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Materials (nano)science

Materials science includes those parts of
chemistry, physics, geology and biology that
deal with the physical, chemical or biological
properties of materials.

Thermodynamics= thermostatic (optimized geometry)+ kinetics (metastable structures)
nobody knows the true ground state (example: carbon)



‘g ! MWhat is known in materials science (solid state physics) since one century!

INSTITUT LUMIERE MATIERE j

All the properties (electronic, vibrational, magnetic,mechanical...) depend to the dimensionality
(topological dimension)

Demmiiy of sinios

. . . Ppos
d=-1 (vacuum, Casimir, Dirac...) / 2
d=0 (clusters) “
Pracay
) = EY o const,
d=1 wire i
Poos
4 ’ JU AU U v -k |f?
-
d=3 crystal .
Praos
l wm Bl )
d not integer (fractal structure) Hausdorff dimension is not pertinent —

The density of states is defined as the number of different states
at a particular energy level that electrons are allowed to occupy

d>3 (quasicrystals...)



All the properties are (often) related to periodicity (cristallography)
Amorphous materials are a specific class
described as a « perturbed » crystal

In a semiconductor (insulator) few ppm of impurities
are enough to promote conduction!!!!

|

electronic properties are sensitive to « environment »
(applications: electronic devices, sensors..)
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The holly bible of the solid states physics
Ashcroft- Mermin book states

ASCEFT MEENEN Cartesian product of three circles, T% = §' x §' = §7.

three-dimensional torus

chapter 2 page 33 SOLID STATE PHYSICS

" Thus if our metal is one dimensional we would simply replace but in 4D-space
the line from 0 to L to which the electron were confined by a

circle of circumference L. In three dimensions the geometrical

embodiment of the boundary condition , in which three pairs

of opposite faces on the cube are joint, becomes topologically

impossible to construct in three dimensional space "



Topology has invited itself in materials science

iL
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to date: connection between topology ang geometry using Gauss Bonnet theorem

geometry topology

/ \ intrinsic
extrinsic
differential, discrete

Evolution of the system

according to the topology rules

(homotopy)

Thermodynamics (kinetics pathways)
properties related to the topology topology rules breakdown

Macroscopic . .
> o 3 Microscopic (nano world)
« classical » physics phase transition



Topology and geometry (hyperbolic for example) are emergent

—
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Duncan!ifadéne

Nobel price 2016

Topologically protected states (topological invariants, i.e. which don't depends of local physics as impurities or so on.

" Micheal Kosterlitz et David Thouless

Topological insulators

N
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A topological insulator, ke an ordinary insu-
lator, has a bulk energy gap separating the highest occu-
pied electronic band from the lowest empty band. The
surface (or edge in two dimensions) of a topological in-
sulator, however, necessarily has gapless states that are
protected by time-reversal symmetry.

Journal of Modern Physics, 2019, 10, 102-127
http://www.scirp.org/journal/im

ISSN Online: 2153-120X

ISSN Print: 2153-1196

A Topological Transformation of Quantum

Dynamics

VuB. Ho

Advanced Study, 9 Adela Court, Mulgrave, Australia

Email: vubho@bigpond.net.au



Topology and geometry (hyperbolic for example) are emergent
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Topological invariants of time-reversal-invariant band structures

J. E. Moore®? and L. Balents®

! Department of Physics, University of California, Berkeley, CA 94720
?Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
JDepartment of Physics, University of California, Santa Barbara, CA 93106
(Dated: February 4, 2008)

The topological invariants of a time-reversal-invariant band structure in two dimensions are mul-
tiple copies of the Zz invariant found by Kane and Mele. Such invariants protect the topological
insulator and give rise to a spin Hall effect carried by edge states. Each pair of bands related by
time reversal is described by a single Zs invariant, up to one less than half the dimension of the
Bloch Hamiltonians. In three dimensions, there are four such invariants per band. The Zs invariants
of a crystal determine the transitions between ordinary and topological insulators as its bands are
occupied by electrons. We derive these invariants using maps from the Brillouin zone to the space
of Bloch Hamiltonians and clarify the connections between Zs invariants, the integer invariants that
underlie the integer quantum Hall effect, and previous invariants of 7-invariant Fermi systems.

