective algorithm of analysis of integrability via the Ziglin’s
method”, Journal of Dynamical and Control Systems, Volume 20,
Issue 4, pp 465-474, 2014;

V.S.: “Integrability of the double pendulum – the Ramis’ question”,
arXiv:1303.4904 [math.DS];
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