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@ This talk is intended to illustrate a few applications of
Differential Geometry to Physics.
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Introduction

@ This talk is intended to illustrate a few applications of
Differential Geometry to Physics.

@ It will be also shown how adding extra dimensions to the usual
space-time formulation of the well-known theories may lead to
interesting models and novel physical interpretations.
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Introduction

@ This talk is intended to illustrate a few applications of
Differential Geometry to Physics.

o It will be also shown how adding extra dimensions to the usual
space-time formulation of the well-known theories may lead to
interesting models and novel physical interpretations.

@ Two theories serve as examples, the classical Faraday-Maxwell
electrodynamics and Einstein's General Relativity. Both rely
crucially on geometry of the underlying space-time manifold,
and are formulated in a geometric language.
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Einstein's General Relativity in a nutshell:

The three realms: space, time and matter are intertwined in the
equations paraphrasing Faraday-Maxwell's electromagnetism,
resumed in Maxwell's equations

auFV)\ + auF)\u + 8)\F,uu =0, auFlW = _jyv (1)

where F,, is the Faraday-Maxwell tensor uniting electric and
magnetic fields in one geometrical entity, and j* = [cp, j] is the
4-dimensional electric current density:

Foi = Ei, F,'j = EUkBkv EM“ =0 (2)

The first set of homogeneous equations (1) becomes an identity if
one introduces the four-potential A,(x*) such that

Fuw = 0,A, —0,A, = —F,,
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In Einstein's equations the gravitational forces are induced by the
Riemann tensor R,

.wp Of the 4-dimensional space-time manifold
and the source is the energy-mementum tensor T,

1
ig;wR = —? T'u,,, My Vs = 0, 1,2, 3, (3)
where

Ry — 81 G

R. =R /\ s R=g""Ru,
and
RWPA = 0ul\ — Oy rp)\ + T = T0sl s
where g, is the 4-dimensional metric tensor, and m

, ;v are the
Christoffel connection coefficients defined by
1
r,=-g

2g p(augup + augup - apg;w)

[m]
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Let Y*#(x) be a 4-vector field on the 4-dimensional Riemannian
manifold. Its partial derivatives do not transform as a tensor, but
its covariant derivatives do:

VYA =0,Y + T, Y". (4)

Thbe Riemann tensor satisfies the Bianchi identities similar to the
homogenerous Maxwell equations for the electromagnetic field F,,:

VPR[LVACT + vuRupAa + VVRpuAg' =0. (5)
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What we need to complete the theory is the equation of motion of
a material point mass.

Let x*(s) be a one-parameter smooth curve in the 4-dimensional
Riemannian manifold. It is called a geodesic line if it satisfies the
following geodesic equation:

D2xA  d?x* y dxHodx?

- = —_ =0. 6
Ds? ds? + ds ds (6)
where the parameter s it the proper length of a four-dimensional
curve:
ds® = g, (x*) dxtdx”, (7)
=] [ = E = na




Introduction From 4D to 5D Non-linear ED Static solution Embeddings Deformations Waves Schwarzschild
000000000

Soon after Einstein's General Relativity was formulated in its final
form (1915) David Hilbert has shown that Einstein's equations in
vacuum can be derived from variational principle in 4 dimensions:

(5/\/\g]Rd4X—O. (8)

Looking for a time-independent global solution Einstein introduced
a cosmological constant N\ in order to modify his equations in
vacuo as follows:

1
Ry — Eg;w R+Agu =0, (9)

which can be derived by adding the corresponding constant term
to the Hilbert action integral:

6/(/\+R) Vg d* =0 (10)
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@ In 1921 Theodore Kaluza proposed an original mathematical

scheme combining together Maxwell's and Einstein’s theories.



@ In 1921 Theodore Kaluza proposed an original mathematical
scheme combining together Maxwell's and Einstein’s theories.

@ In 1926 Otto Klein improved it and discussed Kaluza's model
from a quantum theoretical perspective, explaining the
quantization of the electric charge. The result is known as the
Kaluza-Klein theory, and is the first example of unification of
several field theories.
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@ In 1921 Theodore Kaluza proposed an original mathematical
scheme combining together Maxwell's and Einstein's theories.

