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INTRODUCTION

Even if some analytical attempts exist (Vianello, 1997, Stahn et al, 2020), the
distance to an elasticity symmetry class problem (Gazis et al, 1963) is often

solved numerically, following Arts et al (1991, 1993) and François et al
(1995, 1996, 1998),

using the parameterization by a rotation g:

d(E0, [G]) := min
E∈Σ[G]

‖E0 − E‖ = min
g∈SO(3)

‖E0 − g ⋆ RG(gt ⋆ E0)‖

G is a symmetry group (Z2, D2, D3, D4, O, O(2), SO(3), Forte–Vianello, 1996),

RG is the Reynolds (group averaging) operator.
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INTRODUCTION

Even if some analytical attempts exist (Vianello, 1997, Stahn et al, 2020), the
distance to an elasticity symmetry class problem (Gazis et al, 1963) is often

solved numerically, following Arts et al (1991, 1993) and François et al
(1995, 1996, 1998),

using the parameterization rotation g / normal form A (Dellinger, 2005):

d(E0, [G]) := min
E∈Σ[G]

‖E0 − E‖ = min
g,A

‖E0 − g ⋆ A‖

G is a symmetry group (Z2, D2, D3, D4, O, O(2), SO(3), Forte–Vianello, 1996),

RG is the Reynolds (group averaging) operator.
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UPPER BOUNDS ESTIMATES RATHER THAN DISTANCES

For 3D elasticity, upper bounds estimates of the distance to a symmetry
stratum have been formulated

by Gazis, Tadjbakhsh and Toupin (1963) for cubic symmetry,

by Klimeš (2018) for transverse isotropy,

and by Stahn, Müller and Bertram (2020) for all symmetry classes, using
a second-order harmonic component (a covariant) of the elasticity tensor
introduced by Backus (1970). This covariant is assumed to carry the
likely symmetry coordinate system of E0.

All second-order covariants of an exactly cubic elasticity tensor are isotropic.
Therefore, for a material expected to be cubic, a methodology based on
second-order covariants is probably meaningless.
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OUTLINE

1 Geometry of the elasticity tensor

2 Literature on upper bounds estimates of the distance to a symmetry class

3 Symmetry coordinate system of a close to be cubic or orthotropic tensor

4 Reduction to an eigenvalue problem

5 Upper bounds estimates of the distance to cubic elasticity

6 Upper bounds estimates of the distance to orthotropy
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SYMMETRY GROUPS, SYMMETRY CLASSES
Given an elasticity tensor E in

Ela = S2(S2(R3)) =
{︀

E ∈ ⊗4R3, Eijkl = Ejikl = Eijlk = Eklij
}︀
,

its symmetry group GE is defined as the set of all rotations g such that

g ⋆ E = E.

Given E = r ⋆ E deduced from E by a rotation r, then its symmetry group GE
is conjugate to GE, meaning that

GE = rGEr−1 =
{︀

rg r−1, g ∈ GE
}︀
.

What is meaningful is the conjugacy class [GE], which is the set of all
subgroups which are conjugate to GE. Such a set is called a symmetry class.
Examples: [O] = cubic symmetry, [D2] = orthotropy.
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SYMMETRY STRATA AND REPRESENTATIVE GROUPS

For each symmetry class [G], it is therefore useful to provide an explicit
representative subgroup G in this class.
Example: orthotropy [D2], D2 = {e, r(eee1, 𝜋), r(eee2, 𝜋), r(eee3, 𝜋)}, |D2| = 4.

The set of E ∈ Ela with GE conjugate to representative subgroup G is the
symmetry stratum Σ[G] associated to the symmetry class [G].
Examples: Σ[O] = cubic stratum, Σ[D2] = orthotropic stratum.
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NORMAL FORM
An elasticity tensor E in the symmetry stratum Σ[G] may have exactly as
symmetry group the canonical representative group G,

g ⋆ E = E, ∀g ∈ G.

In that case, we say that E is in its normal form (expressed in its natural basis).