NEWS FEATLE |

A topological twist on materials science

Sanju Gupta and Avadh Saxena

The primary objective of this article is twofold: to address the key concept of topology that
impacts materials science in a major way and to convey the excitement to the materials
community of recent significant advances in our understanding of the important topological
notions in a wide class of materials with potential technological applications. A paradigm of
topology/geometry — property — functionality is emerging that goes beyond the traditional
microscopic structure — property — functionality relationship. The new approach delineates
the active roles of topology and geometry in design, fabrication, characterization, and
predictive modeling of novel materials properties and multifunctionalities. After introducing
the essentials of topology and geometry, we elucidate these concepts through a gamut of
nanocarbon allotropes of de novo carbons, hierarchical self-assembled soft- and biomaterials,
supramolecular assemblies, and nanoporous materials. Applications of these topological
materials range from sensing, energy storage/conversion, and catalysis to nanomedicine.

THESHAPE OF THINGS TO COME

MRS BULLETIN + VOLUME 39 + MARCH 2014 + www.mrs.org/bulletin Il 265

Strange topolagrical oadinary
materiak. Frding feliver superast
trnziztaee i @ven hideter quam bim comprting.

272 NATURE VoL 547 20 JULY 2017



carbon

L
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\ 4

floppy element

> most studied element

most useful (organic chemistry, living thing)

allotropes: diamond, fullerenes, onions, nanotubes, origamis,
clathrate, graphite, amorphous carbon, liquid carbon...

> remains a piece of mystery (vitreous carbon ?)



surfaces: one candidate (and no more!) the carbon

L
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carbon four electrons
covalent bonding

J—ﬂ_d no periodicity

carbyne (1D structure)

Carbon (sp hybridization)

Carbon (sp? hybridization)

periodicity l

diamond ( 3Dstructure)

fullerene (0D structure)
abusive!

Peng et al https://doi.org/10.2147/NSA.540324

ygraphyne

a-graphyne [-graphyne




graphene

Bieri, Marco, et al. Chemical communications 45 (2009): 6919-6921.
supergraphene

STM (Scanning Tunneling Microscope)
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Graphene: topology opens the door

exceptionally high tensile strength,@l condu@

transparency

.-
2

: enagating through graphene's honeycomb lattice-effective Jose their mass, producing
quas:-part:cles that are described by a 2D analogue of t , ' ; e

sdingercquation for spin-1/2 particles

2D Dirac-like Hamiltonian fof massless fermions
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classification theorem (surface)

f

PHYSICAL REVIEW B 102, 115135 (2020)

2D crystal: BVK conditions

i

b

o

(abab?) |

Geometric approach to fragile topology beyond symmetry indicators

« strong » topological insulator
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Theorem 1 ([61,62]). Every compact (connected) surface is equivalent to one of the following three
types of surfaces (see below for the definition):

(i) asphere;

(ii)  a connected sum of projective planes (if it is non-orientable); or

(iii) a connected sum of torii (if it is orientable and not a sphere).

A compact surface is classified in terms of its boundary number B, its orientability number w
and its Euler characteristic x. These numbers are topological invariants and are preserved
under homeomorphism. ?

b [ ]
a a s (abab) Y a

| M
s

O 8 geodesic



Toolbox for monitoring « symmetry »

INSTITUT LUMIERE MATIERE j

Translational symmetry (crystal)

electron: fermion spin 1/2 l l analogy with a fibre bundle
but a toolbox is available

\ ) <,

|
REVIEWS OF MODERN PHYSICS, VOLUME 82, OCTOBER-DECEMBER 2010 \T
V&

Colloquium: Topological insulators : _
M. Z. Hasan" @
. £. Hasan -

Joseph Henry Laboratories, Department of Physics, Princeton University, Princeton, New “‘&'
Jersey 08544, USA &g'

C. L. Kane'
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,

Pennsylvania 19104, USA Time-reversal symmetry
PRSI (spin-orbit coupling, magnetic field, magnetic element...)