@ In 1926 Otto Klein improved it and discussed Kaluza's model
from a quantum theoretical perspective, explaining the
quantization of the electric charge. The result is known as the
Kaluza-Klein theory, and is the first example of unification of
several field theories.

@ Further improvements and generalizations were brought by
Yves Thiry in 1951 and Pascual Jordan in 1955.
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o Kaluza's idea was to extend Einstein’s theory to five
dimensions; Klein added an assumption that the global
topology should be not R® but rather R* x S1. In a
5-dimensional pseudo-Riemannian space-time a most general
Kaluza-Klein metric is

—_ guu+g55AuA1/ g55Au) 11
8B ( 855Ay g5 )’ (11)

where A;B=0,1,2,3,5 and u, v =0,1,2,3
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o Kaluza's idea was to extend Einstein’s theory to five
dimensions; Klein added an assumption that the global
topology should be not R® but rather R* x S'. In a
5-dimensional pseudo-Riemannian space-time a most general
Kaluza-Klein metric is

_ (8w + 855ALA, g55A#> 1
8B ( 855Ay g5 )’ (11)

where A;B=0,1,2,3,5 and u, v =0,1,2,3

@ The tensor g, is the pseudo-Riemannian metric on the
4-dimensional submanifold, and gss and A, are supposed to
depend on coordinates, and behave as a scalar and a 4-vector

fields. The generalized Kaluza-Klein theory with gss(x*) leads
to the scalar-tensor Brans-Dicke theory.
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In its original version the model did not incorporate variable metric
component gss(x”), and the generalized 5-dimensional metric was
reduced to:

(& T ALA, A
8AB = < A, 1) (12)

The variational principle was the same as for the 4-dimensional
theory, with Riemann and Ricci tensors calculated in five
dimensions from the 5-dimensional metric (11):

(5)
5/ \/@Rd“xdxf’ =0 (13)

Integration along the fifth dimension yields a constant if we
assume that the fifth dimension is a small circle. Then the
variational principle reduces to a 4 dimensional one.
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Three happy circumstances often referred to as “Kaluza-Klein

miracles” deserve to be mentioned at this point:
(5) 4)
1) det (g ag) = det (g ,);

2) The system of 15 equations resulting from the variational
principle (13) for the 14 unknown functions g, = g,,, and A, is
not overdetermined, because the last equation

(5) 1650 )
55 — §g55R =0

reduces to trivial identity 0 = 0;

3) The integrand in the five-dimensional variational principle is a
(4)

sum of the four-dimensional Riemann scalar R and the lagrangian

of Maxwell's theory, —%FWF‘“’, with F,, = 0,A, — 0, A,,
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The metric (12) can be represented in a most concise and elegant
manner as a symmetric 2-form spanned by the following basis of
1-forms in five dimensions, dual to the anholonomic vector basis:

ea = (ey,e5) = (0 — Au0s, Os) (14)
08 = (6",0%) = (dx*, dx® + A,dx"). (15)

5
One easily checks that 64(eg) = 64, and that (g)AB 04 ® 08 gives
indeed the components of (12):

5) (4) 5) 5) 5)
g;u/:guu"i_AuAlM gu5:g5u:AM’ g55:1'
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(5)

The system of equations in 5 dimensions can be split in three parts
15 (® 4) 14 4
R/"‘V_EgHVR =0— RNV—EgW

= _Tuua
where le = g)\pFu)\va -

(16)
4gmuu FApFAp
is the energy-momentum tensor of the electromagnetic field;
5)

150 ) .
u5—§g“5R =0— V,F*" =0,
(5) 1(5) ()

(17)
55——g55R:0—>0=0.



@ The Einstein-Hilbert lagrangian density (including the
cosmological term) contains two invariants of the Riemann
tensor, the 0-th order which is a constant, [y = Const., and

the 1-st order (linear ) which is the Riemann curvature scalar
h=R.
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@ The Einstein-Hilbert lagrangian density (including the
cosmological term) contains two invariants of the Riemann
tensor, the O-th order which is a constant, [y = Const., and
the 1-st order (linear ) which is the Riemann curvature scalar
h=R.

