A stochastic Hamilton-Jacobi equation
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Nelson derivatives and stochastic derivatives
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E. Nelson (2001): Dynamical theory of Brownian motion. Princeton University Press. Second
edition. Available online at http://www.math. princeton.edu/~nelson/books/bmotion.pdf.
Nelson E.. Derivation of the Schridinger equation from Newtonian mechanics, Physical Review,
Vol. 150, No. 4, 1079-1084 (1966).



Algebraic properties
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Lemma 1 (Composition) For a = +1 and pp = £1, we have

Dop 0Dy = % [(Di + D21 —a)+(DiD_+D_Dy)(1+ )]
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Lemma 4 Let X¢ be a solution of the differential stochastic Newton equation. Then. we have

D_Q'_)( — DEJY .

Theorem 3 (|12]|,Theorem 5) Let X of the form (24), verifying assumption (H), such thal
beC? (Rd) with bounded derivatives and such that for allt € (0,7T) the second order derivatives
of VInps are bounded. Then we have the following equivalence :

DiX — D? X for almost all t € (0,T) <= b is a gradient. (65)



Lemma 5 (Action function) Let X be a stochastic process solution of the differential stochas-
tic Newton equation (28). Then, denoting ¥V = X the complex speed of the process, there
exists a function <7 (t, X) called the action function such that

o (t, X
y— V(—t) (68)
m

with

o (t, X¢) = S(t, X¢) +ipR(t, X3), (69)
where
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St,X)=mW(t.X) - 5mo In(py). R(t,X)= 5mo In(p¢). (70)

-

and the function W is given by Theorem 3.



Theorem 6 (A stochastic Hamilton-Jacobi equation) The action function <7 (t, X)) sat-
wsfies the nonlimear partial differential equation
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It must be noted that when the dynamics is not stochastic, meaning that o = 0, then & is
real and reduces to S as [t = 0 in this case. As a consequence, the stochastic Hamilton-Jacobi
equation is equivalent to
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005 + 5 - [VS- VS| =1 (72)

which corresponds to the classical Hamilton-Jacobi equation introducing the Hamiltonian
function

1
H(p,xz.t)= 5})2. (73)
and rewriting equation (72) as

XS+ H(VS, z.t)=-U. (74)



Lemma 6 (Modified Hamilton-Jacobi equation) The first equation of system (81) can
be rewritlen as

as 1 wa  OYA(YD) o
W—FE(VSJ —m P +U=0 (83)

called the modified Hamallon-Jacobi equation.

Lemma 7 (A continuity equation) The densily ps of a stochastic process solution of the
Newton stochastic differential equation satisfies the following continuity equation

dp . o o o
m— +div(pVS) = 0. (88)



Definition 2 (Wave function) Let o > 0 and C be a non zero real constant. We call wave
Junetion and we denote by g, the function defined by

i <, (t, )
Yu(t,z)y=e C . (93)

Theorem 8 (Schridinger formulation) If X is a solulion of the differential stochastic
Newton equation then the wave function 1 satisfies the nonlinear partial differential equation
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Corollary 1 Let X be a solution of the differential stochastic Newton eguation, then taking
the normalization constant

C = —pmo?, (106)

equation (96) reduces to the linear partial differential equation

4
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and
[ih(t, ) |? = py(x). (108)

If moreover, we consider the case p = —1 then equalion (107) reduces lo the classical linear
Schrodinger equation
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Let U be a given potential and let ¢ > 0. The main steps are the following:

e Write the Schrédinger equation (109) and compute the ground state solution ).
e Using formula (108), compute the density p¢(x) of the stochastic process X.

e Compute the induced stochastic potential Uy jnduceq using formula (87).

e Identify the diffusion coeflicient o.
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Lemma 9 (Induced potential-Kepler case) Let p = —1 and U be given by the Kepler
potential (114). Then the induced stochastic potential is given by
_ GMm ro _
Dcr:z'-nduced = = ro (1 - T) ; (118)

with ro given by (116).



Theorem 9 (Flat rotation curves) Al equilibrium the real part of the speed 2, X denoted
by v has a constant norm equal Lo vg where vy 1s given by
2GM

vg = — (123)

Lemma 10 (Diffusion coeflicient) The diffusion coefficient o is given by

2= M (126)
Up




e The central bulb which looks approximately like a sphere containing gazes and stars in
a homogeneous way.

e The disk which is itself decomposed in two components: a fine disk which is dense and
a rough one.

e The pair bulb-disk is contained in a halo of stars which is more or less a sphere but of
low density.

: Thin disk:
Thick disk: ) stars/gas
stars
Globular . Halo
clusters

Figure 1: The Milky way.
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Figure 2: Some examples of rotation curves
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Stochastic embedding

2

2X, = —VU(Xy).

dr d?r

V=T T

Y =DX., A=DX.

J. Cresson and S, Darses, Stochastic embedding of dynamical systems. J. Math. Phys.,
AS(T):072703, 54, 2007.



Stochastic Lagrangian functionals

b .
Fa J'.- p Ea T k.
Lotoc(X¢) = E U (Eﬂihs —U (As)) ds] .
(L

Critical points

D_,D,X; = —VU(X;)



Changing the set of variations

Nt ={X e A, DX = D.X}.

