

- I Rappels de l'utilisation de la symétrie en chimie
- II Résolution de l'équation de Schrödinger Méthode de Hückel
- III Orbitales moléculaires hélicoïdales
- IV Existe-t-il un lien entre ces OM hélicoïdales et les propriétés physico-chimiques des molécules ? (M. Rérat)

I – Rappels de l'utilisation de la symétrie en chimie

II – Résolution de l'équation de Schrödinger – Méthode de Hückel

III – Orbitales moléculaires hélicoïdales

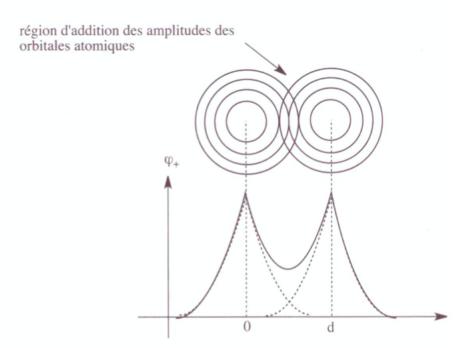
IV – Existe-t-il un lien entre ces OM hélicoïdales et les propriétés physico-chimiques des molécules ? (M. Rérat)

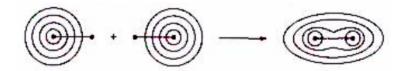
Cas des OA de type s : forme de l'OM symétrique

OM symétrique :

→ entre les 2 noyaux, les amplitudes des 2 OA s'ajoutent, les 2 OA se recouvrent favorablement (interférences constructives)

→ la densité électronique est assez importante entre les 2 noyaux



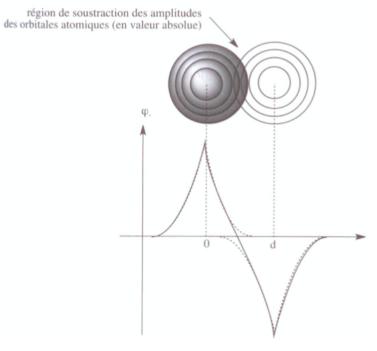


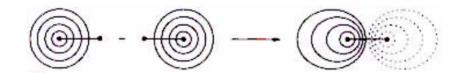
Cas des OA de type s : forme de l'OM antisymétrique

OM antisymétrique :

→ entre les 2 noyaux, les amplitudes des 2
OA se soustraient, les 2 OA se recouvrent
dévaforablement (interférences
destructives)

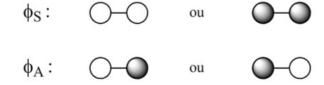
 \rightarrow la densité électronique entre les 2 noyaux est très faible, voire nulle au milieu (surface nodale, le plan de symétrie σ)





Nature liante / antiliante des OM

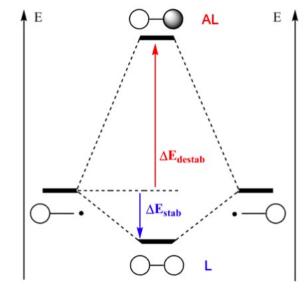
Convention de représentation :



- Pour Ψ_S, la probabilité de trouver des e- entre les 2 noyaux est grande
 ⇔ cela oblige les 2 noyaux à se rapprocher
 ⇒ Ψ_S est liante
- Inversement, pour Ψ_A , la probabilité de trouver des e- entre les 2 noyaux est faible, voire nulle $\rightsquigarrow \Psi_A$ est anti-liante
- Le caractère liant (ou anti-liant) est directement relié au recouvrement S entre les
 OA :
 - \rightsquigarrow S> 0 \Leftrightarrow interférences contructives, OM liante
 - \rightsquigarrow S < 0 \Leftrightarrow interférences destructives, OM anti-liante

Énergie des OM, diagramme d'interaction

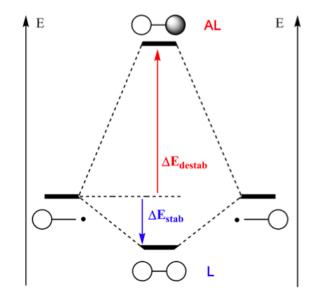
- Les 2 OA initiales sont à la même E
- L'interaction entre les OA conduit à des OM d'E ≠ → l'OM liante (L) : forte probabilité de trouver l'eentre les 2 noyaux ⇒ stabilisation en énergie ΔE_{stab}
 - ightharpoonupl'OM anti-liante (AL) : faible probabilité de trouver l'e- entre les 2 noyaux \Rightarrow déstabilisation en énergie ΔE_{destab}
- On peut montrer que $|\Delta E_{stab}| < |\Delta E_{destab}|$ (toujours vrai!)

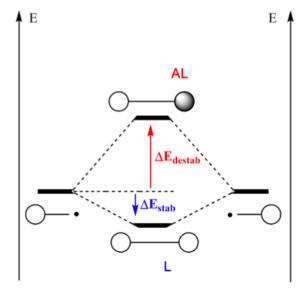


Théorie LCAO
$$\varphi_i = \sum_k c_{ik} \chi_k$$

Énergie des OM, diagramme d'interaction

On peut aussi montrer que plus le recouvrement est fort, plus l'interaction (constructuve ou destructive) entre les OA est efficace, plus l'énergie de stabilisation (et de déstabilisation) est grande :

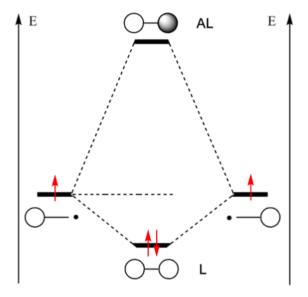




Remplissage des OM, aspects énergétiques

Interaction à 2 électrons

- Cas de H_2 : 2 e- à placer
- Les 2 e- sont stabilisés de ΔE_{stab}
 - → une interaction à 2 e- est favorable!
 - \rightsquigarrow la molécule H_2 existe!

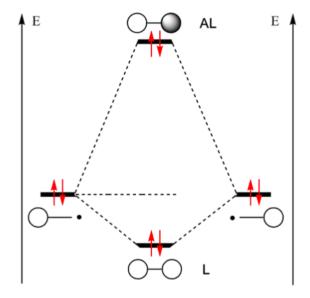


Remplissage des OM, aspects énergétiques

Interaction à 4 électrons

- La molécule He₂ peut-elle être stable ?
 → 4 e- à placer
- 2 e- sont stabilisés de ΔE_{stab}
- 2 e- sont déstabilisés de ΔE_{destab}
- or $|\Delta E_{stab}| < |\Delta E_{destab}|$ • une interaction à 4 e- est défavorable!
- He₂ est moins stable que 2 atomes He isolés

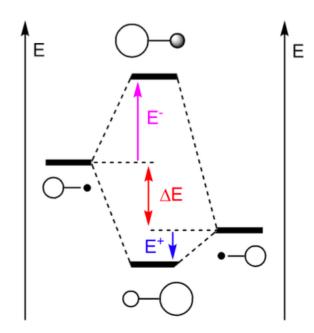
 → la molécule He₂ n'existe pas!



Interaction de 2 OA différentes

Cas de 2 OA s

- Onsidérons par exemple la molécule HHe^+ , base d'OA : $\{1s_H, 1s_{He}\}$, $(E_{1s}(H) = -13, 6\text{eV}, E_{1s}(He) = -24, 6\text{eV})$
- Les 2 OA ne sont pas identiques, l'interaction entre ces 2 OA n'est pas symétrique
- L'OM liante est majoritairement développée sur l'OA la plus basse en énergie (1s_{He})
- L'OM anti-liante est majoritairement développée sur l'OA la plus haute en énergie (1s_H)
- On a toujours $|E^-| > |E^+|$
- Plus ΔE est grand, moins il y a d'interaction entre les 2 OA $(E^{\pm} \propto \frac{S^2}{\Delta E})$
 - ightharpoonup en pratique, si $\Delta E > 15 \mathrm{eV}$, l'interaction entre 2 OA est négligeable

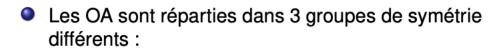


Interaction de 2 OA différentes

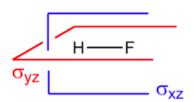
Recouvrement et symétrie

- lacktriangle Molécule H-F
 - \leadsto base d'OA : $\{1s(H), 2s(F), 2p_x(F), 2p_y(F), 2p_z(F)\}$
 - \rightsquigarrow on a donc 5 $OA \Leftrightarrow 5 OM$;
- Onsidérons 2 plans de symétrie de la molécule : σ_{xz} et σ_{yz}
- Tableau de symétrie des OA :

OA	$\sigma_{\scriptscriptstyle XZ}$	σ_{yz}
$1s_H$	S	S
$2s_F$	S	S
$2p_x$	S	Α
$2p_y$	Α	S
$2p_z$	S	S



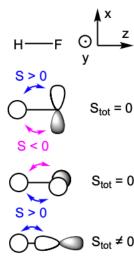
- Groupe $(S, S) : 1s_H, 2s_F, 2p_z$
- Groupe $(S,A):2p_x$
- Groupe (A, S): $2p_y$



Interaction de 2 OA différentes

Recouvrement et symétrie

- L'OA $1s_H$ peut se recouvrir avec l'OA $2s_F$, mais :
- Parmi les OA 2p du fluor, seule la $2p_z$ a la même symétrie que l'OA 1s de l'hydrogène
- Seule l'OA $2p_z$ a un recouvrement non nul avec l'OA 1s du fluor



Utilisation de la symétrie

Seules les OA ayant la même symétrie peuvent interagir entre-elles! Le recouvrement entre OA de symétries différentes est forcément nul.

Diagramme d'OM de H - F

Exemple de liaison ionique...

- Construisons le diagramme d'OM de H F
- les OA 2p_x et 2p_y ne sont pas de la même symétrie que 1s_H
 → elles restent inchangées
 → OM non-liantes
- les OA $1s_H$ et $2p_z$ ont la même symétrie et sont relativement proches en énergie
 - → 1 OM liante et une OM antiliante

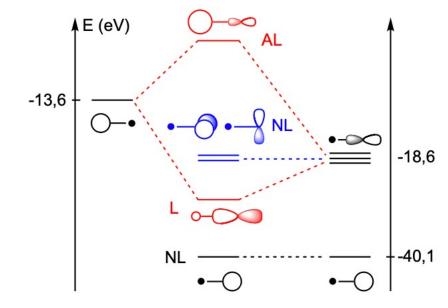
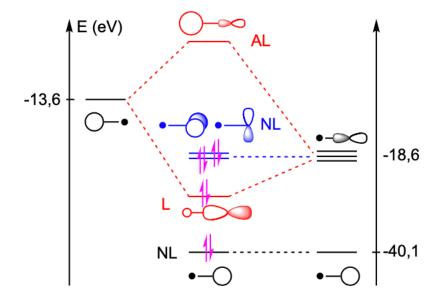


Diagramme d'OM de H - F

Exemple de liaison ionique...