@ Although the Riemann tensor contains not only the first, but
also the second partial derivatives of the metric, the
variational principle leads to the second order differentials
equations due to the Bianchi identities. Any other function of
R, i.e. f(R) replacing R as integrand in the variational
principle will lead to third order differential equations, which is
highly unrecommendable.
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The invariants made of higher powers of the Riemann tensor san
be easily found: for example, the second order contains the
following combinations:

RagcoRABP, RagRAB  and R2. (19)

Each of these three quadratic expression produces third and fourth
order derivative terms under variation, but there is one
combination whose variation leads only to the second-order
derivatives, although in non-linear combinations. It is known under
the name of the Gauss-Bonnet invariant of the second order:

b = RagcoRABP — 4 RogR*B + R?. (20)

Other invariants, f3, /4, etc. can be produced, too, but we shall
not use them here.
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The way in which different invariants behave in a variation integral
crucially depends on the dimension of the Riemannian manifold
they are defined on. For example, the scalar curvature R reduces
to a pure divergence in two dimensions, so that the integral is
constant and the variation becomes identically null:

/ V| g |Rd*x = 27y = Constant, (21)

where x is the Euler-Poincaré characteristic of the manifold over
which the integral is taken. For a surface topologically equivalent
with a 2-dimensional sphere xy = 2 and the corresponding integral
is equal to 4m, the total spherical angle.

It happens that the Gauss-Bonnet invariant / reduces itself to pure
divergence in 3 and 4 dimensions, so it is of no use in General
Relativity. But not so in 5 dimensions, where it yields non-trivial
equations under variation.
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This fact was overlooked until late 80-ties. Let us see how the
inclusion of the extra term proportional to /5 alters the usual
electrodynamic Lagrangian, thus modifying Maxwell's equation in
vacuum. To this effect we shall consider just flat Minkowskian
space with gy, = diag (4, — — —), so that the only field variables
remaining in the definition of the 5-dimensional metric are the
components of the 4-potential A, and their derivatives.

Our Lagrangian density in five dimensions will be

L=(e’R+eh)+/|g] (22)

is a dimensional constant needed to make the whole sum
homogeneous, and € a small dimensionless parameter.

where €2
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With Minkowskian metric g,,,, the four-dimensional Riemann tensor
(5)

vanishes, and the only non-zero term in R is the usual lagrangian

of the electromagnetic field:

(5) 1 .
R = ~2 Fu FH. (23)

The second order Gauss-Bonnet invariant I reduces itself to the
following expression (without a part that is a total 4-divergence,
and can be discarded in the variational principle):
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Vgl =1

The full Lagrangian density is now given by (we remind that now

v 3e
'C__ZFI"VFM

16€2
the resulting equations being

|(FunF™)? =2 R R FF™ - (24)

on | F¥— 2 F FmEY +5 >
2e2

and, of course, always valid

> Fu F“’\F”p] =0,

0 FA,,+8AFW+8 Fo=0

(25)



Both the Lagrangian and the field equations can be written in
terms of the elecrtric and magnetic fields, E and B, which enables
one to have a better insight in their physical content.

Identifying the components of the Faraday-Maxwell tensor

Fu = 0,A, — 0,A, as usual:

Foi = Ei,  Fij = €k B,

we get:
£=,(E2-B%)+  (E-B) (27)
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The field equation in terms of the fields E and B are:

div B =0, VxE:—a—B,

ot

. 3e

divE= -~ B-[V(E-B)]

vxg-2E 3% |g EB)
ot e

ot

—ExV(E-B)|.

(28)
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Non-linear fields act as sources of their own electric charge and
current. Let us rewrite the non-homogeneous pair of Maxwell’s

equations:
. 3e
div E = -5 B - [V(E - B)] = pind
E E-B
VXB:ai+E B.M—EXV(E'B) = Jind-

ot €2 ot

where we introduce the induced electric charge density ping and
the induced electric current j;,q After some calculus and using the
field equations one can prove that the conservation of the induced
electric charge holds:

Opind
ot

+ div jing = 0. (29)
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Let us form the following sum:

OE 0B
E--—+B.-—
ot * ot (30)
Replacing time derivatives of fields using the field equations, we
arrive at the following conservation law:
0 |1 3e
—~ | Z(E2+B%)+ —
ot (E°+B)+ 2e2

(E - B)?| = div(E x B).