Example
When G = O, elasticity tensors in cubic normal form are written as

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝
E1111 E1122 E1122 0 0 0
E1122 E1111 E1122 0 0 0
E1122 E1122 E1111 0 0 0

0 0 0 2E1212 0 0
0 0 0 0 2E1212 0
0 0 0 0 0 2E1212

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in Kelvin matrix representation.
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ELASTICITY TENSORS FIXED BY A GROUP G
The set of tensors E which are fixed by a group G (not necessarily a
representative symmetry group), i.e. such as

g ⋆ E = E, ∀g ∈ G,

is called the fixed point set of G and denoted by Fix(G).
It is a linear subspace of the vector space Ela of elasticity tensors.

Example (G = rOr−1 with r = r(eee1,
𝜋
3 ))

Fix(G) ⊂ Σ[O] is the subvector space of elasticity tensors of the form

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝

E1111 E1122 E1133 0 0
√

2E1112
E1122 E1111 E1133 0 0 −

√
2E1112

E1133 E1133 E3333 0 0 0
0 0 0 1

2 (3E1111 − 3E1122 − 2E1212) 0 0
0 0 0 0 1

2 (3E1111 − 3E1122 − 2E1212) 0√
2E1112 −

√
2E1112 0 0 0 2E1212

⎞⎟⎟⎟⎟⎟⎟⎠

E3333 =
1

4
(E1111 + 3E1122 + 6E1212), E1133 =

1

4
(3E1111 + E1122 − 6E1212), E1112 =

1

4

√
3(E1111 − E1122 − 2E1212).
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ORTHOGONAL PROJECTION ON Fix(G)

The orthogonal projection on the vector space Fix(G) is uniquely defined.
It can be expressed as the averaging

RG (E) =
1
|G|

∑︁
g∈G

g ⋆ E,

RG is called the Reynolds operator associated with the finite group G.

The cardinal of G = rD2r−1 is |G| = |D2| = 4.
The cardinal of G = rOr−1 is |G| = |O| = 24.
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HARMONIC DECOMPOSITION
The second-order dilatation and Voigt tensors are defined as

d := tr12 E, v := tr13 E
(︀
i.e., dij = Ekkij, vij = Ekikj

)︀
,

Harmonic decomposition of E (Backus, 1970, Cowin, 1989, Baerheim, 1993):

E = (𝜆, 𝜇,d′, v′,H) ∈ H0 ⊕H0 ⊕H2 ⊕H2 ⊕H4

where 𝜆 = 1
15(2 trd − tr v) , 𝜇 = 1

30(3 tr v − trd) and (a ⊙ b = (a ⊗ b)s

being the symmetrized tensor product)

H = Es − (2𝜇+ 𝜆) 1 ⊙ 1 − 2
7

1 ⊙ (d′ + 2v′)

Remark

When the Euclidean norm ‖E‖ =
√

E :: E =
√︀

EijklEijkl, is used, one gets

‖E‖2 = 3
(︀
3𝜆2 + 4𝜆𝜇+ 8𝜇2)︀+ 2

21
‖d′ + 2v′‖2 +

4
3
‖d′ − v′‖2 + ‖H‖2.
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INVARIANTS /COVARIANTS OF THE ELASTICITY TENSOR
The quantities

𝜆 = 𝜆(E), 𝜇 = 𝜇(E), d′ = d′(E), v′ = v′(E), H = H(E),

are covariants C(E) of E (of degree one and resp. order 0, 0, 2, 2 and 4 ).

The scalars 𝜆 and 𝜇 are linear invariants of E.
d′(E), v′(E) and H = H(E) are linear covariants of E.

Covariants of a tensor E satisfy the rule, ∀r ∈ SO(3),

C(r ⋆ E) = r ⋆ C(E),
(︁

I(r ⋆ E) = I(E) for invariants I(E)
)︁
.

A covariant C(E) of E inherits the symmetry of E:
C(E) has at least the symmetry of E,

GE ⊂ GC(E).
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POLYNOMIAL COVARIANTS

There exist polynomial covariants of higher degree, for example (Boehler
et al, 1994)

d2(H) := H ... H, (i.e., (d2)ij = HipqrHpqrj),

The algebra of (totally symmetric) polynomial covariants of the elasticity
tensor has been defined by Olive et al (2021).