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but
have protected conducting states on their edge or surface. These states are possible due to the
combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional (2D)
topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum

Hall state. A three-dimensional (3D) topological insulator supports novel spin-polarized 2D Dirac InverSion Symmetry (different Chemical SpeCies

fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and . .
superconduclors is reviewed and recenl experiments are described in which the signatures of d h g d )
topological insulators have been observed. Transport experiments on HgTe/CdTe quantum wells are NB’ Ichacogenides...

described that demonstrate the existence of the edge states predicted for the quantum spin Hall

insulator. Experiments on Bi;_,Sb,, Bi;Sc;, Bi; Tey, and Sb;Tey are then discussed that establish these

materials as 3D topological insulators and directly probe the topology of their surface states. Exotic

states are described that can occur at the surface of a 3D topological insulator due to an induced GI 'd fl H

energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological , e re eCt,on Symmetry
magneloelectric effect. A superconducting energy gap leads to a state that supports Majorana
fermions and may provide a new venue for realizing proposals for topological quantum computation.
Prospects for observing these exotic states are also discussed, as well as other potential device
applications of topological insulators.

Screw symmetry...

DOI: 10.1103/RevModPhys.82.3045 PACS number(s): 73.20.—r, 73.43.—f, 85.75.—d, 74.90.4n



Gluing square and hexagon

L
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In elemental structures square is never observed!

In 3D only one element with a simple cubic structure (cf Clifford torus) is observed (polonium)

never observed (excepted complex structures) observed (graphene)

4-gon 6-gon ¢ K (abaibicc?)

twist 180°

Figure 6. Two pathways for the flat torus formation corresponding to BVK conditions or Wallpaper

group in crystallography.

Moebius string (morphing 2D to 3D)



Gluing hexagon
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Graphene: amazing properties (Dirac cone entangled states with « massless » electrons)

M

| .- Ssquare

‘ 1 A |2

electron mass m, versus -m,

« massless »
K,K’ pair

|

Diract points (Pauli matrix)




topology
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——  Properties are « different » Example: topological insulators (torus to sphere)

Herges, R. Topology in chemistry: Designing Mobius molecules. Cheni. Rev. 2006, 106, 4820-4842.

—)  States topologically protected Hiickel Annulenes
No modification under external perturbation secular equation
Impurities, defects... GE Pusronnf
B oE B
. . . P B
—  ANtiaromaticy (Moebius ) Y
j=01,23 - (N-1)

Thermodynamics (kinetics) according to homotopy rules v Couaibiidigrsl
(self intersecting is forbidden for materials !) P Rk

Mobius Annulenes secular equation

a-E p .......... 'H’ﬁ
[_i.___a-E' B . 2
Iy,
Hiickel: Mobius WoB ok
4n+2 aromatic 4n aromatic .
. . . . _ n(2j+1)
4n antiaromatic 4n+2 antiaromatic Ej=a+2fcos ———

N



Graphene and beyond : geometry opens the door

—  hyperbolic geometry is poorly investigated by physicists



Hyperbolic spaces: some examples in physics
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v

Physical phenomena are governed by the Laplacian
If Laplacian is « negative » chaos is possible (Hadamard)

opens the door of unusual properties (« fuite de Poincaré«, chaos...)

« continuous » (macroscopic samples)
3D printing

Microscopic: vitreous carbon

Fractal structure (lithography) =33 N\ k

Figure 24. (a) Franklin’s view of the GLC; (b) part of HRTEM pattern corresponding to the GLC
produced by PLD and laser annealing (see Figure 5); and (c) an elemental cell of a Schwarzite TPMS
structure [22].




Hyperbolic spaces: some examples in physics
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Carbon: differential geometry
pOIymer printing+ perIySiS Schwarz Meets Schwann: Design and Fabrication of

TPM S structures Biomorphic Tissue Engineering Scaffolds
MEChaniCGI properties Srinivasan Rajagopalan and Richard A. Robb

Materials Today * Volume 48 * September 2021

Topologically engineered 3D printed
architectures with superior mechanical
strength

Rushikesh S. Ambekar "%, Brijesh Kushwaha "', Pradeep Sharma?, Federico Bosia®,
Massimiliano Fraldi ®, Nicola M. Pugno ***, Chandra S. Tiwary "

MIAY THOHYISIY

(@) 10000 AN
,'Akrllu‘:',;‘ 1 _EEE_F"E'_‘___ _,-"
P | = V' composgs =7 [\ | 7
: @ Ll =
= | Sarsio | |I !
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] - / —— ol -—__’__,
: : o 5 -
Fig. 7. Von Mises stress (top) and Principal E
Strain  (bottom) maps under bulk o
compression for Cubic (left) and TPMS
(right) unit cells (scale factor 1.0) with " ——

identical loading conditions and material Density [kg/m’]
properties



TPMS carbon (macroscopic)
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A | The mechanics and design of a lightweight three-

dimensional graphene assembly

Zhao Qin", Gang Seob Jung"", Min Jeong Kang' and Markus J. Buehler-1
+ See all authors and affiliations
Science Advances 06 Jan 2017