(31)



By the way, the expression for the energy density could be derived
directly from the Lagrangian density: as we have

1 3e
= - (E2-B?) + — (E-B)?
the Hamiltonian density H is defined as

(32)
oL
H=E- 9E L,
leading to the same expression

(33)

3e

o (E - B)?
(=} = = = A
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The Poynting vector conserves its form known from the Maxwellian
theory, but the energy density is modified:

_ _ 1o 2y, 3€ 2
S=E x B, 8_2(E +B)+2e2(E B)-,

(34)
with the continuity equation resuming the energy conservation
satisfied by virtue of the equations of motion:

— +divS =0.
ot *

(35)
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In the static case, when the fields do not depend explicitly on time
to the following system:

t, the equations of non-linear Kaluza-Klein electrodynamics reduce

divB=0, V xE=0,
. 3e
d1vE:—? B.[V(E-B),

€
VxB=--ExV(EB)

(36)
=] [l E E 9DaAe
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Let us try to find axially-symmetric configurations displaying both
finite electric charge and finite magnetic moment; also, a kinetic
momentum can be expected, parallel to the magnetic moment.

In cylindric coordinates p, ¢, z we expect the induced current
density to be aligned on the eg4-vector of the local frame, giving a
current density circulating around the z-axis; the fields E and B
should be contained in the p — z planes orthogonal to e.
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Recalling the fact that the lines of strength of B must be closed,
the best description of this configuration can be obtained using the
toroidal curvilinear coordinates (1,7, ¢) defined as follows in terms
of cylindric coordinates:

a cosh p asinn
= Z=—————" qb

P= ~ cosh 1 —cos n’

~ cosh p —cos 7’
with0 <o <2, 0<n<2nr, 0<pu<oo. The coordinate
lines of ¢ are concentric circles in the (z = 0)-plane, while the
coordinate lines of the variable 7 are excentric tori concentrating
around the circle p = a.
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Figure: The toroidal coordinates
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We shall suppose that the lines of force of the magnetic field

coincide with the coordinate curves given by ¢ = Const. and p =
Const. The configuration we seek can be written as:

B=B,e,+ B.e, = B,ey;

(37)
Jind = Jind €4-

(38)
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Figure: The electric field along a circle u = Const
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It can be also shown that the whole problem can be reduced to
determining just two unknown functions of the variables (u,7),
because B =V x A and B, = 0, and because here E= —-VV, we
have A = A(p,m) eg, and V = V(u,n).

Approximate solutions of this form have been found in 1987

At great distances, the fields E and B behave as if they were
generated by a finite charge @ and a finite magnetic dipole m :

Qr mAr
7 4qr3) T 4qy8

E (39)
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Figure: The induced charge density p;,q in the vicinity of the origin of

coordinates



@ The charge is concentrated around the circle p = a and

"smeared” in its vicinity; if it is chosen to be positive, there is

a little "halo” of negative charge density farther away,
imitating the vacuum polarization effect.



@ The charge is concentrated around the circle p = a and

"smeared” in its vicinity; if it is chosen to be positive, there is
a little "halo” of negative charge density farther away,
imitating the vacuum polarization effect.

@ The charge density's fall-off is vary rapid, behaving at short
r8.

distances as r~2, and then falling off exponentially; the same
concerns the density of induced current j;,q which falls off as

=] [
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@ The charge is concentrated around the circle p = a and
"smeared” in its vicinity; if it is chosen to be positive, there is
a little "halo” of negative charge density farther away,
imitating the vacuum polarization effect.

@ The charge density's fall-off is vary rapid, behaving at short
distances as r—°, and then falling off exponentially; the same
concerns the density of induced current j;,q which falls off as
r8.

@ The induced current behaves as if it was produced by the
charge density rotating around the z-axis with the speed of
light.
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@ An interesting feature of this solution is its Zo x Z> symmetry.