A minimal integrity basis for the invariant algebra of H ∈ H4 has been
derived in (Boehler et al, 2021) (it is of cardinal 9).

A minimal integrity basis for the invariant algebra of E has been derived
in (Auffray et al, 2021) and (Olive et al, 2021) (it is of cardinal 294).

A minimal integrity basis for the covariant algebra of H ∈ H4 has been
derived in (Olive et al, 2021) (it is of cardinal 70).
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OUTLINE

1 Geometry of the elasticity tensor

2 Literature on upper bounds estimates of the distance to a symmetry class

3 Symmetry coordinate system of a close to be cubic or orthotropic tensor

4 Reduction to an eigenvalue problem

5 Upper bounds estimates of the distance to cubic elasticity

6 Upper bounds estimates of the distance to orthotropy
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Baerheim (1993) has observed that, generically, the trace tr12 Ea = 1 : Ea of
the asymmetric part of E (Backus,1970)

Ea := E − Es,

{︃
(Es)ijkl =

1
3

(︀
Eijkl + Eikjl + Eiljk

)︀
,

(Ea)ijkl =
1
3

(︀
2Eijkl − Eikjl − Eiljk

)︀
,

carries information related to a so-called symmetry coordinate system of E.
In the case of an orthotropic tensor E, the trace 1 : Ea is diagonal in the
natural orthotropy coordinate system.

The second-order tensor

t := 1 : Ea =
2
3
(d − v) ,

is in fact a covariant of E. It inherits the symmetry of E, and, generically,
t(E) is orthotropic if E is orthotropic, with

GE = Gt(E).
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LITERATURE UPPER BOUNDS ESTIMATES
The distance of E0 to Σ[G] is defined by

d(E0,Σ[G]) = min
E∈Σ[G]

‖E0 − E‖.

Estimates of the distance to a symmetry class are obtained as

M(E0,Σ[G]) = min
E∈S⊂Σ[G]

‖E0 − E‖,

i.e., as the minimum over a subset S of the considered symmetry stratum.

It satisfies thus
d(E0,Σ[G]) ≤ M(E0,Σ[G]).

Examples: Gazis–Tadjbakhsh–Toupin (1963), Vianello (1997), Klimeš
(2018), Stahn–Müller–Bertram (2020), Oliver-Leblond et al. (2021).
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THE AXIS OF TRANSVERSE ISOTROPY [O(2)]
Klimeš (2016) did observe that for elasticity tensors E ∈ Σ[O(2)], with
transverse isotropy axis nnn, one has

d
d𝜃

⃒⃒⃒⃒
𝜃=0

(︁
r(nnn, 𝜃) ⋆ E − E

)︁
= 𝜌′4(nnn)E = 0,

so that
T(E,nnn) := 𝜌′4(nnn)E = 0,

Tijkl(E,nnn) =
1
4

nm
(︀
𝜀minEnjkl + 𝜀mjnEinkl + 𝜀mknEijnl + 𝜀mlnEijkn

)︀
,

which is linear both in the transverse isotropy direction nnn and E.

Remark

The vector nnn is not a covariant of E, since all vector covariants of E vanish
when E ∈ Σ[O(2)] is transversely isotropic.
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KLIMEŠ UPPER BOUND ESTIMATE (TRANSVERSE ISOTROPY [O(2)])

Klimeš (2018) likely transverse isotropy coordinate system of (raw) E0 is
such as eee3 = nnn minimizes

min
‖nnn‖=1

‖T(E0,nnn)‖2.

This is a quadratic minimization problem, and its solution is a unit
eigenvector nnn determined analytically.

Once the axis ⟨nnn⟩ of the transversely isotropic symmetry group G (conjugate
to O(2)) is known, an upper bound estimate

M(E0,Σ[O(2)]) = ‖E0 − RG(E0)‖.

is obtained by standard Reynolds averaging.
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NATURAL COORDINATE SYSTEM

OF A CUBIC ELASTICITY TENSOR

It has been shown (Abramian et al, 2020) that an orthotropic solution a′ of the
linear equation

tr(H × a) = tr(H × a′) = 0, H × a := −(a · 𝜀𝜀𝜀 · H)s

provides the axes of symmetry ⟨eeei⟩ of the cubic harmonic tensor H ∈ Σ[O].
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LIKELY CUBIC COORDINATE SYSTEM

In the spirit of Klimeš for transverse isotropy, the equation tr(H× a′) = 0 can
be used to determine a likely cubic coordinate system.