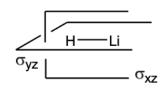
- Remplissons les OM avec les 8 e^- :
- On retrouve 3 OM non liantes occupées; ces OM sont développées sur F
 → 3 doublets non-liants portés par F dans la structure de Lewis
- Une OM liante entre H et F est occupée, elle est majoritairement développée sur F
 - → cette OM traduit le caractère ionique de la

liaison (cf. différence d'électronégativité)



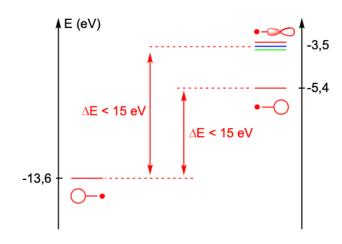
Position du problème

■ Molécule H - Li (hydrure de lithium) \rightsquigarrow base d'OA : $\{1s(H), 2s(Li), 2p_x(Li), 2p_y(Li), 2p_z(Li)\}$ \rightsquigarrow on a donc 5 $OA \Leftrightarrow 5$ OM



• Comme pour HF, on utilise les 2 plans de symétrie σ_{xz} et σ_{yz}

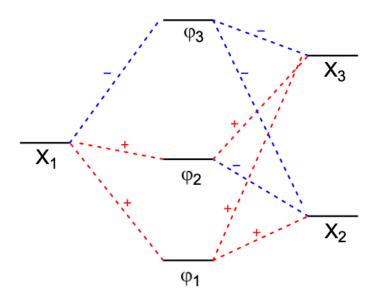
	OA	σ_{xz}	σ_{yz}
O•	$1s_H$	S	S
•—•	$2s_{Li}$	S	S
	$2p_x$	S	Α
·—Ø	$2p_y$	Α	S
•—∞	$2p_z$	S	S



• Il faut donc considérer l'interaction entre les 3 orbitales $1s_H, 2s_{Li}, 2p_z$...

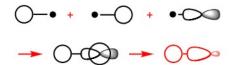
Règles pour la construction des OM

- L'interaction entre 3 orbitales χ_1, χ_2, χ_3 conduit à 3 OM $\varphi_1, \varphi_2, \varphi_3$
- Dans l'OM la plus basse φ_1 , les interactions entre χ_1 et χ_2 et entre χ_1 et χ_3 sont liantes (+) L'énergie de φ_1 est plus basse que celle de la plus basse des orbitales de départ
- Dans l'OM la plus haute φ_3 , les interactions entre χ_1 et χ_2 et entre χ_1 et χ_3 sont anti-liantes (-) L'énergie de φ_3 est supérieure à celle de l'orbitale de départ la plus haute
- Dans l'OM d'énergie intermédiaire, il y a une interaction liante entre χ_1 et χ_3 et une antiliante entre χ_1 et χ_2



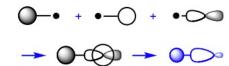
Application à la molécule d'hydrure de lithium

Interaction $1s_H + 2s_{Li} + 2p_z$:



Interaction $1s_H - 2s_{Li} + 2p_z$:

Interaction $1s_H - 2s_{Li} - 2p_z$:



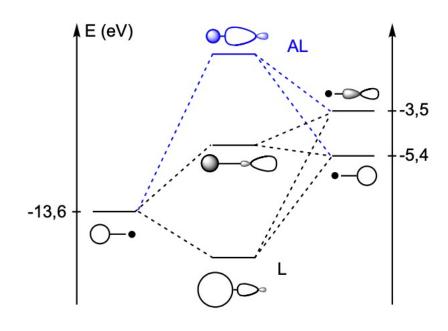
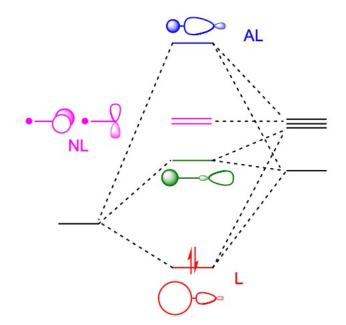


Diagramme d'interaction global de H-Li

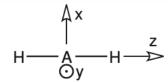
- Diagramme d'interaction global : au diagramme précédent il faut rajouter les 2
 OA non liantes 2px et 2py du Li
- Structure électronique de H-Li: il faut placer 2 e- dans l'OM la plus basse en énergie
- Cette OM occupée est liante entre H et Li, la correspondance avec la structure de Lewis H — Li est immédiate
- La polarité de la liaison découle de la forme de l'OM occupée : elle est principalement développée sur l'OA 1s_H, ce qui entraîne la polarisation de la molécule dans le sens ^{-δ}H - Li^{+δ}
- Cette description est en accord avec celle déduite des échelles d'électronégativité (H plus électronégatif que Li)
 - → la liaison est partiellement ionique



Molécules AH2 linéaires

Choix des fragments

La molécule possède plusieurs éléments de symétrie : σ_{xz} , σ_{yz} , σ_{xy} , i



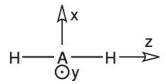
- Est-il nécessaire de tous les considérer ? Non, ici on peut se limiter aux 3 plans (car $i = \sigma_{xz} \ o \ \sigma_{yz} \ o \ \sigma_{xy}$), l'inversion n'apporterait pas plus d'information que l'on ait déjà avec les 3 plans
- Les deux fragments doivent possèder les mêmes propriétés de symétrie (notamment le plan σ_{xy}), on les choisit donc selon :

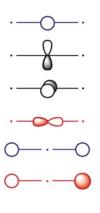
- Le fragment 1 apporte 4 OA : $\{s, p_x, p_y, p_z\}$
- Le fragment 2 apporte 2 OA : $\{\sigma_{H_2}, \sigma_{H_2}^*\}$
- On aura donc 6 OM en tout
- Quelles orbitales interagissent entre-elles entre les 2 fragments?
 - → uniquement les orbitales de même symétrie...

Molécules AH₂ linéaires

Propriétés de symétrie des orbitales de fragment

• Table de propriétés de symétrie par rapport à σ_{xz} , σ_{yz} , σ_{xy} :





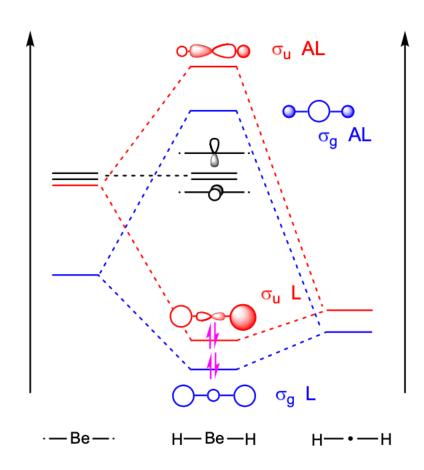
Orb.	σ_{xz}	σ_{yz}	σ_{xy}
2 <i>s</i>	S	S	S
$2p_x$	S	Α	S
$2p_y$	Α	S	S
$2p_z$	S	S	Α
σ_{H_2}	S	S	S
$\sigma_{H_2}^*$	S	S	Α

- On trouve 4 sous-groupes de symétrie :
- groupe (S, S, S): 2 orbitales
- groupe (S, A, S): 1 orbitale
- groupe (A, S, S): 1 orbitale
- groupe (S, S, A): 2 orbitales

Molécules AH2 linéaires

Diagramme d'OM de BeH2

- Groupe (S, A, S): 1 OM NL
- Groupe (A, S, S): 1 OM NL
- Groupe (S, S, S): 1 OM σ_g L et 1 OM σ_g AL
- Groupe (S, S, A): 1 OM σ_u L et 1 OM σ_u AL
- Configuration électronique : $(1\sigma_g)^2(1\sigma_u)^2$
- Indice de liaison : $i_l = \frac{2 \times 2 0}{2} = 2$ liaisons ! en accord avec la structure de Lewis



Molécules AH₂ linéaires

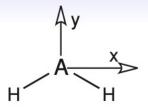
Structure électronique de BeH2

- Configuration électronique : $(1\sigma_g)^2(1\sigma_u)^2$
- Indice de liaison : $i_l = \frac{2 \times 2 0}{2} = 2$ liaisons ! en accord avec la structure de Lewis
- lci les 2 OM occupées contribuent toutes les 2 aux 2 liaisons *BeH*, ont dit que les OM sont **délocalisées**, c'est l'ensemble des 2 OM qui représente les 2 liaisons de la structure de Lewis
- À l'intérieur de chaque OM $(1\sigma_g)$ et $(1\sigma_u)$, le caractère liant $H^{(1)}-Be$ et $Be-H^{(2)}$ est le même, on peut donc conclure quant à l'équivalence des 2 liaisons, mais l'énergie des 2 OM occupées $(1\sigma_g)$ et $(1\sigma_u)$ n'est pas la même...
- Il faut bien distinguer 2 choses : les deux liaisons BeH sont équivalentes mais les deux OM qui les décrivent ne le sont pas, ni du point de vue de leur forme, ni du point de vue de leur énergie

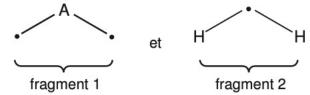
Molécules AH2 coudées

Choix des fragments

Considérons maintenant les molécules du type AH₂ coudées (H₂O par exemple)



La molécule possède 2 plans de symétrie : σ_{xy} et σ_{yz} , les fragments doivent posséder les mêmes propriétés de symétrie, on les choisit donc selon :

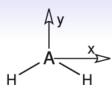


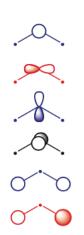
- Le fragment 1 apporte 4 OA : $\{s, p_x, p_y, p_z\}$
- Le fragment 2 apporte 2 OA : $\{\sigma_{H_2}, \sigma_{H_2}^*\}$
- On aura donc 6 OM en tout
- Quelles orbitales interagissent entre-elles entre les 2 fragments?
 - → uniquement les orbitales de même symétrie...