Vol 3, no. 1, 1601536
DOI: 10.1126/sciadv. 1601536

simulation/experiment
3D printing model

Fig. 4. Different abomistic and 30-printed models of gyroid genmetry lor mechanical tests. (A] Simulation snapshots taken during the modeling af the asomc 30
mmﬂmmmﬁmmmu q the d of uriformly distebuted carbon atoms based on the foo
stnacter, (4} o aqynid o w[mwwmdmmmm:wm:wmmwm
umumammuwmwﬁmmmm 1110.Ilu|ihﬁwnﬁunhhmmﬁ*b-,l:mm]}mmd
thic gymoid structure of variows L values and weall shickniesses. Srale bar, 2.5 o The tensile and compressive trsts an the 30 printed sample arc sh e 0% and JE)




sp? hybridization (six fold rings) mimics a true surface close to the mathematical concept
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-

\/ % N=6 hexagons pure sp? hybridization (flat H=0 every where)

H (locally) # 0 if homogeneous and isotrope depends to R the « radius »

Energetic point of view
% =5 pentagons « pure » sp? hybridization (pentagon 108° instead of 109,47° in fully sp3 tetrahedron)
\/ N=7 heptagons 128,57° not so far from 120°

%. N=4 90° corresponds to pure p bonding

% . N=8 heptagons 135° far from 120° Euler’s relationship (do not depend to N)
NS — ,M’; — 21’\% = 12(1 — g).

fullerene C,, g=0 N,=N =0 then N ;=12 TPMS g23 the smaller one g=3 N,=24



@
g ! Extrinsic geometry (surface) Poincare uniformisation theorem
IN:STITU:T LUMIERE MATIERE %ferential R

» discrete

tesselation
graphene
Citation: Mélinon, P. Vitreous b

Carbon, Geometry and Topology: A E2 Euclid
Hollistic Approach. Nanomaterials uchnean

2021, 11, 1694. https:/ /doi.org/
10.3390 /nano11071694 o

A

< fullerene
$2 spherical
, . Schwarzite
;/ P Not yet synthesized
Amorphous phase

H? hyperbolic

(vitreous carbon)

Figure 11. From continuous to discrete geometry in the three spaces: graphene (hexagon tiling), Ceo
(hexagon and pentagon tiling) and TPMS (hexagon and n-gon n > 7 tiling).



i ! M From differential to discrete geometry

st S Mol b sk j topology: surface In mathematics, a surface is a geometrical shape that

topology describes the envelope _
topology= surface mathematical description Grid (discrete)
polynomial form (continuous)

metric

resembles to a deformed plane.
Atomic coordinates:
crystallography

approximation

TO PO LOGY 1 Hexagons PHYSICS
Weierstrass-Enneper Representation Pentagons o
Brakke’s Surface Evolver Heptagons... pd '

|

Euler’s rule

pavement with a grid formed by hexagons/pentagons/ n-fold gons

3



Exemple: Schwarzites
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Terrones, H.; Terrones, M. Curved nanostructured materials. New ]. Phys. 2003, 5, 126.

Name Space Group dinA N X ¥ z

D688 Pn3m(224) 6.148 21 12 033382 0.66658 (TPMS Triply Periodic Minimal surfaces)
P6ss Im3m (229) 7.828 18 031952 031952 009373
G688 1a3d(230) 9,620 % 092205 012094 095502
gyroid 1a3d (230) 18.599 384 0.18812 0.20968 0.77090
007632 020151 084364
002066 015594 087348

H Mean curvature
K Gauss curvature (intrinsic)

maodified TPMS t=1

Gyroid TPMS
continuous surface

tiling (6,8) =0
Unit cell - 0

genus 223

K <\0\

hyperbolic geometry

projection perpendicular plane [111)

N=384 atoms

Figure 14. Gyroid TPMS with N = 384 atoms after tiling with hexagons and octagons (see Table 5,
last line). The modified structure with t = 1 is discussed below.