Given a raw elasticity tensor

E0 = (𝜆0, 𝜇0,d′
0, v′0,H0),

a likely cubic basis (eee1,eee2,eee3) for E0 is the eigenbasis of an orthotropic
deviatoric second-order tensor a′ which minimizes

min
‖a′‖=1

‖tr(H0 × a′)‖2, a′ ∈ H2.
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The function to be minimized can be rewritten as

‖tr(H0 × a′)‖2 =
9

200
‖H0‖2‖a′‖2 − 3

20
a′ : H2

0 : a′ +
27
100

d′
2(H0) : a′ 2,

where
H2

0 = H0 : H0 and d20 = d2(H0)

Remark
Since d′

2(H0) = 0 when H0 is cubic (Olive et al., 2021), another likely cubic
coordinate system is obtained using the alternative minimization problem,

min
‖b′‖=1

(︂
9

200
‖H0‖2 ‖b′‖2 − 3

20
b′ : H2

0 : b′
)︂
, b′ ∈ H2.
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a′ SOLUTION OF A QUADRATIC MINIMIZATION PROBLEM

We recast the quadratic form ‖tr(H × a)‖2 as ⟨AH a′, a′⟩, where

AH =
9

200
‖H‖2J − 3

20
H2 +

27
200

J :
(︀
1 ⊗ d′

2 + d′
2 ⊗ 1

)︀
: J,

with
d′

2(H) = (H ... H)′, J := I − 1
3

1 ⊗ 1.

The minimization problem

min
‖a′‖=1

⟨AH
⃒⃒
H2 a′, a′⟩, a′ ∈ H2,

defines a likely cubic basis (eeei) (as the eigenbasis of a′ solution).
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SOLUTION a′ AS AN EIGENVECTOR OF AH

One has AH : 1 = 0.

In practice, it is not necessary to calculate AH|H2 . We need only to
calculate the eigenvalues of AH (in Kelvin matrix representation) and
consider its smallest positive eigenvalue 𝜆min.

An eigenvector a = a′ for 𝜆min > 0 is thus a candidate to provide our
likely cubic/orthotropic normal basis.

To fully solve the problem, the deviatoric second-order tensor a′ has to
be orthotropic, not transversely isotropic. This turns out to be generic.
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A CUBIC HARMONIC FOURTH-ORDER TENSOR

FROM AN ORTHOTROPIC SECOND ORDER TENSOR a

Let a be an orthotropic second order tensor,

a2 × a := −(a2 · 𝜀𝜀𝜀 · a)s ∈ H3,

and (·)′ denote the leading harmonic part.

Then (︀(︀
a 2 × a

)︀
·
(︀
a 2 × a

)︀)︀′
‖a 2 × a‖2 ∈ H4,

is cubic of axes the eigenvectors of a.
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In the eigenbasis of a, we get the Kelvin matrix representations,

[︃(︀
a 2 × a

)︀
·
(︀
a 2 × a

)︀
‖a 2 × a‖2

]︃
=

1
3

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

[︃(︀(︀
a 2 × a

)︀
·
(︀
a 2 × a

)︀)︀′
‖a 2 × a‖2

]︃
∝

⎛⎜⎜⎜⎜⎜⎜⎝

−2 1 1 0 0 0
1 −2 1 0 0 0
1 1 −2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

29 / 43



Geometry of E Literature Symmetry coordinate system Eigenvalue problem Upper bounds (cubic sym.) Upper bounds (orthotropy)

A CUBIC HARMONIC FOURTH-ORDER PROJECTOR Ca
We define

Ca :=

√︂
15
2

(︀(︀
a 2 × a

)︀
·
(︀
a 2 × a

)︀)︀′
‖a 2 × a‖2 , ‖Ca‖ = 1,

of cubic symmetry group GCa ∈ [O].