Molécules AH₂ coudées

Propriétés de symétrie des orbitales de fragment

Table de propriétés de symétrie par rapport à σ_{xy} et σ_{yz} :





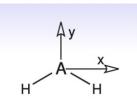
Orb.	σ_{xy}	σ_{yz}
2 <i>s</i>	S	S
$2p_x$	S	Α
$2p_y$	S	S
$2p_z$	Α	S
σ_{H_2}	S	S
$\sigma_{H_2}^*$	S	Α

- On trouve 4 sous-groupes de symétrie :
- groupe (S, S): 3 orbitales (a_1)
- groupe (S, A): 2 orbitales (b_2)
- groupe (A, S): 1 orbitale (b_1)
- Le nom de la symétrie des orbitales $(a_1, a_2, b_1...)$ vient de la théorie des groupes (cf. cours de L2)
- Le changement majeur par rapport aux molécules AH_2 linéaires est que l'orbitale p_y possède à présent les mêmes propriétés de symétrie que les orbitales s et σ_{H_2} :

Molécules AH2 coudées

Propriétés de symétrie des orbitales de fragmen

Table de propriétés de symétrie par rapport à σ_{xy} et σ_{yz} :



groupe (S, S): 3 orbitales (a_1)

groupe (S, A): 2 orbitales (b_2)

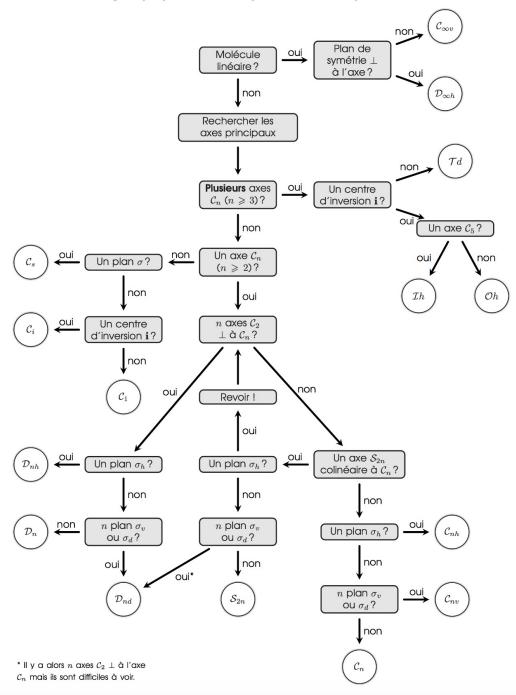
groupe (A, S): 1 orbitale (b_1)



Orb.	σ_{xy}	σ_{yz}
2 <i>s</i>	S	S
$2p_x$	S	Α
$2p_y$	S	S
$2p_z$	Α	S
σ_{H_2}	S	S
$\sigma_{H_2}^*$	S	Α
_		

C_{2v}	E	$C_2(z)$	$\sigma_{_{v}}(xz)$	$\sigma'_{\nu}(yz)$		
$A_{\rm l}$	1	1	1	1		x^2, y^2, z^2
A_{2}	1	1	-1	-1	R_z	xy
$B_{_{1}}$	1	-1	1	-1	x,R_y	xy xz
B_2	1	-1	-1	1	y,R_x	yz

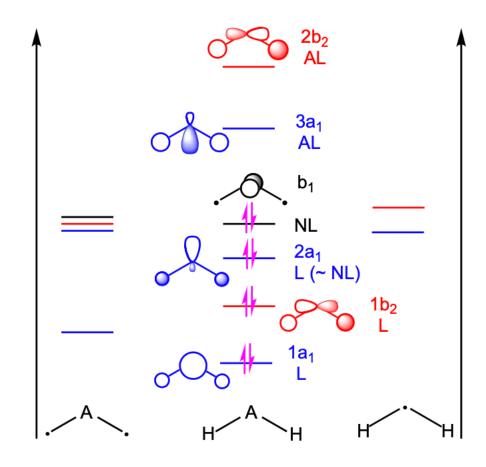
Recherche du groupe ponctuel de symétrie d'un objet



Molécules AH2 coudées

Diagramme d'interaction et formes des OM, exemple de H_2O

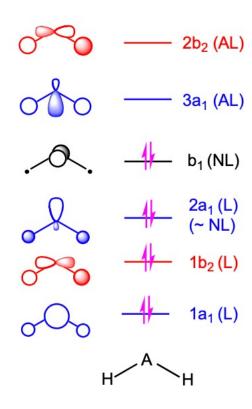
- Groupe (A, S): 1 OM NL (b₁)
- Groupe (S, A) : 1 OM L et 1
 OM AL (b₂)
- Groupe (A, S): 1 OM L, 1 OM très peu L (quasi NL) et 1 OM AL (a₁)
- Configuration électronique : $(1a_1)^2(1b_2)^2(2a_1)^2(1b_1)^2$
- Indice de liaison : $i_l = \frac{2 \times 2 0}{2} = 2$ liaisons ! en accord avec la structure de Lewis



Molécules AH₂ coudées

Structure électronique de H_2O

- Configuration électronique : $(1a_1)^2(1b_2)^2(2a_1)^2(1b_1)^2$
- Indice de liaison : $i_l = \frac{2 \times 2 0}{2} = 2$ liaisons ! en accord avec la structure de Lewis
- Une OM occupée (b_1) est NL, une autre occupée est quasi NL $(2a_1)$, ces 2 OM sont centrées sur l'oxygène, cela correspond aux 2 doublets NL de la structure de Lewis
- lci les 2 OM occupées contribuent toutes les 2 aux 2 liaisons OH, ont dit que les OM sont délocalisées, c'est l'ensemble des 2 OM qui représente les 2 liaisons de la structure de Lewis
- À l'intérieur de chaque OM $(1a_1)$ et $(1b_2)$, le caractère liant $H^{(1)} O$ et $O H^{(2)}$ est le même, on peut donc conclure quant à l'équivalence des 2 liaisons, mais l'énergie des 2 OM occupées $(1a_1)$ et $(1b_2)$ n'est pas la même...
- Comme pour BeH₂: ici les deux liaisons OH sont équivalentes mais les deux OM qui les décrivent ne le sont pas, ni du point de vue de leur forme, ni du point de vue de leur énergie



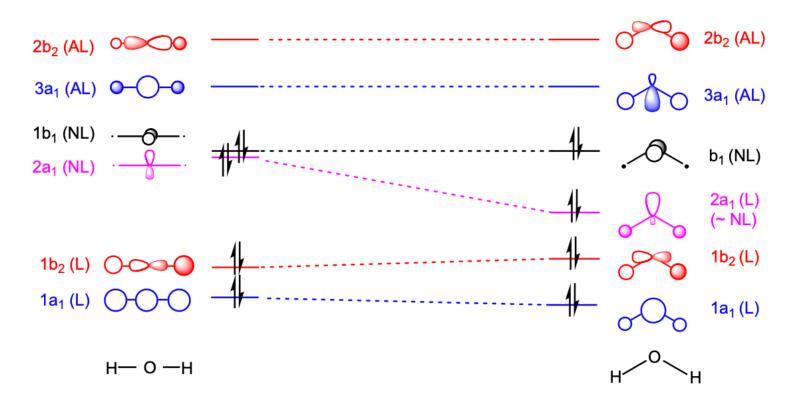
Géométrie d'équilibre des molécules

Diagramme de corrélation (diagramme de Walsh)

- Une molécule adopte une géométrie qui minimise son énergie
- Dans la méthode VSEPR, on admet que le terme énergétique principal est celui associé à la répulsion des paires électroniques
- La connaissance des OM permet aussi de comprendre/prédire la géométrie des molécules, elle permet de retrouver les résultats de l'approche VSEPR, et même d'aller plus loin
- C'est néanmoins plus difficile à mettre en œuvre, il faut connaître de façon détaillée la structure électronique des molécules (forme et énergie des OM)
- Nous allons illustrer comment on retrouve par exemple la géométrie d'équilibre d'une molécule : H_2O , en considérant 2 géométries possibles (linéaire et coudée)
- Pour chaque OM, on va s'intéresser à savoir comment son énergie évolue en fonction d'un paramètre géométrique (ici l'angle θ entre les liaisons)
- La figure qui représente ces variations est appelée diagramme de corrélation ou diagramme de Walsh
- On pourra ainsi expliquer pourquoi, d'un point de vue orbitalaire, la molécule H_2O est coudée

Diagramme de Walsh AH_2 linéaire $\rightarrow AH_2$ coudée

Géométrie d'équilibre de H_2O



Finalement, H_2O est une molécule coudée à cause de la stabilisation de l'OM $2a_1$ qui passe du caractère purement NL (géométrie linéaire) à faiblement L (géométrie coudée)

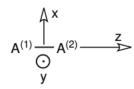
Molécules diatomiques homonucléaires A2

Position du problème

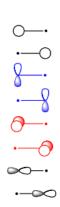
• Considérons les molécules diatomiques homonucléaires A_2 , (A est un élément de la 2^e période, par ex. N_2 , O_2 ,...)

■ Base d'OA :
$$\{2s^{(1)}, 2p_x^{(1)}, 2p_y^{(1)}, 2p_z^{(1)}, 2s^{(2)}, 2p_x^{(2)}, 2p_y^{(2)}, 2p_z^{(2)}\}$$

 \rightarrow 8 OA \Leftrightarrow 8 OM



Oomme précédemment, utilisons les 2 plans de symétrie σ_{xz} et σ_{yz} :



OA	σ_{xz}	σ_{yz}
$2s^{(1)}$	S	σ_{yz} S
$2s^{(2)}$	S	S
$2p_x^{(1)}$	S	Α
$2p_{X}^{(2)}$	S	Α
$2p_{y}^{(1)}$	Α	S
$2p_{v}^{(2)}$	Α	S
$2p_z^{(1)}$ $2p_z^{(2)}$	S	S
$2p_z^{(2)}$	S	S

- Les OA sont réparties dans 3 groupes de symétrie différents :
- Groupe $(S, S): \{2s^{(1)}, 2s^{(2)}, 2p_z^{(1)}, 2p_z^{(2)}\}$ \rightarrow recouvrement axial (ou encore σ , çàd le long de l'axe internucléaire)
- Groupe $(S, A): \{2p_x^{(1)}, 2p_x^{(2)}\}\$ \rightarrow nature du recouvrement?
- Groupe (A, S): $\{2p_y^{(1)}, 2p_y^{(2)}\}$

 \leadsto nature du recouvrement ?

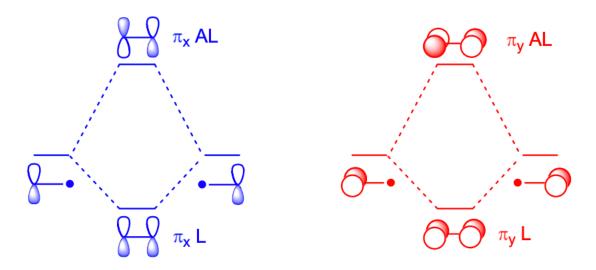
$C_{_{\infty_{\mathcal{V}}}}$	E	$2C_{_{\infty}}^{\Phi}$	 $\infty \sigma_{v}$		
$A_1 \equiv \Sigma^+$	1	1	 1	Z	$x^2 + y^2, z^2$
$A_{_{2}}\equiv \Sigma^{^{-}}$	1	1	 -1	$R_{_{_{Z}}}$	
$E_{_1} \equiv \Pi$	2	$2\cos\Phi$	 0	$(x,y),(R_x,R_y)$	(xz, yz)
$E_2 \equiv \Delta$	2	$2\cos 2\Phi$	 0		$\left(x^2-y^2,xy\right)$
$E_3 \equiv \Phi$	2	$2\cos 3\Phi$	 0		•

Interaction de 2 OA p "parallèles"

Notion de recouvrement latéral

- Entre les 2 OA p_x (et de façon identique entre les 2 OA p_y) on peut envisager un recouvrement latéral, de part et d'autre de l'axe internucléaire

 ~ ce type de recouvrement est dit recouvrement de type π
- L'interaction des 2 OA p_x (idem pour les 2 OA p_y) conduit à une OM π liante et une OM π anti-liante :



- Pour ces OM, l'axe internucléaire appartient à une surface nodale
- lacktriangle De façon générale, un recouvrement de type π est moins efficace qu'un recouvrement σ
- Notation : les OM anti-liantes σ (ou π) sont souvent notées σ^* (respectivement π^*)

Molécules diatomiques homonucléaires A₂

Construction des OM σ

- Pevenons maintenant aux OA du groupe (S, S), çàd les OA qui vont participer aux OM σ (le type de recouvrement ne peut être qu'axial)
- 4 OA : $\{2s^{(1)}, 2s^{(2)}, 2p_z^{(1)}, 2p_z^{(2)}\}\$ donc 4 OM... doit-on considérer l'interaction entre ces 4 OA?
- Tout dépend de la position relative des OA 2s et $2p_z$...
- Pour $O: E_{2s} = -32$, 4eV et $E_{2p} = -15$, 9eV $\Rightarrow \Delta E > 15$ eV
- A priori pour O₂, on ne va pas tenir compte des interactions croisées 2s ↔ 2pz mais uniquement des interactions 2s ↔ 2s et 2pz ↔ 2pz
- Ceci est valable aussi pour F_2 , en effet pour $F: E_{2s} = -40$, 1eV et $E_{2p} = -18$, 6eV \rightarrow le diagramme d'OM de F_2 se ra semblable à celui de O_2
- Par contre pour les autres atomes de la 2^e période (Li, \ldots, N) , $\Delta E_{2s-2p} < 15 \text{eV}$, il faudra donc tenir compte des interactions croisées entre les 4 OA...