? ! A particular case: vitreous carbon : a piece of mystery
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excellent biological compatibility with living tissues
high temperature resistance
hardness, low density, low electrical resistance

low friction

low thermal resistance

extreme resistance to chemical attack

impermeability to gases and liquids despite porosity !!!

and more...



i ! M A particular case: vitreous carbon : a piece of mystery

INSTITUT LUMIERE MATIERE j

no consensus

but surface+holes

|

heptagons may be octogons
and pentagons!

Thermodynamicaly
Schwarzite synthesis is probably

a dream

1950 Frankli i
ranklin {a+c) 1964 Noda (a) 1971 Cmujford (a) 1971 Jenkins (a)
) i v YT
By o
’ B T
2017 Jurkiewicz (a+b) 2004 Harris (a+b+c) 2002 Barborini (c) 1984 Shiraishi (b) t
. P ol 2 1975 Ban (a)
- * by
S\
A 8N |

current model (c)

Figure 2. History and evolution of GLC throughout the ages, as presented by Franklin [7,8],
Noda et al. [9], Crawford et al. [10], Jenkis et al. [12], Ban et al. [11], Shiraishi et al. [13], Bar-
borini et al. [14], Harris [17], Jurkiewicz et al. [18] and Shiell et al. [20]. The insert (bottom right)
shows the three elemental forms according to the curvature sign with labels a—c, respectively. The
labels in the models correspond to the elemental bricks of the models. Figure 2 is adapted from [24].
Reproduced with permission from Shiell, Journal of Non-Crystalline Solids; copyright 2021, Elsevier.



i ! vitreous carbon structure with holes

Physical route: laser ablation+ laser annealing
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laser

HRTEM (High Resolution Transmission Microscopy)
. A=248 nm, T=20ns, f= 1-150 Hz
Vitreous carbon sputtering regime 12-40 J/em?

laser
Figure 24. (a) Franklin’s view of the GLC; (b) part of HRTEM pattern corresponding to the GLC WLy ) o g
produced by PLD and laser annealing (see Figure 5); and (c) an elemental cell of a Schwarzite TPMS _ j’ _248 m’ f_m ﬂs;f'- I isa HZ
structure [22]. << Mﬁﬂﬂfﬁrﬂﬁﬂf# . 9.15-1?' Eﬂl’z'

Schwarzites are the candidate

_ Chemical route: pyrolisis (T>2500K sugar...)



Stability in carbon structures

1L
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Graphene is the reference, stability is defined by the difference between the cohesive energy
in the structure and the graphene (or diamond)

Brut force + quantum chemistry calculation or DFT and beyond:
exact but time (and money) consuming




L

POAV geometrical model
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> « classical approach » chemistry

POAV: « it orbital axis vector » concept of rehybridization

sm(@_ L 271/ AN /2

2 =

onship

graphene fullerene ™

Figure 5.10. Misalignment of the & orbital when the graphene plane is
curved.



@ 29 :
g ! % 7 Defect formula
Orbifold (Conway, Thurston) symmetry groups in two-d imensional spaces of constant curvature

The orbifold of such a group is “the surface divided by the group”

The local Gauss—Bonnet theorem relates the curvature
integrated over the surface area within a surface patch P
bounded by a p-sided polygon with geodesic edges

Hyde et al Acta Crystallogr. Sect. A Found. Adv. 2014, 70, 319-337

Table 4. Isometry (symmetry operator), orbifold symbol and associated Euler characteristic X{M. All
orbifolds contain a foundation sphere [70].

Isometry Orbifold Symbol xjw
(sphere) 1 2
pair of translations 0 -2
rotation centre A (1-A)/A
reflection line * -1
rotoreflection i (1-1)/2i
glide line X -1

stability needs minimization of X, .

Gauss Bonnet (discrete)

P
XIOC — {2 - }}}ﬂ' + Z E"j internal vertex angles vi
i=1

p-sided polygon

structure (graphene, fullerene...)