Any such solution displaying the total energy (mass) &, the
total charge @, magnetic momentum m and the spin s is

followed by three similar solutions with the same energy:
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@ An interesting feature of this solution is its Z x Z> symmetry.
Any such solution displaying the total energy (mass) &, the
total charge @, magnetic momentum m and the spin s is
followed by three similar solutions with the same energy:

@ either with the same charge, but with the spin and magnetic
momentum in the opposite direction (both “down”), or a
couple of solutions having the opposite charge, and spin and
magnetic moment up or down, but always opposite to each
other - just like with what we know about the electron and
the positron.
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The following table shows the properties of the four solutions:

Fields Energy Charge m Spin
E, B & Q m s

E, -B I Q -m —s
—E, B & -Q m —s
—E, —-B £ —-Q -m s

Tab 1. The symmetry properties of four solutions.

Unfortunately, these solutions present a mild singularity on the

circle p = a, which can not be avoided. Its presence can be proved
by using Poincaré’'s lemma.
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Deformations of embeddings - Introduction

@ In order to take into account the perturbations of given
solution of Einstein’s equations we propose a novel approach
using isometric embedding of an Einstein manifold into a flat
(pseudo) Euclidean space.

@ Instead of adding perturbations to the metric tensor
uw = 8w +ehu + ...

and exploring the linearized equations satisfied by h,,, we
deform the embedding itself, which perturbs in turn the
induced four-dimensional Riemannian metric induced on the
embedded manifold.
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Definitions

@ The embeddings considered here are injective mappings of
m-dimensional (pseudo)-Riemannian manifolds into
N-dimensional (pseudo)-Euclidean spaces.

Ve — EN xt o 2A(xH),

v, ... =12...,m, N<m(m+1)/2.

We require the smoothness and the differentiability (at least
two times) of the embedding functions

[m]
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The induced metric is easily obtained from the embedding
°

The induced metric
functions z4(x*)
O'S2 = nAdeAdzB

dz" HzB
NAB Oxh

oxY

dx*dx” Eé’w dx*dx”



The induced metric is easily obtained from the embedding
°

The induced metric
functions z4(x*)
ds> =

nAdeAdz

B 9z" 0z8
UABW

xH OxV

dx* dx Eé’w dx* dx

9z” 9zB
g,uu NAB =, Ot OxV



The induced metric

The induced metric is easily obtained from the embedding
functions z4(x*)

ds® =

nAdeAdzB
9z” 0zB
nABﬁ 6?(” dx*dx” Eé)w, dx*dx”

dz” 9zB

g,uu NAB =, O OV

gM cannot be obtained directly from the embedding
functions, but should be computed from the covariant metric
as its inverse matrix.

[m]
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The Christoffel symbols

The Christoffel symbols are easily expressed by means of first and
second derivatives of the embedding functions z4(x*)
o

o 1 o
rﬁu = 5 gAU (XU) (aﬂ goau +81/ go/w —Uo gouu>

o
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The Christoffel symbols

The Christoffel symbols are easily expressed by means of first and
second derivatives of the embedding functions z4(x*)
o

o 1 o
r;),/ = 5 gAU (XU) (aﬂ goau +81/ go/w —Uo gouu>

o
A Ag2 _B
= nAB g 7 aaz auz/z

o
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The Christoffel symbols

The Christoffel symbols are easily expressed by means of first and
second derivatives of the embedding functions z4(x*)

o

0/\ 1 o)\o. o o o o

r;u/ = 5 g (X ) (aﬂ 8ov +0u 8uo —0s gl“’)

o
= nag g7 0,270, 2°
o o
02,24 =V,V, 2"+ T, 0\2°

o

o
nag g szAVﬂV,,zB =0
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The Riemann tensor

The Gauss-Codazzi equations express the Riemann tensor
functions:

exclusively by means of second derivatives of the embedding
°

NAB [Vu (VpZAVuVaZB> -V, (szAVMVC,zB)] =0

u]
‘ @
1
it

12N Ge



The Riemann tensor

The Gauss-Codazzi equations express the Riemann tensor
functions:

exclusively by means of second derivatives of the embedding
°

NAB [Vu (VpZAVuVaZB> -V, (szAVMVC,zB)] =0

o
V.V, =V, V,V,2" =R, V2"



