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INTRODUCTION

@ The key notion is the conformation introduced by Souriau (1958, 1964),
suitable for astrophysics, which does not need a spacetime.

@ It has been rediscovered since (see Kijowski—-Magli, 1992, 1997,
Beig—Schmidt, 2003), but Souriau is not cited.

@ We will show that if further assumptions are made (firstly such as a
foliation of the World tube!, secondly such as the consideration of a
static spacetime), other strain measures can be defined.

Isee for instance the (3+1)-formalism introduced for relativistic fluids in (Arnowitt et al.,
1962, York, 1979, Gourgoulhon, 2012).
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WHAT IS A DIFFERENTIAL FORM ?

A differential form w of degree k on R? (or more generally on a manifold) is a
tensor field of order k which is alternate

Wryeerjeerioery = —Wrpeerieerjrg-

e a I-form on R3: @ = () = Pdx + Qdy + Rdz,
@ a2-formonR3: w = (wij) = wipdx Ady + wizdx A dz + wyzdy Adz,
e a3-formonR3: w = (wijk) = wizz dx A dy A dz.

Here (dx, dy, dz) is the dual basis of the canonical basis of R? and

dx ANdy = dx ® dy — dy ® dx,
dx Ady Adz = (dx ® dy ® dz)*,

is the alternate tensor product, called the wedge product.
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THE RIEMANNIAN VOLUME FORM

A volume form on R? (or more generally on a manifold of dimension d) is a
d-form (maximal degree) which vanishes nowhere,

p=rfdx' A Adx?, where f(x,y,z) # 0.

On every (orientable) Riemannian manifold (M, g) there exists a unique

volume form, noted vol, which is characterized that its value is 1 when
evaluated on every direct orthonormal basis.

@ On R3, equipped with its natural Euclidean structure (g = ¢),
vol, = dx Ady Adz = (dx ® dy ® dz)“,

in any system of (direct) orthogonal coordinates (x,y, z)
(in which g = (9;))
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OUTLINE

0 General framework of Relativistic Hyperelasticity
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4D FORMALISM FOR CONTINUUM MECHANICS
SOURIAU (1958-1964)

@ The modeling of perfect matter adopted by Souriau is inspired by Gauge
theory, where matter fields are described by sections of some vector
bundle (here a trivial vector bundle).

@ A perfect matter field is a smooth vector valued function
U — V=R, m— X,
where .7 is the Universe, a four dimensional manifold, endowed with a
Lorentzian metric g (of signature (—, +, +, +)).
1

X
Ifm = (x*), X' = \Il’(x“), TV = (gu) rectangular.
X

@ The notation ¥ for the matter field is on purpose:
WV is the wave function in Quantum Mechanics.
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THE BODY, THE MASS MEASURE AND THE WORLD TUBE

@ A continuous medium is then described by a 3D compact orientable
manifold with boundary % C V ~ R3, the body, which labels the
particles and is endowed with a volume form g, the mass measure.

e It is further assumed that T,V is of rank 3 at each point m of ¥~!(2).
Thus, # := U~!(2) is fibered by the particles World lines ¥~!(X),
X € 4, and is called for this reason the body’s World tube.

v

m
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A POINT OF VIEW REVERSE TO 3D FORMALISM

@ In 3D formalism, a configuration is an embedding
p:AB—E

from the 3D body Z to the 3D space &.

@ In the present 4D formalism, the main concept is a mapping
V: M — B

from the 4D Universe .# to the 3D body 4.

A key difference is that, in Classical Continuum Mechanics, the embedding p
and its tangent map
F=Tp: T# —>T&

are invertible, whereas here, the matter field ¥ and its tangent map 7'V are not.
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CURRENT OF MATTER — REST MASS DENSITY
@ The pullback by ¥ of the mass measure y on %, U*p, is a 3-form.
Since T,V is assumed to be of rank 3 at each point of %, there exists a
nowhere vanishing (quadri-)vector field P on %, such that

V¥ = ipvolg,

where ip means the contraction of P with vol,  (ipvolg := P - vol,).
This vector field P is the current of matter.

@ To describe perfect matter, Souriau assumes furthermore that P is
timelike,

HP||§ = g(P,P) <0 on the World tube #
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CURRENT OF MATTER — REST MASS DENSITY

@ The pullback by ¥ of the mass measure y on %, U*p, is a 3-form.
Since T,V is assumed to be of rank 3 at each point of %, there exists a
nowhere vanishing (quadri-)vector field P on %, such that

V¥ = ipvolg,
where ip means the contraction of P with vol,  (ipvolg := P - vol,).

This vector field P is the current of matter.

@ To describe perfect matter, Souriau assumes furthermore that P is
timelike,
HP||§ = g(P,P) <0 on the World tube #

@ We can write

P=pU, with [[UZ=-1 and p,:=/—|P|.

@ This defines, on the World tube 7, the rest mass density p, > 0.
@ Wehave TU.P =0and 7V.U = 0.
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OUTLINE

@ Conformation and associated stress tensors
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CONFORMATION

The conformation H has been introduced by Souriau in 1958.

It is the cornerstone of the formulation of Relativistic Hyperelasticity at large

scale, such as in the modeling of neutron stars (with a solid crust).
Definition

The conformation is the vector-valued function

H: > SHV),  me Hm) = (Ty¥) g (Tn0)*.

e Foreach m € %', H(m) is a positive definite quadratic form on V*
(consequence of U timelike).