List of isometries

Xo = 2— E:: ixéoc

orbi foldi



defect formula

3 :
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Table 7. Isometries of H? limited to the Coxeter class and x, > —1/12. x, is the fractional Euler

Table 5. Isometries of E2 limited to the Coxeter class (for the definition, see [74]). x, is the fractional characteristic (see Section 5.7.2). Negative characteristics correspond to groups acting in the hy perbolic
Euler characteristic (see Section 5.7.2) [70]. (finite Euclidean reflection groups) plane [70].
Orbifold Symbol
Isometry Orbifold Symbol Group Number Xo i it Ae
*237 —1/84
graphene 238 —1/48
*333 p3ml 14 0 245 —1/40
*447 p4m 11 0 *239 —1/36
*2222 pmm 6 0 *23 (10) —1/30
*
Table 6. Isometries of S? limited to the Coxeter class. x, is the fractional Euler characteristic (see
Section 5.7.2) [70].
Isomet Orbifold Symbol Group Number ili
d Y i o Stab”’ty Egraphene>Efullerene>ETPMS
fullerene
i3m 215-220 Benedek et al  the Topological Background of Schwarzite Physics
6 /m:rnm 191;1 94 Table 12.1 Cohesive energy per atom (Ecgh). density, bulk modulus (B), bond strength (b) gnd
4 123142 conductive property for the smallest D-type schwarzites with tetrahedral symmetry, as compafed
/mmm to fullerite and diamond (Gaito et al. 2001; Benedek et al. 1997, 2001)
62m 189
mmm 47-74 D-type Econ Density
- - schwarzite (eV/atom) (glem?) B (Mbar) b (Mbar A3)
6mm 183
4mm 99-110 fec-(Cas)2  —7.66 133 1.58 16.12 Metal ¥
- fee-(Csg)a —71.71 1.05 1.26 16.20 Insulator
3m 156-161
mm?2 2546 fee-(Cyp)a —7.92 1.60 1.92 16.25 Metal
* m 69 fullerite —-7.99 1.71 0.14 — Insulator
diamond —8.36 352 442 16.71 Insulator

graphite -8.37
defect formula in agreement with full calculations



i ! summary: carbon molecules in terms of « orbifolds »
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Huson, D. Two-Dimensional Symmetry Mutation 1991.

- orbifold - symmetry group Poincaré disk model of the hyperbolic plane

Cao graphene
|é‘]>\
tk\b"}‘l
g
b —i- Octogonal tiling
Y \ P metie, N
Ceo |
4
) e
L

Figure 12. (left) Different orbifold (symmetry group, 532%, 632" and 932) corresponding to EE'ZE, §2
and H?, respectively. The two fullerenes Cyg (Ij;) and Cgp (Ij) belong to the 532* symmetry group.
Graphene belongs to the 632* symmetry group [76]. (right) Poincaré disk model of the hyperbolic
plane showing the tiling with heptagons or octagons (Platonic tessellation). The case of octagon tiling
corresponds to the double torus in Figure 9.



Willmore

1L

AR PR LR j compact oriented surface S embedded in R?

a and b are related to the flexural bending rigidity and bending stiffness

: .

H(S) =a f H%dA+b / KdA v=14+ b Poisson ratio 4 — b Willmore
? S
l 4. i
fullerenes
3,

H{8) = /(ZBmHE + BgK)dA _ y

S &, » B,,/2 < -B; <3B,,/2

G

B and Bg are the bending rigidity and the Gaussian bending %

/ = | Be<By/2 A senedeic et
By = 144eVand Bg = —1.52eV e etalies

0 ! 2 3 4 & : xwk”t al
(DFT calculations) 205}

other data are available! no consensus for B,, and B

Benedek, G.; Bernasconi, M.; Cinquanta, E.; D’Alessio, L.; De Corato, M. The topological background of schwarzite
physics. InThe Mathematics and Topology of Fullerenes; Springer: Berlin/Heidelberg, Germany, 2011; pp. 217-247.



Summary: cohesive energy fullerenes to graphene

S

Fullerenes Willmore 1.2 g _ 32
52 spherical |
1L ® _ 13
Willmore 1
| 3
128 §
Ab Initio ' >
DFT P
126 X
- L
| S
- 2.4 g
. )
122
POAV - '
0""'*2
0 50 100 150 200 250 300
Semi Ab Initio N

DFT+ tight binding



Conclusion and open issues

L
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topology

— understand some amazing properties (graphene, topological insulators...) « Monitoring » the periodicity
Work is in progress

s toolbox for kinetics (topological invariants are preserved)

——— Fermion (electron) base space+ fiber (bundle) space (trivial versus non trivial), boson (phonon) torus anyway