The Riemann tensor

The Gauss-Codazzi equations express the Riemann tensor

exclusively by means of second derivatives of the embedding
functions:

NAB [Vu (VpZAVuVaZB> -V, (szAVMVUzB)] =0

o
o
V.V, =V, V,V,2" =R, V2"
]
o
Runp= —1a8 | VuVaz"V,V,28 — vyvAzAvﬂv,,zB}
= = = = =

= A20N &4




[m]

Definition

Supposing that the deformation of geometry is provoked by small
perturbations characterized by an infinitesimal parameter €, we can
expand the new embedding functions into a series of powers of &:
A = A =22 de v A+ 2w A (X)) +.

o ~
Vo — Vu

o
g,uz/ - Buv

(=)

na
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Figure: The initial embedding of a Riemannian manifold V4 and an
infinitesimal deformation producing the new embedding V4
=} [l E = A
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Deformation of the covariant metric

The (covariant) metric tensor of the deformed manifold can be
expanded as series in powers of &:

. 921 028
u = nABMW

o 1 22
- guy+5guy+€guu+~--

= T"AB

8NZA8,,ZB +e <8uzA8,,vB + 0y vAa,,zB)

+ &2 (aﬂvA&,vB + 8uzA8,,wB + 8uWA8,,zB) + ...
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Deformations which do not alter the geometry

A wide class of deformations of the embedding will not alter the
induced metric:
o

EA

=z -+ const.
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Deformations which do not alter the geometry

A wide class of deformations of the embedding will not alter the
induced metric:
o

EA
o

=z -+ const.
A= A4 eNAZB
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Deformations which do not alter the geometry

A wide class of deformations of the embedding will not alter the
induced metric:
o

EA
o

=z -+ const.

ZA
o

=z + eNg2P

nachg +nsch§ =0
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The gauge degrees of freedom

The deformations of the embedding conserving the induced metric

can be considered as " pure gauge” transformations, akin to the
change of coordinates in the embedded V:
o

o
8w = 8w +5h,u,1/a

Vb =0
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The gauge degrees of freedom

The deformations of the embedding conserving the induced metric

can be considered as " pure gauge” transformations, akin to the
change of coordinates in the embedded Vj:
o

o
8w = 8w +€h,u.1/;

Vb =0

?7AB(8MZA)VB =0

[m]
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Deformations which need a host space of higher dimension

Sometimes, extra conditions on the resulting deformed geometry

can lead to an overdefined system which cannot be solved without

extra degrees of freedom, i.e. introducing extra dimensions:
o

EN+m — EN @ Em

[m]
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Deformations which need a host space of higher dimension

Sometimes, extra conditions on the resulting deformed geometry
can lead to an overdefined system which cannot be solved without

EN+m — EN @ Em

(77AB 0>
0 mn;)’

Tap

[m]
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Deformations which need a host space of higher dimension

Sometimes, extra conditions on the resulting deformed geometry

can lead to an overdefined system which cannot be solved without

extra degrees of freedom, i.e. introducing extra dimensions:
o

EN+m — EN @ Em

°
nag 0
e (0 77u>
°
ve [vA, v™]
¢ = [Z4 0]

[m]
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Deformations which need a host space of higher dimension

Sometimes, extra conditions on the resulting deformed geometry
can lead to an overdefined system which cannot be solved without
extra degrees of freedom, i.e. introducing extra dimensions:

°
EN+m — EN @E™
° 0
fo? = (USB 77:'1) ’
°
ve = [vA, v
2% = [Z4,0]

so that the deformations towards other dimensions are visible only
from the second order on

Richard Kerner LPTMC - Sorbonne Université, CNRS URA 760 Du bon usage des dimensions supplémentaires: de 3D a 4D
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The contravariant metric

g'uygua = 55‘

S v 1 v 22 v
g +ecgH 4 e g +
0

v S up g uo i
— gm_cgrrgrog,

2 ONPOMUZ Oupouoo)\nl 1



R OvBor + OpBur
rgp _ 2g (
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The deformed Christoffel symbols
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The deformed Christoffel symbols

[ H
M,
°

§glm (augpn + 8pé’w~e &egpu)