Let H0 be a given harmonic tensor.
Its orthogonal projection on the the fixed point set Fix(GCa) is

H = RGCa
(H0) = (Ca :: H0)Ca ∈ H4.

Let E0 = (𝜆0, 𝜇0,d′
0, v′0,H0) be a given elasticity tensor.

Its orthogonal projection on the fixed point set Fix(GCa) is

E = RGCa
(E0) = (𝜆0, 𝜇0, 0, 0,RGCa

(H0)) ∈ Ela.
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APPLICATION TO CUBIC UPPER BOUNDS ESTIMATES

For any orthotropic second-order tensor a, we get a cubic tensor

E = 2𝜇0I + 𝜆01 ⊗ 1 + (Ca :: H0)Ca ∈ Σ[O],

and define an upper bound estimate of d(E0, [O]), as

Δa(E0, [O]) = ‖E0 − E‖.

The Stahn et al (2020) cubic upper bound estimate is then simply recovered as

M(E0, [O]) = Δt0(E0, [O]),

by setting

a = t0 =
2
3
(d0 − v0) .
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EXAMPLES

Let us compare the upper bounds estimates

Δa(E0, [O])

to the distance to cubic symmetry d(E0, [O]), for the four different choices:

a = t0 (choice made by Stahn et al (2020)),

a = d20 (choice made by Antonelli et al (2021)),

a = a′, obtained by the minimization of
‖tr(H0 × a′)‖2 = a′ : AH0

⃒⃒
H2 : a′.

a = b′, obtained by the minimization of b′ : BH0

⃒⃒
H2 : b′.

A better upper bound estimate of d(E0, [O])

Δopt(E0, [O]) = min (Δt0(E0, [O]),Δd2(E0, [O]),Δa′(E0, [O]),Δb′(E0, [O]))
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EXAMPLE OF NI-BASED SUPERALLOY
Consider the elasticity tensor (in Kelvin representation)

[E0] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

243 136 135 22
√

2 52
√

2 −17
√

2
136 239 137 −28

√
2 11

√
2 16

√
2

135 137 233 29
√

2 −49
√

2 3
√

2
22

√
2 −28

√
2 29

√
2 133 · 2 −10 · 2 −4 · 2

52
√

2 11
√

2 −49
√

2 −10 · 2 119 · 2 −2 · 2
−17

√
2 16

√
2 3

√
2 −4 · 2 −2 · 2 130 · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
GPa,

measured by François–Geymonat–Berthaud (1998) for a single crystal
Ni-based superalloy with a so-called cubic 𝛾/𝛾′ microstructure (Fig. after
Mattiello, 2018):
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d(E0, [O]) M = Δt0 Δd20 Δa′ Δb′ Δopt = Δb′

74.13 Estimate (GPa): 241.7 238.6 114.9 97.8 97.8

0.10391 Relative estimate: 0.3388 0.3344 0.1610 0.1371 0.1371

Table: Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for Ni-based single crystal superalloy.

The material considered has a cubic Ni-based microstructure. All the
2nd-order covariants of a cubic elasticity tensor are —close to be— isotropic.
They do not carry information about the cubic coordinate system.

1François et al (1998).
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BEST ESTIMATE

The cubic elasticity tensor corresponding to

Δb′(E0, [O]) ≈ 97.8 GPa,
Δb′(E0, [O])

‖E0‖
≈ 0.1371,

is (in Kelvin representation, in the basis in which is expressed [E0], in GPa)

[E] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

238.76 146.72 124.86 1.18
√

2 42.46
√

2 −0.41
√

2
146.72 219.91 143.71 −17.89

√
2 −0.71

√
2 −3.66

√
2

124.86 143.71 241.76 16.72
√

2 −41.75
√

2 4.07
√

2
1.18

√
2 −17.89

√
2 16.72

√
2 135.04 · 2 4.07 · 2 −0.71 · 2

42.46
√

2 −0.71
√

2 −41.75
√

2 4.07 · 2 116.19 · 2 1.18 · 2
−0.41

√
2 −3.66

√
2 4.07

√
2 −0.71 · 2 1.18 · 2 138.05 · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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EXAMPLE OF A CLOSE TO BE ORTHOTROPIC MATERIAL
Consider now the elasticity tensor studied in (Stahn et al, 2020),