]R4

topology applied to physical problems (impurities in periodic cells versus impurities in torus)

non orientable structures (real projective surfaces...) R3
open

eometr
Work is in progress = 4

stability of carbon structures

Hyperbolic geometry

Fractal structures (example Hadamar walk in Sierpinsky carpet)

open . . . , .
P Chaotic motion « fuite de Poincaré «

Mechanical properties (macroscopic to microscopic) differential to discrete geometries



An example where topology improves results: Madelung constant
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Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants

Nicolas Tavernier,' Gian Luigi Bendazzoli,? Véronique Brumas,! Stefano }‘lwulg(tlistL"El and J. A. Bcrgier]':"ﬁ
! Laborutoire de Chimie et Physique Quantiques, IRSAMC, CNRS, Université de Touwlouse, UPS, France
? Universita di Bologna, Bologna, Italy
3 Buropean Theoretical Spectroscopy Facility (ETSF)
(Dated: July 23, 2020)

We propose a simple direct-sum method for the efficient evaluation of lattice sums in periodic
solids. 1t consists of two main principles: i) the creation of a supercell that has the topology of a
Clilford torus, which is a [lat, finite and border-less manifold; ii) the renormalization of the distance
between two points on the Clifford torus by defining it as the Euclidean distance in the embedding
space of the Clifford torus. Our approach does not require any integral transformations nor any
renormalization of the charges. We illustrate our approach by applying it to the calculation of the
Madelung constants of ionic crystals. We show that the convergence towards the system of infinite
size is monotonic, which allows for a straightforward extrapolation of the Madelung constant. We
are able to recover the Madelung constants with a remarkable accuracy, and at an almost negligible
computational cost, i.e., a few seconds on a laptop computer.

TABLE I1. The Madelung constant of Cs™ in CsCl for various
values of K, the mumber of unit cells per side. The extrapo-
lated K — co value has been obtained through a linear fit in
. . K2 according to Eq. using the CSC results that corre-
ESC direct: cube repllca spond to the two largest K values.

Ejven renormalization with

. . L. K ESC Evjen C5C
different fractional fictive charges 10 1651951301706 -3.1228169774 -1.7613129129
T —— 41 -172.84289458498 -0.4025235314 -1. 7613786888
f}i’?ﬁ“?:ffn‘:i.?ﬁ‘il?’%“-Ei”i’;;;;‘;‘?. T:f.i r;:ﬁf;ﬁi: ﬁ‘njg::: 42 1734399599212 -3.12258353436 -1.7614398086
malized distance between two jons in the Coulomb patential. 43 -181.0877243486 -0.4025065166 -1.7614967019

1t is the shortest distance in the embedding space of the torus.

(e duatdsnss Dueln iesctiniong ] 60 -247.6131281002 -3.1229317065 -1.7620703281
impossibe o represent graphicaly: CSC Clifford 80 -330.0917264008 -3.1220722138 -1.7623340348
100 -412.5400247666 -3.1229909632 -1.7624573245
120 -404.0883231553 -3.123001 1482 -1.7625237851
. 7626718322

Reference value: [Z1] -1.7626 747731




When mathematics confronted with the reality
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Mermin-Wagner theorem (short range order)

but

2D infinite sheets are no stable at T# 0 k Jahn Teller theorem
ripples are observed in graphene at long range order

“any molecule or complex ion in an
electronically degenerate state (excepted
spin) will be unstable relative to a
configuration of lower symmetry in which
the degeneracy is absent”,

spontaneous symmetry breakdown




An interface between different topological states has
topologically protected midgap states
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Aspect topologique:

Modele structural du carbone vitreux -
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Autre Composés non graphitisables: chlorure de polyvinylidéne C,H,Cl,
Autre Composé graphitisable: chlorure de polyvinyle C,H,Cl
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any stress tensor can be decomposed into the sum of hydrostatic and deviatoric stresses as follows
Tij — §5ij‘-7kk + '3

Von Mises

3 1

ovm = [ =0ijoij — —(oke)’ M
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shape

“an isotropic and ductile metal will yield when subjected to a complex loading condition.

The same is true for strain.

£ = —og€ﬂ+ €

1 .
where $6,¢,, is the hydrostatic term and ¢ is the deviatoric strain.

, Poisson's ratio 1¥ (nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the ! ) ) ;
specific direction of loading.

For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression.
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