The deformed Riemann tensor
o

Ruy,)\p = TAB

[@m AN



The deformed Riemann tensor
o




The first order corrections to Einstein’s equations

The deformed Riemann tensor

o
R = A8 [@m AT, 55,5, 0,9, zB]
*]
1
=V, V.2 + ¢ [VMV,, vA F;),,VAZA +..
o

1
R uurp = [vuvA AV, V,vB+ Vv, VvV, Y, 28

~V, Va2V, V,vB -V, VivAY,Y, ZB] nAB

o (w1 =

£ DA
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Deformation of the Ricci tensor and curvature scalar
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Deformation of the Ricci tensor and curvature scalar

(]
R;w = éﬁa R/s,ucw
R =g""R..
]
1 oko 1 1R9 o
R;w = & RH/.LO’V + & Rn,uau
1 oHV 1 1HY o

R = & Rlu/"l_g R,u,I/



The deformed Einstein tensor

~ ~ 1. -~
Gp,v = Rpu - Eg/u/R
o lo o

- Rl“/ - Eglu/R

1 1/1 o o 1
+€ R/J,V_E /_LVR""g“VR +...






First order equations in vacuo

o
1 1 1o
Gpu = R;w EguuR =
lo ope\ 1
= (5255 — Eg,uug ) Rox
o



1
RVO' = UVO.M’YAVMV'yVA + VVO'“AVI«LVA = 0 J
Ul/pé’yA = nasg"" (@%@?VUV,{ZB + 8560V, V.28

S A AL 5gagv,,vpz'3)

V, = ghrrgah (5gv,¢z5 VN,2z°V,N,z° +55V 328V, V,2¢V v, 2P

B 6/€3V"‘ZBV”VUZCV'JVPZD - 5£VﬁzBVHV(,zCV,,szD> ncpnAB
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Einstein's equations with sources

ct Tha
1 o 1 8rG 1
R/.w 2g,u,1/R = _7 T;w



Einstein's equations with sources



A (M) = 22 () + e vA (x*) + 2 WA (x) + ...,

it
v

«0Or «F»r < o o



Second order deformations: the starting point is the
expansion
o

A(xM) = 22 (x*) + e vA (x*) + 2w (x) + ...,

2 (Bu vA,vEB + OMZAGVWB + 0y WAa,,zB) +..



The second order deformations

Second order deformations: the starting point is the
expansion

]
FA(xH) = 22 (x*) + e vA (XH) + 2w (xH) + ...,
°
2 (BuvAava + 8uzA8VWB + 8MWA8,,ZB) +...
°

2
Ruvep = nas [vyvngv#v,,wB +V, VWAV, V25 —

— VWV VWP -V, V,whY, Y,

o L. 1y A B, S L.l
— 8l pol 1 1AV vV, Vv™ + 8l 6l 1, —
— 14V, VvV, V, v8
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Second order deformation of the Ricci tensor

2 0;w2 1”01 2,u.c70
Ryp =8 R'u,l/o'p + 8 R'u,yo'p + 8 Rp,ya'p
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The second order deformations

Second order deformation of the Ricci tensor

2 O;wz 1,u.a 1 2MUO
Rup =& Rpl/o‘p + 8 R,uz/(rp + & R,uua'p

2
RVP =0—= Ul/crg’yAvgv’YWA + Vl/agAvgwA = BVP(VAa zA)
with B,,(vA, z*) combination of derivative of v# and z# functions

[m]
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Generalities

@ Consider the Minkowskian space-time M, parametrized by
cartesian coordinates x* = [ct, x, y, Z]

My — E7,



Generalities

@ Consider the Minkowskian space-time M, parametrized by
cartesian coordinates x* = [ct, x, y, Z]

My — E7,
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fz?up= § v [Vﬂv)\ VYLV, v — VoV v VLY, v] y



2
Rup= &8 [V,N,\ VYLV, v =V, Vv V,Y, v] =0

v(x*) = f (ky x*)



The second and third order deformations
o

2
Rup= &8 [V,NA VYLV, v =V, Vv V,Y, v] =0
v(x*) = f (ky x*)

3 o
Ryp = & (VHVPVVVVUW + VquWV,,VUV—

VYV VoW — V,V,wV Vo)
=] [l E E 9DaAe
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e ansatz: zZ%(x*) = ev(t, z) + 2w(x, y)

with v(t,z) = e/(wt=k2)
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The plane wave solution

o ansatz: Z%(x*) = ev(t,z) + 2w(x, y)

with v(t,z) = e/(wt=k2)

@ From the components xx, xy, and yy of Einstein’s equations in

3
vacuo, Ry, = 0, we obtain:

oOHp
2 _
g 8M,v =0

which imposes the on-shell condition w? = c?k?