[E0] =

⎛⎜⎜⎜⎜⎜⎜⎝
9.35 5.81 −0.20 5.1 4.06 −2.51
5.81 11.09 2.67 −0.83 −3.92 2.79
−0.20 2.67 11.01 −0.1 −2.95 0.57

5.1 −0.83 −0.1 8.13 −1.16 0.8
4.06 −3.92 −2.95 −1.16 7.94 2.01
−2.51 2.79 0.57 0.8 2.01 8.13

⎞⎟⎟⎟⎟⎟⎟⎠ .

d(E0, [O]) M = Δt0 Δd20 Δa′ Δb′ Δopt = Δa′

11.4551 Estimate: 11.4573 11.4552 11.4551 14.3961 11.4551

0.409081 Relat. estim.: 0.409162 0.409086 0.409083 0.514110 0.409083

Table: Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for an academic elasticity tensor.
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EXAMPLE OF VOSGES SANDSTONE
Considering the elasticity tensor identified by François (1995) using the
ultrasonic measurement of Arts (1993) on a Vosges sandstone specimen (in
GPa),

[E0] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

12.2 −2.2 1.9 0.9
√

2 0.8
√

2 −0.5
√

2
−2.2 13. 2.9 0.2

√
2 −0.3

√
2 0.4

√
2

1.9 2.9 13.9 0 0 0.1
√

2
0.9

√
2 0.2

√
2 0 4. · 2 1.2 · 2 0

0.8
√

2 −0.3
√

2 0 1.2 · 2 5.4 · 2 0
−0.5

√
2 0.4

√
2 0.1

√
2 0 0 5.4 · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

d(E0, [O]) M = Δt0 Δd20 Δa′ Δb′ Δopt = Δt0

6.49 Estimate (GPa): 7.809 7.818 7.848 7.621 7.809

0.2212 Relative estimate: 0.2660 0.2664 0.2674 0.2596 0.2660

Table: Comparison of upper bounds estimates of the distance to cubic elasticity
d(E0, [O]) for Vosges sandstone.

2François (1995).
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OUTLINE

1 Geometry of the elasticity tensor

2 Literature on upper bounds estimates of the distance to a symmetry class

3 Symmetry coordinate system of a close to be cubic or orthotropic tensor

4 Reduction to an eigenvalue problem

5 Upper bounds estimates of the distance to cubic elasticity

6 Upper bounds estimates of the distance to orthotropy
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UPPER BOUNDS ESTIMATES OF THE DISTANCE TO ORTHOTROPY

We consider still a given (measured) elasticity tensor E0, triclinic, with
harmonic decomposition

E0 = (𝜆0, 𝜇0,d′
0, v′0,H0).

Determine as previously an orthotropic second order tensor that carries
the likely cubic/orthotropic coordinate system, say a.

An orthotropic elasticity tensor E that allows to define an upper bound
estimate

Δa(E0, [D2]) = ‖E0 − E‖

of the distance d(E0, [D2]) to orthotropy is now

E = RGa(E0) = (𝜆0, 𝜇0,RGa(d
′
0),RGa(v

′
0),RGa(H0)) ∈ Σ[D2],

with Ga ⊂ [D2].
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EXAMPLE OF NI-BASED SUPERALLOY

d(E0, [D2]) M = Δt′0
Δd′20

Δa′ Δb′ Δopt = Δb′

57.8 Estimate (GPa): 216.1 210.9 109.8 90.3 90.3

0.0813 Relative estimate: 0.3029 0.2943 0.1539 0.1266 0.1266

Table: Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for Ni-based single crystal superalloy.