Molécules diatomiques homonucléaires A2

Diagramme d'OM de O₂

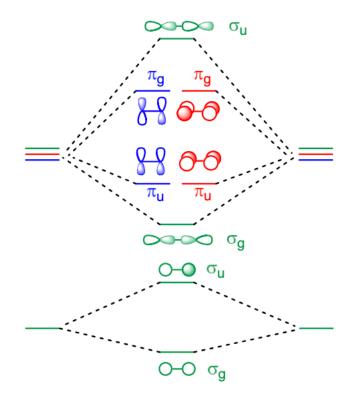
- Interaction 2s ↔ 2s
 → 1 OM σ et 1 OM σ*
- Interaction $2p_z \leftrightarrow 2p_z$ • 1 OM σ et 1 OM σ^*
- Interaction $2p_x \leftrightarrow 2p_x$ $\rightsquigarrow 1 \text{ OM } \pi_x \text{ et } 1 \text{ OM } \pi_x^*$
- Interaction $2p_y \leftrightarrow 2p_y$ $\sim 1 \text{ OM } \pi_y \text{ et } 1 \text{ OM } \pi_y^*$
- On peut placer les 12 e^- dans les OM \rightsquigarrow la configuration électronique de O_2 est : $(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(\pi_x)^2(\pi_y)^2(\pi_x^*)^1(\pi_y^*)^1$



Molécules diatomiques homonucléaires A2

Notation g/u

- Pour les molécules diatomiques homonucléaires A_2 , il existe une autre opération de symétrie qui n'a pas (encore) été considérée : l'inversion i, çàd la symétrie centrale par rapport au point situé au milieu de la liaison A-A
- Lorsqu'une molécule est centrosymétrique (çàd invariantee p/r à i), les OM sont soit S p/r à i, soit AS
- Pour les OM S p/r à i, on rajoute g en indice (gerade) : σ_g , π_g
- Pour les OM AS p/r à i, on rajoute u en indice (ungerade) : σ_u , π_u
- Attention : n'utilisez cette notation que pour les molécules qui possèdent la symétrie d'inversion
- Attention (bis) : la notation g/u n'est pas reliée au caractère liant/anti-liant des OM...



Molécules diatomiques homonucléaires A₂

Cas où A = Li, ..., N

- Revenons aux cas où A = Li, ..., N, çàd lorsque $\Delta E_{2s-2p} < 15 \text{eV}$
- Il faut considérer l'interaction entre les 4 OA $\{2s^{(1)}, 2s^{(2)}, 2p_z^{(1)}, 2p_z^{(2)}\}$, \sim cela revient en fait à faire interagir les 4 OM $\{1\sigma_g, 1\sigma_u, 2\sigma_g, 2\sigma_u\}$ précédentes
- Par symétrie, seules les 2 OM σ_g peuvent interagir entre elles :

$$\sigma_g$$
 L σ_g L-NL

O De la même façon, seules les 2 OM σ_u peuvent interagir entre elles :

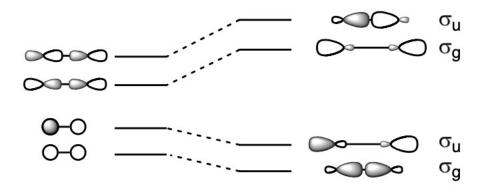
$$\sigma_{u}$$
 AL-NL

On obtient finalement 1 OM liante, 2 OM quasi non-liantes (1 strictement anti-liante et 1 strictement liante)
 et 1 OM anti-liante

Molécules diatomiques homonucléaires A₂

Cas où A = Li, ..., N

On peut aussi prévoir si chaque OM est stabilisée ou bien déstabilisée en énergie :



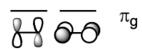
- Les OM $(1\sigma_g)$ et $(1\sigma_u)$ sont stabilisées, et l'OM anti-liante $(2\sigma_u)$ est déstabilisée \rightarrow cela n'aura que peu d'incidences sur le diagramme d'OM
- lacktriangle Mais l'OM liante $(2\sigma_g)$ se retrouve déstabilisée, en pratique elle se retrouve au dessus des OM π_u

Molécules diatomiques homonucléaires A2

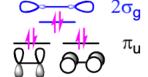
Diagramme d'OM de N_2

Le diagramme d'OM final fait donc apparaître l'OM $(2\sigma_g)$ entre les OM π

• Ce diagramme d'OM qualitatif sera valable pour Li_2 , Be_2 , Be_2 , C_2 , N_2 , seule l'occupation électronique est différente



- Considérons par exemple le diazote N_2 , il faut placer 10 e^-
- La configuration électronique du diazote N_2 est : $(1\sigma_g)^2(1\sigma_u)^2(\pi_u)^2(\pi_u)^2(2\sigma_g)^2$



On peut calculer l'indice de liaison :

$$=\frac{2\times 4-2\times 1}{2}=3$$

$$1\sigma_{\rm u}$$

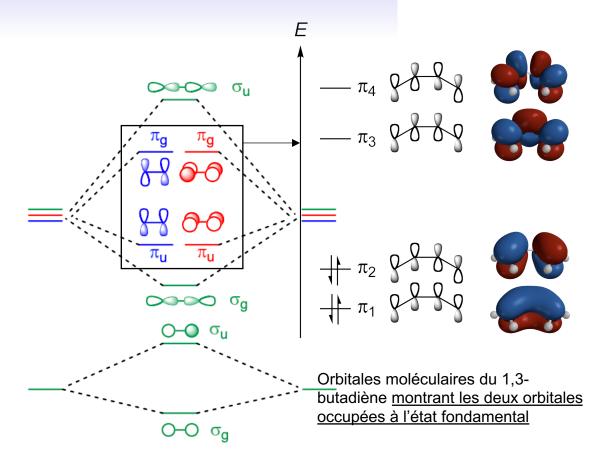
On retrouve bien une liaison triple, comme le prévoit la structure de Lewis

$$1\sigma_{q}$$

Molécules diatomiques homonucléaires A₂

Notation g/u

- Pour les molécules diatomiques homonucléaires A₂, il existe une autre opération de symétrie qui n'a pas (encore) été considérée : l'inversion i, çàd la symétrie centrale par rapport au point situé au milieu de la liaison A A
- Lorsqu'une molécule est centrosymétrique (çàd invariantee p/r à i), les OM sont soit S p/r à i, soit AS
- Pour les OM S p/r à i, on rajoute g en indice (gerade) : σ_g , π_g
- Pour les OM AS p/r à i, on rajoute u en indice (ungerade) : σ_u , π_u
- Attention : n'utilisez cette notation que pour les molécules qui possèdent la symétrie d'inversion
- Attention (bis) : la notation g/u n'est pas reliée au caractère liant/anti-liant des OM...



Méthode de Hückel

I – Rappels de l'utilisation de la symétrie en chimie

II – Résolution de l'équation de Schrödinger – Méthode de Hückel

III – Orbitales moléculaires hélicoïdales

IV – Existe-t-il un lien entre ces OM hélicoïdales et les propriétés physico-chimiques des molécules ? (M. Rérat)

Théorie LCAO
$$\begin{aligned} \phi_i &= \sum_k c_{ik} \chi_k \\ \mathbf{H} \sum_k c_{ik} \chi_k &= \varepsilon_i \sum_k c_{ik} \chi_k \end{aligned} \qquad \underbrace{ \begin{aligned} \phi &= c_a \chi_a + c_b \chi_b \\ \mathbf{Schrödinger} \end{aligned} }_{\mathbf{Schrödinger}} \mathbf{H} [c_a \chi_a + c_b \chi_b] = \varepsilon (c_a \chi_a + c_b \chi_b) \\ c_a \mathbf{H} [\chi_a] + c_b \mathbf{H} [\chi_b] = \varepsilon (c_a \chi_a + c_b \chi_b) \end{aligned} }_{\mathbf{C}_a \mathbf{H} \chi_a d \tau} + c_b \int \chi_a \mathbf{H} \chi_b d \tau = \varepsilon (c_a \int \chi_a \chi_a d \tau + c_b \int \chi_a \chi_b d \tau) \\ \int \chi_a \mathbf{H} \chi_a d \tau = \mathbf{H}_{aa} \end{aligned}$$

Ce terme représente approximativement l'énergie de l'orbitale χ_a dans l'atome isolé

Théorie LCAO
$$\begin{aligned} \phi_i &= \sum_k c_{ik} \chi_k \\ \mathbf{H} \sum_k c_{ik} \chi_k &= \varepsilon_i \sum_k c_{ik} \chi_k \end{aligned} \qquad \underbrace{ \begin{aligned} \phi &= c_a \chi_a + c_b \chi_b \\ \mathbf{Schrödinger} \end{aligned}}_{\mathbf{Schrödinger}} \quad \mathbf{H} [c_a \chi_a + c_b \chi_b] = \varepsilon (c_a \chi_a + c_b \chi_b) \\ c_a \mathbf{H} [\chi_a] + c_b \mathbf{H} [\chi_b] = \varepsilon (c_a \chi_a + c_b \chi_b) \end{aligned}$$

Ce terme traduit l'interaction des deux orbitales χ_a et χ_b dans la liaison a-b

 $\int \chi_{\rm a} \mathbf{H} \chi_{\rm b} d\tau = \mathbf{H}_{\rm ab}$

Théorie LCAO
$$\phi_i = \sum_k c_{ik} \chi_k$$

$$\mathbf{H} \sum_{k} c_{ik} \chi_{k} = \varepsilon_{i} \sum_{k} c_{ik} \chi_{k} \qquad \qquad \mathbf{Soh}$$

$$\varphi = c_{a}\chi_{a} + c_{b}\chi_{b}$$

Schrödinger

$$\mathbf{H}[c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}}] = \varepsilon(c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}})$$

$$c_{\mathbf{a}}\mathbf{H}[\chi_{\mathbf{a}}] + c_{\mathbf{b}}\mathbf{H}[\chi_{\mathbf{b}}] = \varepsilon(c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}})$$

$$c_{a} \int \chi_{a} \mathbf{H} \chi_{a} d\tau + c_{b} \int \chi_{a} \mathbf{H} \chi_{b} d\tau = \varepsilon (c_{a} \int \chi_{a} \chi_{a} d\tau + c_{b} \int \chi_{a} \chi_{b} d\tau)$$

$$\int \chi_{\mathbf{a}} \chi_{\mathbf{a}} d\tau = \langle \chi_{\mathbf{a}} | \chi_{\mathbf{a}} \rangle = 1$$