2

DX, = —VU(Xy),

J. Cresson and S. Darses (2006), Plongement stochastique des systémes lagrangiens, C.R. Acad.
Sci. Paris Ser. 1 342 (5), 333-336.



Invariance et théoréme de Noether

L(¢3°°(X), D (65°(X))) = L(X, D).

Problem 1 (Persistence of invariance). Assume that a Lagrangian L is invariant un-
der a group of symmetries {dg}ser. Do we have the stochastic invariance of the Lagrangian

L under the stochastic lifted one parameter group of diffeomorphisms {@5°} sep ?

Definition 7 (Strong invariance). Let @ = {¢e}ecr be a one parameter group of dif-
feomorphisms. An admissible Lagrangian L is said to be strongly invariant under the action
of @ if

L(t,x,v) = L(t, ¢ps(z), ds(v)), Vs €R, ¥t eI, Yz cRY, Yo R



Invariance et théoréme de Noether

Definition 8 (D-commutation). Let @ = {@s}ser be a one parameter group of diffeo-
morphisms.  We say that the associated stochastic lifled group satisfies the D-commutation

property, if

(25) D(H°(X);) = ¢t (D{X}t), VseR, VicR
Theorem 4. Let L be an admissible Lagrangian system, strongly invariant under a one

parameler group of diffeomorphisms ® = {dg}ser satisfying the commutation property. Then,

L is invariant under the stochastic lifted group of diffeomorphisms {59} ser.



Théoréme de Noether stochastique

Theorem 5. Let L be an admissible lagrangian with all second derivatives bounded, and
invariant under a stochastic lifted one-parameter group of diffeomorphisms Qo = {qﬁitm}seﬁ.

Let L be the associated functional defined by (21) on 2N A'. Let X € Zn AL be a Al-eritical

point of L. Then, we have

d aY
—F |0,L - — =0,
dt ds |,_q
where
(28) Yo =@ (X).

J. Cresson, S. Darses, Théoréme de Noether Stochastique, CLR. Acad. Sei. Paris, Ser. 1 344 (2007)

259-264



L’hypothése de stochastisation

Stochastisation

stoc

L. & F. S L.AP.

d° Stochastisation )
el —VU({x) —— DX, = —VU(X,),

Stochastisation Hypothesis : Let 2 be a physical process governed by a given ordinary
differential equation. The stochastic ertension of this equation is given by the differential

stochastic embedding of the equation.



Pourquoi les processus de diffusion ?

E*[X, —:
lim 22
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Alors X_t satisfait une EDS au sens d’1t6



Plongement stochastique de I’équation de Newton

Let W(t,z) be the solution of the Schridinger equation with initial condition Wg:

(33) i020,0 + LAV = UD
Ly ]I} {{]. .} — El[}_
Theorem. 6. Set o # 0. Let XU be a random variable with density [Wo|2. Then a solution

X € A2 of the system

o [ % 2V

J'ID — XID
is governed via pg(x) = |[U(t, x)|? where U is a solution of the linear Schrédinger equation (33).

It is the Nelson diffusion of the type

: Al WAL
[3:}] dX; = (ﬂ%T + %T) (t_, Xt)df 4+ odW;.



Theorem 7. — Let X € Eg. We then have the following equivalence:

(36) D?X, = D?X; for almost allt € (0,T) +— X cXV.

S. Darses and [ Nourdin, Dynamical properties and characterization of gradient drift diffusions.
Electron. Comim. Probab. 12 {2007) 390-400
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Nebuleuse protoplanetaire

Structural assumptions : A protoplanetarv nebula is made of :

— A central bodv of mass M acting bv some potential U,

— A gas of some particles called grains around the central body.,

Dynamical assumptions : The motion of a given grain is governed by :
— The potential U,

— Collisions hetween grains.

Assumptions on collisions : We assume that the collisions are :

— Randomly distributed
— lsatropic

— Homogeneous



Loi de répartition autour d’une étoile




Estimation de la constant w, et statistiques

Efron B.. Does an observed sequence of numbers follow a simple rule 7 (another look at Bode's

law). J. Am. Statist. Assoc. 66 (335), 552-539, 1971.

Good 1), A subjective evaluation of Bode's law and an “objective” test for approximate numerical
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135, H49-557 (1998).



Prise en compte de la structure dynamique du systéme

Tout = DTin .



Sur la stabilité du systéme solaire ?

", predicted wonderfullv planetary motion

Newton’s laws of motion
and, with perturbation, models the full set of planets for moderate period of time (e.g.
maybe 10% vears). But going out further (mavbe to 109 vears), the unmodeled effects begin
to add up and the approximation is not useful. So where does this leave the mathematical
o

studv of the 3-bodyv problem 7 It makes the classical deterministic analvsis of the 3-bodv

gravitational equations about as relevant to the world as the contimim hvpothesis! A major

step in making the equation more relevant is to add a small stochastic term."

David Mumford, 2001

Mumford D., The dawning of the age of stochasticity, in Mathematics: Frontiers and perspectives,
V. Arnold, M. Ativah, PP Lax. B, Mazur editors, AMS, 2000, 197-218.
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