3François et al (1998).
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EXAMPLE OF A CLOSE TO BE ORTHOTROPIC MATERIAL

M = Δt′0
Δd′20

Δa′ Δb′ Δopt = Δt′0

Estimate: 0.491 0.651 0.653 6.714 0.491

Relative estimate: 0.0175 0.02325 0.0233 0.2398 0.01753

Table: Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for an academic elasticity tensor.
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EXAMPLE OF VOSGES SANDSTONE

d(E0, [D2]) M = Δt′0
Δd′20

Δa′ Δb′ Δopt = Δt′0

2.64 Estimate (GPa): 4.3756 4.5587 4.8292 4.5584 4.3756

0.0904 Relative estimate: 0.14907 0.15531 0.16453 0.15530 0.14907

Table: Comparison of upper bounds estimates of the distance to orthotropic elasticity
d(E0, [D2]) for Vosges sandstone.

4François (1995).
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CLOSURE

We have addressed the problem of an accurate analytical estimation of
the distance of a raw elasticity tensor E0 either to cubic symmetry or to
orthotropy.

Key point: the use of a second-order tensor a (not necessarily a covariant
of E0), which carries the likely symmetry coordinate system.

Such tensors are obtained as the solution of a quadratic minimization
problem (reducing to an eigenvalue problem).

We have improved the upper bound estimates of the distance of E0 to the
cubic or orthotropic symmetry.

We have provided intrinsic projection formulas (on Fix(G), both in the
cubic case and in the orthotropic —not presented— case).

The optimal tensor E, used to define an upper bound estimate as
‖E0 − E‖, is determined a priori. This allows to consider readily other
norms than the Euclidean norm.
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LOG-EUCLIDEAN UPPER BOUNDS ESTIMATES

For a given tensor E0, once an elasticity tensor E either cubic (E ∈ Σ[O]) or
orthotropic (E ∈ Σ[D2]) has been computed according to the symmetry group
of a second-order tensor, say a, one can easily calculate the upper bounds
estimates Δa(E0,Σ[G]) for any norm.

Since an elasticity tensor has to be positive definite, one can consider the
Log-Euclidean norm (Arsigny et al, 2005, Moakher and Norris, 2006),

‖E‖L := ‖ln(E)‖ = ‖ln([E])‖R6 ,

which has the property of invariance by inversion.
For this norm, the upper bounds estimates of the distance

d(E0,Σ[G]) = min
Σ[G]

‖E0 − E‖L,

can then be expressed as

Δa(E0,Σ[G]) := ‖E0 − E‖L = ‖ln(E0)− ln(E)‖.
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EXAMPLES WITH LOG-EUCLIDEAN NORM

(CUBIC SYMMETRY)

Δt0 Δd20 Δa′ Δb′ Δopt

Relative Euclidean estimate: 0.3388 0.3344 0.1610 0.1371 0.1371
Relative Log-Euclidean estimate: 0.1365 0.1353 0.0616 0.0516 0.0516

Table: Comparison of cubic upper bounds estimates for Ni-based single crystal
superalloy.

Δt0 Δd20 Δa′ Δb′ Δopt

Relative Euclidean estimate: 0.2660 0.2664 0.2674 0.2596 0.2596
Relative Log-Euclidean estimate: 0.1261 0.1276 0.1274 0.1256 0.1256

Table: Comparison of cubic upper bounds estimates for Vosges sandstone.
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EXAMPLES WITH LOG-EUCLIDEAN NORM (ORTHOTROPY)

Δt′0
Δd′20

Δa′ Δb′ Δopt

Relative Euclidean estimate: 0.3029 0.2943 0.1539 0.1266 0.1266
Relative Log-Euclidean estimate: 0.1221 0.1160 0.0529 0.0392 0.0392

Table: Comparison of orthotropic upper bounds estimates for Ni-based single crystal
superalloy.

Δt′0
Δd′20

Δa′ Δb′ Δopt

Relative Euclidean estimate: 0.14907 0.15531 0.16453 0.15530 0.14907
Relative Log-Euclidean estimate: 0.0685 0.0728 0.0749 0.0786 0.0685

Table: Comparison of orthotropic upper bounds estimates for Vosges sandstone.
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The symmetry classes, their number, and their partial ordering are strongly
dependent on the tensor type.

There are two symmetry classes for a vector v:

[SO(2)] (axial symmetry, if v ̸= 0)

and [SO(3)] (isotropy, if v = 0).