Théorie LCAO
$$\varphi_i = \sum_k c_{ik} \chi_k$$

$$\mathbf{H} \sum_{k} c_{ik} \chi_{k} = \varepsilon_{i} \sum_{k} c_{ik} \chi_{k} \qquad \qquad \mathbf{\phi} = \mathbf{0}$$

$$\varphi = c_{a}\chi_{a} + c_{b}\chi_{b}$$
Schrödinger

$$\mathbf{H}[c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}}] = \varepsilon(c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}})$$

$$c_{\mathbf{a}}\mathbf{H}[\chi_{\mathbf{a}}] + c_{\mathbf{b}}\mathbf{H}[\chi_{\mathbf{b}}] = \varepsilon(c_{\mathbf{a}}\chi_{\mathbf{a}} + c_{\mathbf{b}}\chi_{\mathbf{b}})$$

$$c_{\rm a} \int \chi_{\rm a} \mathbf{H} \chi_{\rm a} d\tau + c_{\rm b} \int \chi_{\rm a} \mathbf{H} \chi_{\rm b} d\tau = \varepsilon (c_{\rm a} \int \chi_{\rm a} \chi_{\rm a} d\tau + c_{\rm b} \int \chi_{\rm a} \chi_{\rm b} d\tau)$$

$$\int \chi_{\mathbf{a}} \chi_{\mathbf{b}} d\tau = \langle \chi_{\mathbf{a}} | \chi_{\mathbf{b}} \rangle = \mathbf{S}$$

Théorie LCAO
$$\phi_i = \sum_k c_{ik} \chi_k$$

$$\phi = c_a \chi_a + c_b \chi_b$$

$$\phi = c_a \chi_a + c_b \chi_b$$
 Schrödinger
$$c_a \mathbf{H}[\chi_a] + c_b \mathbf{H}[\chi_b] = \varepsilon (c_a \chi_a + c_b \chi_b)$$

 $c_{a} \int \chi_{a} \mathbf{H} \chi_{a} d\tau + c_{b} \int \chi_{a} \mathbf{H} \chi_{b} d\tau = \varepsilon (c_{a} \int \chi_{a} \chi_{a} d\tau + c_{b} \int \chi_{a} \chi_{b} d\tau)$

$$\chi_a \longrightarrow c_a H_{aa} + c_b H_{ab} = \varepsilon (c_a + c_b S)$$

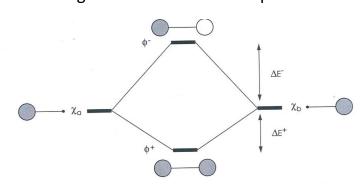
$$\chi_b \longrightarrow c_a H_{ba} + c_b H_{bb} = \varepsilon (c_a S + c_b)$$

$$\begin{cases} c_{a}(H_{aa} - \varepsilon) + c_{b}(H_{ab} - \varepsilon S) = 0\\ c_{a}(H_{ab} - \varepsilon S) + c_{b}(H_{bb} - \varepsilon) = 0 \end{cases}$$

$$\begin{vmatrix} H_{aa} - \varepsilon & H_{ab} - \varepsilon S \\ H_{ab} - \varepsilon S & H_{bb} - \varepsilon \end{vmatrix} = 0$$

$$\begin{split} &(H_{aa} - \varepsilon)(H_{bb} - \varepsilon) - (H_{ab} - \varepsilon S)^2 = 0 \\ &\varepsilon^2 (1 - S^2) - \varepsilon (H_{aa} + H_{bb} - 2SH_{ab}) + H_{aa}H_{bb} - H_{ab}^2 = 0 \end{split}$$

La résolution de l'équation séculaire fournit 2 solutions qui sont les énergies de 2 OM formées à partir des 2 OA



$$C = C'$$
 molécule éthylène (système π)

Énergies des OM (valeurs propres) :

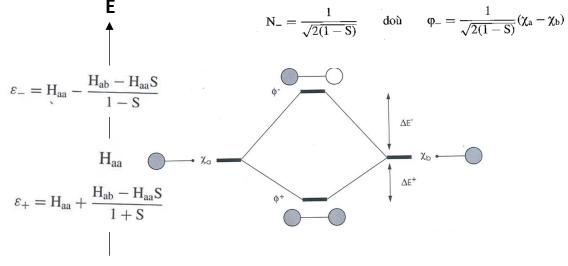
$$\begin{vmatrix} H_{aa} - \varepsilon & H_{ab} - \varepsilon S \\ H_{ab} - \varepsilon S & H_{bb} - \varepsilon \end{vmatrix} = 0$$

 $\begin{vmatrix} H_{aa} - \varepsilon & H_{ab} - \varepsilon S \\ H_{ab} - \varepsilon S & H_{bb} - \varepsilon \end{vmatrix} = 0$ Dans le cas d'une molécule homonucléaire (a=b) les OA $\chi_a \text{ et } \chi_b \text{ sont identiques : } H_{aa} = H_{bb}$

$$(H_{aa} - \varepsilon)^{2} - (H_{ab} - \varepsilon S)^{2} = 0$$

$$H_{aa} - \varepsilon = \pm (H_{ab} - \varepsilon S)$$

On obtient 2 racines:



Expression des OM (vecteurs propres):

$$\begin{matrix} H & H \\ C = C \\ H & H \end{matrix}$$

molécule éthylène (système π)

Dans la méthode de Hückel simple on a : $H_{aa} = H_{bb} = \alpha$ $H_{ab} = \beta$ et $S_{ab} = 0$. L'équation séculaire devient :

$$\begin{vmatrix} H_{aa} - \varepsilon & H_{ab} - \varepsilon S \\ H_{ab} - \varepsilon S & H_{bb} - \varepsilon \end{vmatrix} = 0$$

$$\mathcal{E}_{-} = H_{aa} - \frac{H_{ab} - H_{aa}S}{1 - S}$$

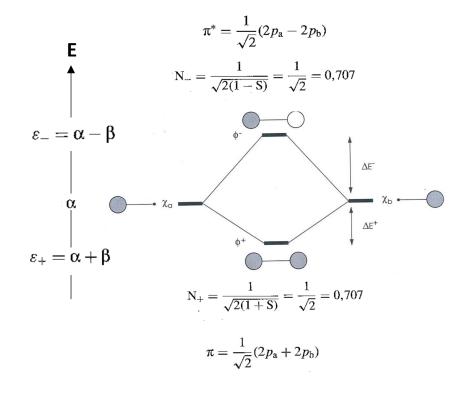
$$\mathcal{E}_{+} = H_{aa} + \frac{H_{ab} - H_{aa}S}{1 + S}$$

$$N_{-} = \frac{1}{\sqrt{2(1 - S)}} \quad doù \quad \phi_{-} = \frac{1}{\sqrt{2(1 - S)}} (\chi_{a} - \chi_{b})$$

$$\mathcal{E}_{+} = H_{aa} + \frac{H_{ab} - H_{aa}S}{1 + S}$$

$$N_{+} = \frac{1}{\sqrt{2(1 + S)}} \quad doù \quad \phi_{+} = \frac{1}{\sqrt{2(1 + S)}} (\chi_{a} + \chi_{b})$$

$$\begin{vmatrix} \alpha - \varepsilon & \beta \\ \beta & \alpha - \varepsilon \end{vmatrix} = 0$$



$$H_{11} = H_{22} = H_{33} = \alpha$$

$$H_{13} = 0$$
 $H_{12} = H_{23} = \beta$

$$S_{11} = S_{22} = S_{33} = 1$$
 et $S_{12} = S_{23} = 3$

$$S_{11} = S_{22} = S_{33} = 1 \quad \text{et} \quad S_{12} = S_{23} = S_{13} = 0$$

$$\begin{vmatrix} \alpha - \varepsilon & \beta & 0 \\ \beta & \alpha - \varepsilon & \beta \\ 0 & \beta & \alpha - \varepsilon \end{vmatrix} = 0 \qquad \begin{vmatrix} x = \frac{\alpha - \varepsilon}{\beta} \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0$$

$$\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0$$

$$x_1 = -\sqrt{2}$$

$$x_2 = 0$$

$$x_3 = -\sqrt{2}\beta$$

$$x_1 = -\sqrt{2}$$

$$x_2 = 0$$

$$x_3 = \alpha - \sqrt{2}\beta$$

$$x_3 = \alpha - \sqrt{2}\beta$$

$$x_4 = \alpha + \sqrt{2}\beta$$

$$x_5 = \alpha - \sqrt{2}\beta$$

$$x_6 = \alpha + \sqrt{2}\beta$$

$$x_7 = \alpha + \sqrt{2}\beta$$

$$x_8 = \alpha - \sqrt{2}\beta$$

$$x_8 = \alpha - \sqrt{2}\beta$$

$$x_8 = \alpha - \sqrt{2}\beta$$

$$\begin{vmatrix} x = \overline{\beta} \\ \hline \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} =$$

$$x^3 - 2x = 0 \qquad \Leftrightarrow \qquad x(x^2 - 2) = 0$$

$$x_1 = -\sqrt{2}$$
 $\varepsilon_1 = \alpha + \sqrt{2} \beta$
 $x_2 = 0$ $\varepsilon_2 = \alpha$
 $x_3 = +\sqrt{2}$ $\varepsilon_3 = \alpha - \sqrt{2} \beta$

$$\varepsilon_3 = \alpha - \sqrt{2} \beta$$
 π_3

$$\varepsilon_2 = \alpha$$

$$\varepsilon_1 = \alpha \pm \sqrt{2} \beta$$
 π_1

$$\begin{cases} xc_1 + c_2 & = 0 \\ c_1 + xc_2 + c_3 & = 0 \\ c_2 + xc_3 & = 0 \end{cases}$$

$$\varepsilon_3 = \alpha - \sqrt{2} \beta$$
 π_3

$$\varepsilon_2 = \alpha$$

$$\varepsilon_1 = \alpha \pm \sqrt{2} \beta$$
 π_1

$$\begin{cases} xc_1 + c_2 = 0 \\ c_1 + xc_2 + c_3 = 0 \\ c_2 + xc_3 = 0 \end{cases}$$

$$x_1 (x_1 = -\sqrt{2})$$

$$\begin{cases} -\sqrt{2} c_1 + c_2 & = 0 \\ c_1 - \sqrt{2} c_2 + c_3 & = 0 \\ c_2 - \sqrt{2} c_3 & = 0 \end{cases} \longrightarrow c_2 = \sqrt{2} c_1 \quad ; \quad c_2 = \sqrt{2} c_3 \longrightarrow c_1 = c_3$$

$$c_2 = \sqrt{2} c_1$$

$$c_2 = \sqrt{2} c_3$$

$$\sqrt{2} c_3 \longrightarrow$$

$$\pi_1 = c_1(p_1) + c_2(p_2) + c_3(p_3)$$
$$= c_1(p_1 + \sqrt{2} p_2 + p_3)$$

$$\langle \pi_1 | \pi_1 \rangle = 1$$
 \Rightarrow $c_1^2 (1^2 + (\sqrt{2})^2 + 1^2) = 1$
 \Rightarrow $c_1 = \frac{1}{2}$

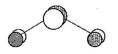
$$\pi_1 = \frac{1}{2} (p_1 + \sqrt{2} p_2 + p_3)$$

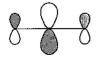
$$\pi_2 = \frac{1}{\sqrt{2}} (p_1 - p_3)$$

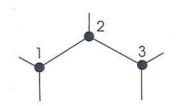
$$(\varepsilon_3 = \alpha - \sqrt{2} \beta; \ x_3 = \sqrt{2})$$

 $\varepsilon_2 = \alpha$; $x_2 = 0$

$$\pi_3 = \frac{1}{2} (p_1 - \sqrt{2} p_2 + p_3)$$



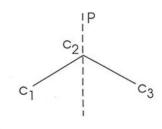




Le calcul des énergies et des coefficients des OM π de l'allyle a été effectué sans tenir compte des propriétés de symétries de la molécule.