The plane wave solution

o ansatz: Z%(x*) = ev(t,z) + 2w(x, y)

with v(t,z) = e/(wt=k2)
@ From the components xx, xy, and yy of Einstein’s equations in

3
vacuo, Ry, = 0, we obtain:

OLP o
g 8Mpv:0

which imposes the on-shell condition w? = c?k?

@ From the remaining non-zero components we have:

2w +8}2,yw = V2w(x,y) =0

m] [ = £ DA
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Obviously, the solution is given by a general second order
polynomial in the variables (x, y), i.e.

w(x,y) = Ax® + Bxy + Cy? (40)

Thde Laplace equation imposed on w(x, y) leads to the coondition
A+ C =0, thus leaving only two degrees of freedom for the
transversal wave of the form

[ A(x? — y?) + Bxy | cos(wt — kx) (41)

which shows its quadrupolar character.

After rescaling, the second-order polynomial can be written in the
complex form x? 4 2ixy — y? = (x + iy)?. After an arbitrary
complex rotation (x + iy) — e/®(x + iy), the expression

x? 4 2ixy — y? will acquire the phase €%?, typical for the fields of
spin 2.

Richard Kerner LPTMC - Sorbonne Université, CNRS URA 760 Du bon usage des dimensions supplémentaires: de 3D a 4D



Global embeddings of (exterior) Schwarzschild solution are known
since a long time, e.g. E. Kasner Am. J. Math, 43, p.126, ibid, p.
130 (1921), Fronsdal Physical Review, 116 (3), p. 778 (1959), or
Joe Rosen, Rev. Mod. Phys., (1965).

All these embeddings use the six dimensional pseudo-Euclidean

space:
Vi — E°
with the flat metric: nag = (+ — — — ——) or
nag=(++-—--—-)

=} = = = £ DA




The embedding functions for the Schwarzschild solution

NI=

2MG
1 r
4 .
z' = rsin 0 cos ¢,
z> = rsin @ sin ¢,
2 = rcoséh



g#t/

927 97
77AB

OxH W

«O>» «F>» = - o




0 .
B B g Oxt OxV
o
ds? (1 _ %) e <1 ame
| ,

> dr2—r2d6?—r?sin 9d¢2



More general embedding functions

71 = (1—%> smh(c;

22 = (1—% cosh(Ct
A
1 _ M2G2x2

o [ ]
1— 2MG ’

r

z* = rsin 6 cos ¢,

2> = rsin 6 sin ¢,

2 = rcosd



z(\)
+

8uv

< = o= .

2

-0
—

<
o

_)
—

z(M = 0)
!

Nuv

O»r <>

Q>



e VA(XR)ap,ZB =0

[m] - )
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Finding the orthogonal deformations
(]

NAB vA(x“)(?MzB =0

vi(xM)0: 2zt — v (x*)0,2% =




Finding the orthogonal deformations
(]

NAB vA(x“)(?MzB =0

vi(xM)0: 2zt — v (x*)0,2% =

L
MG

vZsinh MC—2,> =0
vi(x*) = MG v(x") sinh ;5=
=
vA3(x")

MG v(x") cosh 15

[m]

\/1—%(vlcosh

(=)




First order deformation vector

MG v(x") sinh <MG)

ct
"

MG v(x*) cosh (MG)
M2G2v(x") + r? W(X‘u))
o[t ()]
-

MG w(x*) sin 6 cos ¢,
MG w(x") sin 6 sin ¢,
MG w(x") cos 6.

v




Deformation corresponding to an infinitesima oM variation

M 0z%(x7)
Al o e
z*(x7) + V] M M
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