There are three symmetry classes for a symmetric second-order tensor a (and
for a deviatoric tensor a′):

[D2] (orthotropy, if a has three distinct eigenvalues),

[O(2)] (transverse isotropy, if a has two distinct eigenvalues),

and [SO(3)] (isotropy, if a′ = 0);

The symmetry classes for an harmonic (totally symmetric and traceless)
fourth-order tensor H are the same eight symmetry classes as those of an
elasticity tensor (Ihrig and Golubitsky, 1984, Forte and Vianello, 1996):
[1], [Z2], [D2], [D3], [D4], [O], [O(2)] and [SO(3)] (isotropy, H = 0).
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GEOMETRIC CONSEQUENCES
1 the vector covariants v(E) of a monoclinic elasticity tensor E are all

collinear,
2 the vector covariants v(E) of an elasticity tensor E either orthotropic,

tetragonal, trigonal, cubic, transversely isotropic or isotropic, all vanish:

v(E) = 0 ∀E ∈ Σ[D2] ∪ Σ[D3] ∪ Σ[D4] ∪ Σ[O] ∪ Σ[O(2)] ∪ Σ[SO(3)],

3 the second-order covariants c(E) of an elasticity tensor either cubic or
isotropic are all isotropic,

4 the second-order covariants c(E) of an elasticity tensor E either
tetragonal, trigonal or transversely isotropic, of axis ⟨nnn⟩, are all at least
transversely isotropic of axis ⟨nnn⟩,

5 the second-order covariants c(E) of an orthotropic elasticity tensor E are
all at least orthotropic (and all of them commute with each other).

6 the second-order covariants c(E) of a triclinic elasticity tensor E are all
at least orthotropic (but the natural basis may differ from one covariant to
another).
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Remark

Any other second-order covariant c(E0) of the elasticity tensor E0 can be
added to the list {t0,d20, a′,b′}, such as

d0, v0, d2
0, v2

0, (d0v0)
s,

H0 : d0, H0 : v0, H0 : d2
0, H0 : v2

0, H0 : (d0v0)
s,

c3 = H0 : d20, c4 = H0 : c3, c5 = H0 : c4, . . .
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EXPLICIT HARMONIC DECOMPOSITION
The explicit harmonic decomposition of E is (Backus, 1970, Spencer, 1970)

E = 2𝜇 I + 𝜆 1 ⊗ 1 +
2
7

1 ⊙ (d′ + 2v′) + 2 1 ⊗(2,2) (d′ − v′) + H,

which can also be written as (Cowin, 1989, Baerheim, 1993)

E =2𝜇 I + 𝜆 1 ⊗ 1

+
1
7

(︁
1 ⊗ (5d′ − 4v′) + (5d′ − 4v′)⊗ 1

+ 2 1 ⊗ (6v′ − 4d′) + 2(6v′ − 4d′)⊗ 1
)︁

+ H,

where ⊗(2,2) is the Young-symmetrized tensor product,

a ⊗(2,2)b =
1
3
(︀
a ⊗ b + b ⊗ a − a ⊗ b − b ⊗ a

)︀
,

(a ⊗ b)ijkl :=
1
2
(aikbjl + ailbjk), Iijkl = (1 ⊗ 1)ijkl =

1
2
(𝛿ik𝛿jl + 𝛿il𝛿jk).
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The normal form EO of the cubic estimate E is obtained directly, as

[E] =

⎛⎜⎜⎜⎜⎜⎜⎝

(E)1111 (E)1122 (E)1122 0 0 0
(E)1122 (E)1111 (E)1122 0 0 0
(E)1122 (E)1122 (E)1111 0 0 0

0 0 0 2(E)1212 0 0
0 0 0 0 2(E)1212 0
0 0 0 0 0 2(E)1212

⎞⎟⎟⎟⎟⎟⎟⎠ ,

in Kelvin matrix representation, with

(EO)1111 = 2𝜇0 + 𝜆0 −
2√
30

Ca :: H0,

(EO)1122 = 𝜆0 +
1√
30

Ca :: H0,

(EO)1212 = 𝜇0 +
1√
30

Ca :: H0.
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