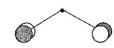
On peut pourtant constater que les OM π_1 et π_3 sont symétriques par rapport au plan médiateur passant par l'atome central. Alors que l'OM π_2 est antisymétrique par rapport à ce même plan.

C_{2v}	E	$C_2(z)$	$\sigma_{_{v}}(xz)$	$\sigma'_{\nu}(yz)$		
$A_{\rm l}$	1	1	1	1	z	x^2, y^2, z^2
A_{2}	1	1	-1	-1	R_z	xy
$B_{_{1}}$	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	y,R_x	yz





$$\pi_2 = \frac{1}{\sqrt{2}} \left(p_1 - p_3 \right)$$



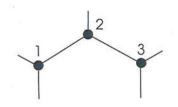
$$\pi_3 = \frac{1}{2} \left(p_1 - \sqrt{2} \ p_2 + p_3 \right)$$



Dans des systèmes plus compliqués que l'allyle la résolution de l'équation séculaire est souvent plus difficile puisqu'elle est de degrés n pour un polyèdre contenant n atomes de carbone et qu'il a pas souvent de racine évidente. Une méthode efficace pour simplifier les calculs consiste à introduire un ou plusieurs éléments de symétrie de la molécule, éléments par rapport auxquels les OM seront symétriques ou antisymétriques.

Soient c_1 , c_2 et c_3 les coefficients des OA p_1 , p_2 et p_3 dans une OM donnée :

$$\pi_1 = c_1(p_1) + c_2(p_2) + c_3(p_3)$$



$$\pi_1 = c_1(p_1) + c_2(p_2) + c_3(p_3)$$

Si cette OM est symétrique par rapport à *P*, on a :

$$c_3 = c_1$$

Si cette OM est antisymétrique par rapport à P, on a :

$$c_3 = -c_1$$

$$c_2 = -c_2 \qquad \Rightarrow \qquad c_2 = 0$$

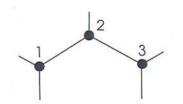
On peut donc traiter séparément ces deux familles d'OM.

Pour les OM qui sont symétriques on a :

$$\begin{vmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0 \longrightarrow \begin{cases} xc_1 + c_2 & = 0 \\ c_1 + xc_2 + c_3 = 0 \\ c_2 + xc_3 = 0 \end{cases} \longrightarrow \begin{cases} xc_1 + c_2 & = 0 \\ c_1 + xc_2 + c_1 = 0 \\ c_2 + xc_1 = 0 \end{cases}$$

$$\begin{cases} xc_1 + c_2 & = 0 \\ c_1 + xc_2 + c_1 & = 0 \\ c_2 + xc_1 & = 0 \end{cases}$$

$$\begin{cases} xc_1 + c_2 = 0 \\ 2c_1 + xc_2 = 0 \end{cases}$$



molécule allyle (système
$$\pi$$
)
$$\begin{cases} xc_1 + c_2 = 0 \\ 2c_1 + xc_2 = 0 \end{cases}$$

 $\begin{vmatrix} x & 1 \\ 2 & x \end{vmatrix} = 0$ Le déterminant séculaire devient :

$$\varepsilon_1 = \alpha + \sqrt{2} \beta \qquad \qquad \varepsilon_3 = \alpha - \sqrt{2} \beta$$

$$\downarrow$$

$$\left\{ \begin{array}{cccc} -\sqrt{2} \, c_1 & + & c_2 & = & 0 \\ 2c_1 & - & \sqrt{2} \, c_2 & = & 0 \end{array} \right. \longrightarrow c_2 = \sqrt{2} \, c_1$$
or: $c_3 = c_1 \longrightarrow \pi_1 = c_1(p_1 + \sqrt{2} \, p_2 + p_3)$

Pour l'OM antisymétrique on a :

$$c_{3} = -c_{1} c_{2} = -c_{2} \Rightarrow c_{2} = 0 \longrightarrow \begin{cases} xc_{1} + c_{2} & = 0 \\ c_{1} + xc_{2} + c_{3} & = 0 \\ c_{2} + xc_{3} & = 0 \end{cases} \longrightarrow$$

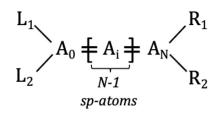
x = 0

 $\varepsilon_2 = \alpha$

- I Rappels de l'utilisation de la symétrie en chimie
- II Résolution de l'équation de Schrödinger Méthode de Hückel

III – Orbitales moléculaires hélicoïdales

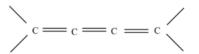
IV – Existe-t-il un lien entre ces OM hélicoïdales et les propriétés physico-chimiques des molécules ? (M. Rérat)



EXPLICIT COMPUTATIONS OF C_2 -ADAPTED LINEAR COMBINATION OF MOS FOR THE $\theta=0$ TWISTED [N]-CUMULENE, N=3,4.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x,z) plane and (z,y) plane respectively corresponding to a N+1 linear chain in the (z,y) plane represented in blue and a N-1 linear chain in the (x,z) plane.

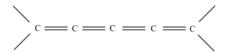
$$\theta = 0 - N \text{ odd}$$



N = 3 (6 π electrons)

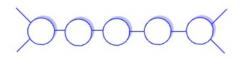
y part:

x part:

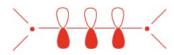


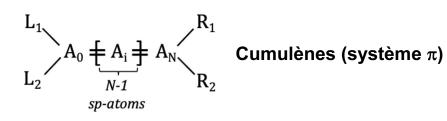
 $N = 4 (8\pi \text{ electrons})$

y part:



x part:

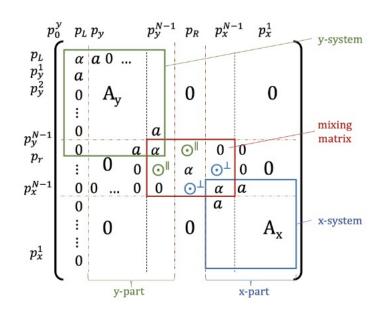




EXPLICIT COMPUTATIONS OF C_2 -ADAPTED LINEAR COMBINATION OF MOS FOR THE $\theta=0$ TWISTED [N]-CUMULENE, N=3,4.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x,z) plane and (z,y) plane respectively corresponding to a N+1 linear chain in the (z,y) plane represented in blue and a N-1 linear chain in the (x,z) plane.

Méthode de Hückel



The case $\theta = 0$

y part:

x part:

$$c_{y}(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$
$$z = 1, \dots, N-1,$$

$$a_{N,n}(z)=\sin(k_nz), \ z=1,\ldots,N,$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

$$L_{1}$$

$$A_{0} \neq A_{i} \neq A_{N}$$

$$R_{1}$$

$$R_{2}$$

$$R_{2}$$

$$Sp-atoms$$

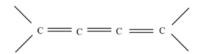
2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

$$a_{N,n}(z) = \sin(k_n z), \quad z = 1, \dots, N,$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

$$\theta = 0 - N \text{ odd}$$



N = 3 (6 π electrons)

y part:

x part:

$$c_x(0)=0$$

$$c_x(N)=0$$

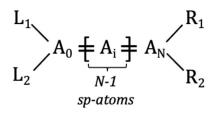
$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

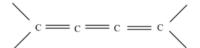
$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$

$$z = 1, \dots, N-1,$$

 $2\cos(\frac{\pi n}{N+2})$



 $\theta = 0 - N \text{ odd}$



 $N = 3 (6\pi \text{ electrons})$

y part:

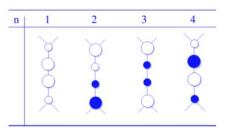
x part:

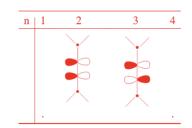
$$c_x(0) = 0$$

$$c_x(N) = 0$$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x,z) plane and (z,y) plane respectively corresponding to a N+1 linear chain in the (z,y) plane represented in blue and a N-1 linear chain in the (x,z) plane.





$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$

$$z = 1, \dots, N-1,$$

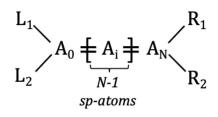
$$a_{N,n}(z) = \sin(k_n z), \ z = 1, ..., N,$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

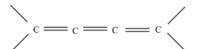
z/n	1	2	3	4
0	0.37	0.60	0.60	0.37
1	0.60	0.37	-0.37	-0.60
2	0.60	-0.37	-0.37	0.60
3	0.37	-0.60	0.60	-0.37
$\lambda_{n,y}$	1.618	0.618	-0.618	-1.618

 $2\cos(\frac{\pi n}{N+2})$

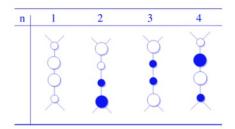
z/n	1	2	3	4
0		0	0	
1		0.707	0.707	
2		0.707	-0.707	
3		0	0	
$\lambda_{n,x}$		1.000	-1.000	



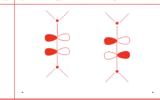
 $\theta = 0 - N \text{ odd}$



N = 3 (6 π electrons)



1	2	3	4



$$c_x(0)=0$$

$$c_x(N)=0$$

x part:

2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x, z) plane and (z, y)plane respectively corresponding to a N+1 linear chain in the (z, y) plane represented in blue and a N-1 linear chain in the (x,z) plane.

 $c_{y,3,n}^{\theta=0}(z)$

0.60

-0.37

-0.37

0.60

0.618 -0.618 -1.618

0.37

-0.60

0.60

-0.37

0.60

-0.60

 $c_{x,3,n}^{\theta=0}(z)$

ande of two he and
$$(z,y)$$
 chain in the chain in the

$$c_{y}(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

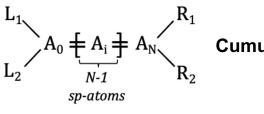
$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$

$$z = 1, \dots, N-1,$$

$$a_{N,n}(z) = \sin(k_n z), \ z = 1, ..., N,$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$



2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x,z) plane and (z,y) plane respectively corresponding to a N+1 linear chain in the (z,y) plane represented in blue and a N-1 linear chain in the (x,z) plane.

$$c_{y}(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),\,$$

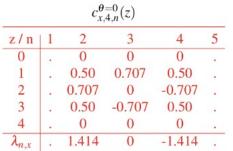
$$z=1,\ldots,N-1,$$

$$a_{N,n}(z) = \sin(k_n z), \ z = 1, ..., N,$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

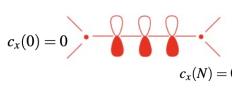
$$N = 4$$
 (8 π electrons)

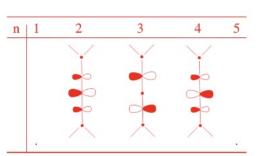
$c_{y,4,n}^{\theta=0}(z)$							
z/n	1	2	3	4	5		
0	0.289	0.50	0.577	0.50	0.289		
1	0.50	0.50	0	-0.50	-0.5		
2	0.577	0	-0.577	0	0.577		
3	0.50	-0.50	0	0.50	-0.5		
4	0.289	-0.50	0.577	-0.50	0.289		
$\lambda_{n,v}$	1.732	1	0	-1	-1.732		

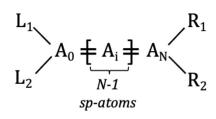


n	1	2	3	4	5
	8	d	∇	8	V
	Q	Ŏ.	I	•	
	9			0	\bigcirc
	à		Q		ā

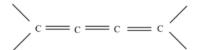
x part:



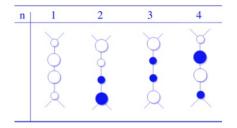




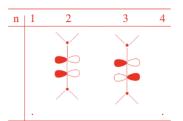
 $\theta = 0 - N \text{ odd}$



N = 3 (6 π electrons)



y part:



$$c_x(0)=0$$

$$c_x(N)=0$$

x part:

2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x, z) plane and (z, y)plane respectively corresponding to a N+1 linear chain in the (z, y) plane represented in blue and a N-1 linear chain in the ven (x,z) plane.

$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$

$$z = 1, ..., N-1,$$

$$a_{N,n}(z) = \sin(k_n z), \ z = 1, ..., N,$$

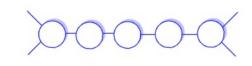
$$c = c = c = c$$

$$k_n = \frac{n\pi}{N+1}, \text{ for } 1 \le n \le N$$

$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

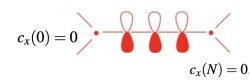
$$N = 4 (8\pi \text{ electrons})$$

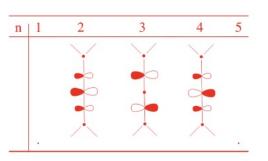
y part:

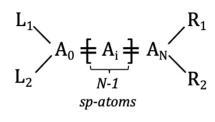


n	1	2	3	4	5
	8	8	∇	8	V
	Q	Ŏ.	I		
	9				Q
	7				7

x part:

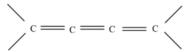




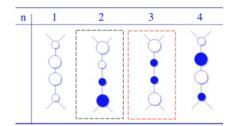


 $\theta = 0 - N \text{ odd}$

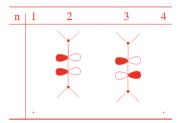
2. The case $\theta = 0$



N = 3 (6 π electrons)



y part:

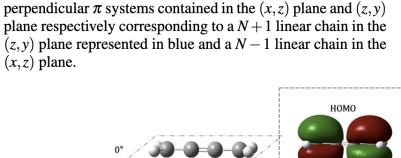


x part :

$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$
 $z = 1, \dots, N-1,$



For $\theta = 0$, the π -system of cumulenes can be obtained by a N + 1-chain of atoms from z = 0 to z = N governing the p_y

As already observed, the molecular orbitals are made of two

part and a N-1 chain for p_x for z=1 to z=N-1.

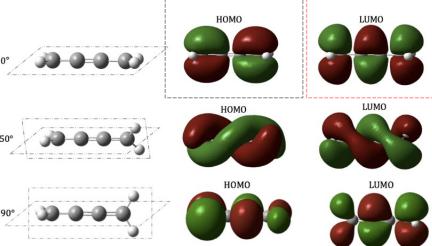
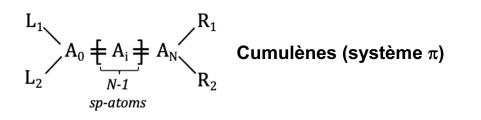


FIG. 18: Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d.p) level of theory for the N=3 cumulene in its ground singlet state at a 0° , 50° and 90° rotation (see Table S5 for details).



2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x,z) plane and (z,y) plane respectively corresponding to a N+1 linear chain in the (z,y) plane represented in blue and a N-1 linear chain in the (x,z) plane.

$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),\,$$

$$z=1,\ldots,N-1,$$

$$a_{N,n}(z) = \sin(k_n z), \quad z = 1, \dots, N,$$

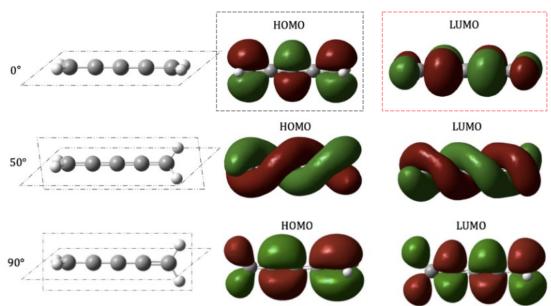
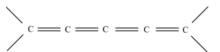


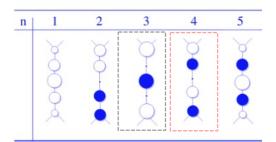
FIG. 19: Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d.p) level of theory for the N=4 cumulene in its ground singlet state at a 0° , 50° and 90° rotation (see Table S7 for details).



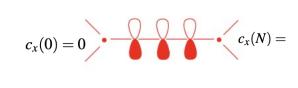
$$k_n = \frac{n\pi}{N+1}$$
, for $1 \le n \le N$

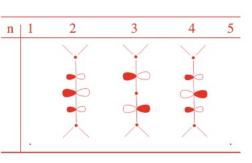
$$N = 4 (8\pi \text{ electrons})$$

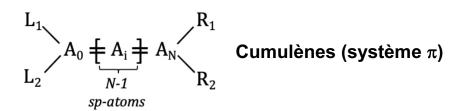
y part :

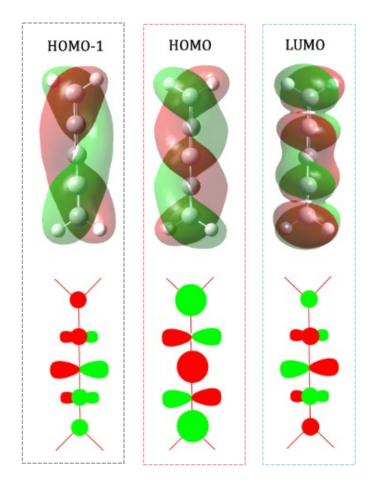


x part:









2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

As already observed, the molecular orbitals are made of two perpendicular π systems contained in the (x, z) plane and (z, y) plane respectively corresponding to a N+1 linear chain in the (z, y) plane represented in blue and a N-1 linear chain in the (x, z) plane.

$$\lambda_{5,y} = -1.732$$

$$\lambda_{3,x} = -1.414$$

$$\lambda_{4,y} = -1.000$$

$$\lambda_{2,x} \lambda_{3,y} = 0.000$$

$$0.000$$

$$\lambda_{2,y} = 1.000$$

$$\lambda_{1,x} = 1.414$$

$$\lambda_{1,y} = 1.732$$

 $2\cos(\frac{\pi n}{N+2})$

$$N=4$$

Symmetry-adapted linear combinations in C_2 of atomic orbitals coming from the p_x and p_y systems are possible only for atomic orbitals which are not too far in energy. As a consequence, we must understand how the two spectrums are intricated. Denoting by $\lambda_{n,y}$ the eigenvalues induced by the y part and $\lambda_{n,x}$ the eigenvalues induced by the x part we obtain an intrication of the following form

$$\lambda_{N+1,y} < \lambda_{N-1,x} < \lambda_{N,y} < \dots < \lambda_{2,y} < \lambda_{1,x} < \lambda_{1,y}. \tag{84}$$

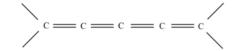
$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

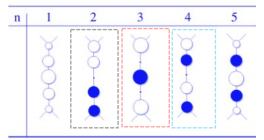
$$z = 0, \ldots, N$$

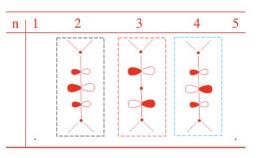
$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$

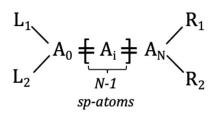
$$z = 1, \dots, N-1,$$

 $\theta = 0 - N$ even









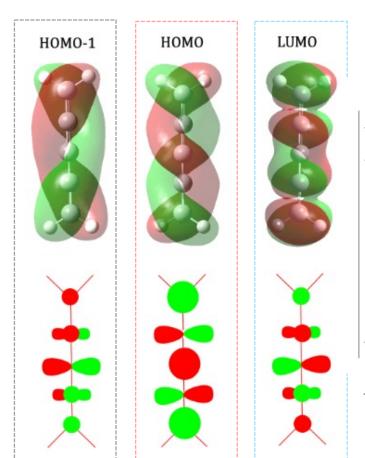
2. The case $\theta = 0$

For $\theta=0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.

$$c_y(z) = \sqrt{\frac{2}{N+2}} a_{N+1,n}(z+1) = \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(1+z)}{N+2}\right),$$

$$z = 0, \ldots, N$$

$$c_x(z) = \sqrt{\frac{2}{N}} a_{N-1,n-1}(z) = \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right),$$
 $z = 1, \dots, N-1,$



$$\psi_n(z) = \left(\frac{\sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right)}{\sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(z+1)}{N+2}\right)} \right)$$

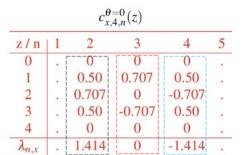
Looking for C_2 -adapted MOs, we obtain:

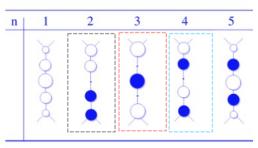
$$\psi_{+,n} = \frac{1}{\sqrt{2}} \left(c_y(z) p_y + c_x(z) p_x \right)$$

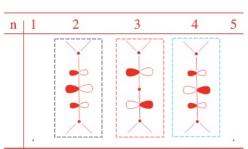
`c == c	c	— c	— c′
,			— (

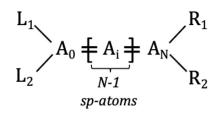
 $\theta = 0 - N$ even

$c_{y,4,n}^{m{ heta}=0}(z)$						
z/n	1 1	22	3	4	. 5	
0	0.289	0.50	0.577	0.50	0.289	
1	0.50	0.50	0	-0.50	-0.5	
2	0.577	0	-0.577	0	0.577	
3	0.50	-0.50	0	0.50	-0.5	
4	0.289	-0.50	0.577	-0.50	0.289	
$\lambda_{n,y}$	1.732	1	0	-1	-1.732	



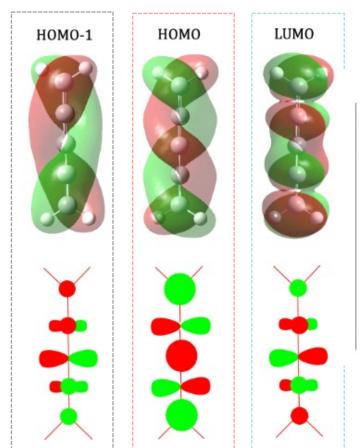






2. The case $\theta = 0$

For $\theta = 0$, the π -system of cumulenes can be obtained by a N+1-chain of atoms from z=0 to z=N governing the p_y part and a N-1 chain for p_x for z=1 to z=N-1.



$$\psi_n(z) = \left(\begin{array}{c} \sqrt{\frac{2}{N}} \sin\left(\frac{(n-1)\pi z}{N}\right) \\ \sqrt{\frac{2}{N+2}} \sin\left(\frac{n\pi(z+1)}{N+2}\right) \end{array} \right)$$

	$\psi_{4,n}(z)$							
z/n	1	2	3	4	5			
1	$\begin{pmatrix} 0 \\ 0.289 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.577 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.289 \end{pmatrix}$			
2	$\begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0.707 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$			
3	$\begin{pmatrix} 0 \\ 0.577 \end{pmatrix}$	$\binom{0.707}{0}$	$\begin{pmatrix} 0 \\ -0.577 \end{pmatrix}$	$\begin{pmatrix} -0.707 \\ 0 \end{pmatrix}$	$\binom{0}{0.577}$			
4	$\begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}$	$\begin{pmatrix} -0.707 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$			
5	$\begin{pmatrix} 0 \\ 0.289 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.577 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -0.5 \end{pmatrix}$	$\binom{0}{0.289}$			
				<u>i</u>	1			

Looking for C_2 -adapted MOs, we obtain:

$$\psi_{+,n}=rac{1}{\sqrt{2}}\left(c_y(z)p_y+c_x(z)p_x
ight)$$

We directly deduce the relationship on the distribution of the angles an explicit expression can be obtained for the angle $\mathscr{A}_{N,n,+,0,z}$ between $\psi_{+,n}(0)$ and $\psi_{+,n}(z)$ and is given by:

$$\mathscr{A}_{N,n,+,0,z} = cos^{-1} \left(arepsilon(a_{N,n}(1)) arepsilon(a_{N,n}(z+1)) rac{1}{\sqrt{1 + rac{a_{N,n}(z)^{-2}}{a_{N,n}(z+1)}}}
ight)$$

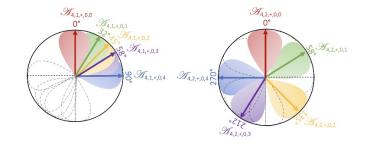




FIG. 11: Distribution for $\theta = \frac{\pi}{2}$, N = 4, n = 1, n = 2, n = 3 and n = 4

$$L_{1}$$

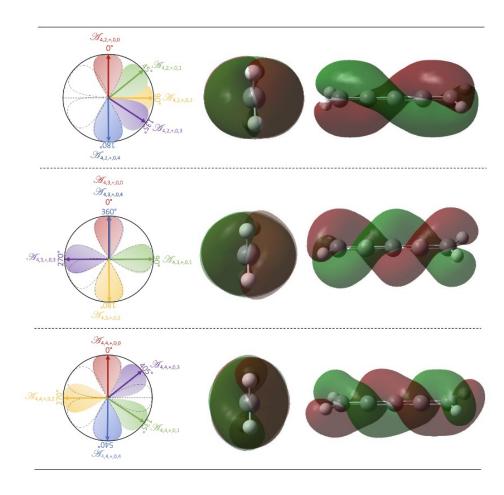
$$L_{2}$$

$$A_{0} \underset{N-1}{ \longleftarrow} A_{N}$$

$$R_{2}$$

$$R_{2}$$

2. The case $\theta = 0$



Symmetry properties

The existence of helical states implies that we have a mixing between MOs p_x and p_y in a very special way. In particular, we assume that there exists what is called an **helicogenic** C_2 symmetry axis (see¹), i.e. a C_2 axis such that $C_2(p_x)=p_y$.

As an example, for the ethylene we have:

- the planar configuration of the ethylene possesses three C_2 axes: one directed along the chain and two passing through the centre directed along x and y. None of these C_2 axes are helicogenic.
- the orthogonal configuration also possesses three C_2 axes: one along the chain and two which are dihedral. These last two axes are helicogenic.

However, as already discussed in the previous section, none of these two examples possess explicit helical MOs. In the first case, no mixing is induced by the symmetries so that one cannot wait for helical MOs. For the orthogonal case however, this is due to the fact that despite the mixing generated by the symmetry axes, the characteristic polynomial factorizes and the behaviour of the p_x and p_y family is disconnected. This last property can be related to the existence of another symmetry of the molecule, namely that the orthogonal configuration of the ethylene possesses a mirror-plane symmetry. As a consequence, we have to assume that no mirror-plane symmetry must be present in order to generate helical MOs.

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Cite This: ACS Cent. Sci. XXXX, XXX, XXX-XXX

Coarctate and Möbius: The Helical Orbitals of Allene and Other Cumulenes

Marc H. Garner, *, †, †, § Roald Hoffmann, *, § Sten Rettrup, † and Gemma C. Solomon †, † o

 † Department of Chemistry and † Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen \emptyset ,

[§]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 4850, United States

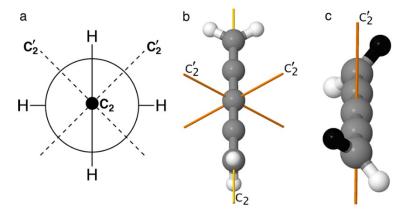
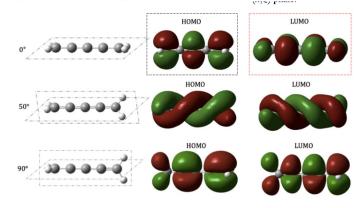


Figure 5. C_2 axes of [4] cumulene. Unsubstituted [4] cumulene has three C_2 axes, specified in a Newman projection along the carbon-axis (a), and in another view (b). Two of the C_2 axes are helicogenic (orange), and one is not (yellow). In 1,5-disubstituted-[4] cumulenes (c) only the one helicogenic C_2 axis (perpendicular to carbon axis) remains.



$$L_1$$
 $A_0

\downarrow A_i

\downarrow A_N$
 R_1
 R_2
 R_2
Cumulènes (système π)
 R_2

The helical orbitals criterion: Linear chain $L_{\mathbb{A}}$ satisfying the structural assumption, without mirror-plane symmetry, admitting a C_2 helicogenic axis, has explicit helical MOs.

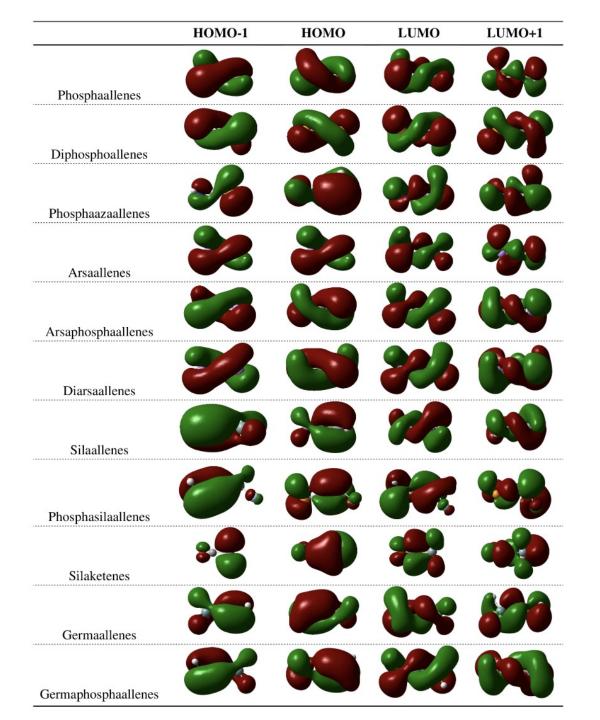
The proof of such a theorem can be deduced from the properties of the Hückel matrix associated to such kind of molecules.

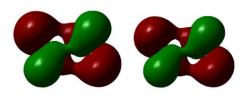
The absences of a mirror-plane symmetry implies that the molecule is **chiral**, i.e. that the image of the molecule by a mirror plane is not invariant. This remark can be used

to give an alternative statement of the helical orbitals theorem:

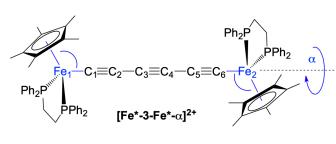
Helical orbitals criterion: linear chain $L_{\mathbb{A}}$ satisfying the structural assumption and chiral admitting a C_2 helicogenic axis, has explicit helical MOs.

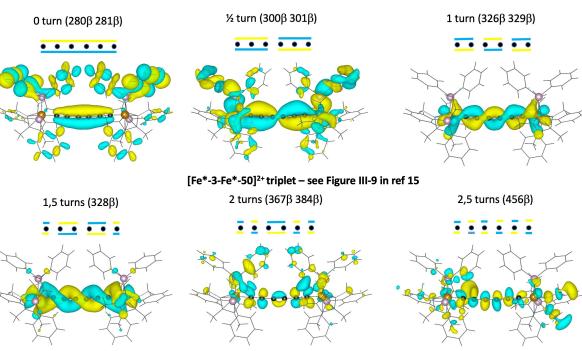
This statement can be related to the **Curie's principle** in which he states informally in his paper "On Symmetry in Physical Phenomena" in 1894 an intuitively plausible relationship between the symmetry of an effect and its cause, namely that "when certain causes produce certain effects, the elements of symmetry of the causes must be found in the effects produced" (p. 401). Indeed, we are waiting for helical molecular orbitals. These objects are naturally chiral so that following Curie's principle, one must find chirality in the initial geometry of the molecule which induces the orbitals structure. As a consequence, chirality is unavoidable.





Representation of the HOMO-5 and the HOMO of the $[Re_2H_8]^{2-}$





- I Rappels de l'utilisation de la symétrie en chimie
- II Résolution de l'équation de Schrödinger Méthode de Hückel
- III Orbitales moléculaires hélicoïdales

IV – Existe-t-il un lien entre ces OM hélicoïdales et les propriétés physico-chimiques des molécules ? (M. Rérat)