@ Since the mapping ¥ : # — 2 is not invertible,
H is not the pushforward of g~ .
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CONFORMATION

The conformation H has been introduced by Souriau in 1958.

It is the cornerstone of the formulation of Relativistic Hyperelasticity at large
scale, such as in the modeling of neutron stars (with a solid crust).
Definition

The conformation is the vector-valued function

H:= (TV) g {(TV)".

e Foreach m € %', H(m) is a positive definite quadratic form on V*
(consequence of U timelike).

@ Since the mapping ¥ : # — 4 is not invertible,
H is not the pushforward of g~

To be compared to the (3D) definition of the right Cauchy Green tensor

C:=¢*q=FqF = (F_1 q_lF_*)_l, F:=T¢. J

™ =

= = Y
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VARIATIONAL RELATIVITY

@ Souriau has proposed a clear and detailed formulation of Hyperelasticity
in General Relativity (part of his Variational Relativity).

@ This formulation is inspired by Gauge Theory formulation of General
Relativity (Palatini’s Method).

e His approach consists in adding Lagrangians?, each of them describing a
physical phenomena, and looking for critical points of the total
Lagrangian . (Principle of Least Action).

L(8, V) =H(g) + L™ (g, ),

jmatter( \If) _ L \I/I B_\III 1
8 - 0\ 8uvs ’8x“ Volg.

%i.e., functionals depending on tensorial fields (the metric g, gauge potentials A, T',...,
matter fields W, ...)
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VARIATIONAL RELATIVITY

@ Souriau has proposed a clear and detailed formulation of Hyperelasticity
in General Relativity (part of his Variational Relativity).

@ This formulation is inspired by Gauge Theory formulation of General
Relativity (Palatini’s Method).

e His approach consists in adding Lagrangians®, each of them describing a
physical phenomena, and looking for critical points of the total
Lagrangian .Z (Principle of Least Action).

ZL(g,¥) = H(g) + L7 (g, T),

A ES /Lo(gm,\I!(m), T, V) vol,.

3i.e., functionals depending on tensorial fields (the metric g, gauge potentials A, T',...,
matter fields W, ...)

R. Desmorat et B. Kolev (LMPS) Contraintes et déformations Troyes, mardi 9 mai 2023 13/38




GENERAL COVARIANCE

The main postulate of General Relativity is precisely that
Physical laws must be independent of the choice of coordinates.

This means that the Lagrangian . must be invariant by a (local)
diffeomorphism ¢, i.e.,

ZL(p*g, ") = L(g, V),

where, here,

g = (Tp)* (gop)(Te), and ¢*¥ =Toop.
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GENERAL COVARIANCE OF A PERFECT MATTER LAGRANGIAN

Theorem (Souriau (1958))

Suppose that the Lagrangian
Lmaer (g W) = /Lo(gm, U (m), T,,V) volg
is general covariant. Then, its Lagrangian density can be written as

LO(g7 \1}7 T\II) = L(\Ijv H)7

for some function L, where H = (TV) g~ (TW)* is the conformation.

In Classical Continuum Mechanics, the energy density depends on the

deformation ¢ only through the right Cauchy—Green tensor C = ¢*q.
Here, H plays the role of C™.
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A STRESS-ENERGY TENSOR FOR PERFECT MATTER

The following splitting has been introduced by Souriau (1958, 1964) and
De Witt (1962),

L(U,H) = p,¢* + E(¥,H) = p,c? + pre(V, H),

where p, is the rest mass density, and E is the internal energy density. Then,

5D§/ﬂmatter
T = —25— =pPUQU-S=LUQU-X,
8
such as divé T = 0, where

E
S:=Eg!— 2g_1(T\I!)*§H(T\II)g_1, SU =EU,
Oe
Y= -2p, ¢ YTU) = (TV)g! SU =0
prg ( )8H( )8, U’ =0,

correspond to two choices of a (4D) relativistic stress tensor.
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OUTLINE

@ Conformation and strains
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The existence of a unit timelike vector field U = P/p, allows to perform the

related orthogonal decompositions of g and g~ !,

¢g=h-UoU, g¢g'l=-UsU, on¥,
where the tensor fields 4 and hf = g~'hg~! are uniquely defined by
WU=0, and h=g on U™
U+ : three-dimensional (necessarily spacelike) orthogonal subbundle to U.

Both A and h* have signature (0, +, +, +).

Remark

These orthogonal decompositions are highlighted at the beginning of most
works on Relativistic Fluids or Solids (Eckart, 1940, Lichnerowitz, 1955,
Carter—Quintana, 1972, Kijowski—Magli, 1997).
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LINK WITH THE CONFORMATION

Souriau did not need / nor hf to derive the general covariant formulation of
Relativistic Hyperelasticity . There are two reasons for it.

@ the four-dimensional symmetric second-order tensors / and h¥ are
strongly related to the conformation H := (T¥) g~ ! (T¥)*.

Lemma
On the World tube %', we have
H= (TO)*(TY)*, and h= (TY)*H'TV.

where h = g +U° @ U’ and h* = g~ 'hg~".

@ / and Af do not appear naturally in the derivation of a general covariant

formulation of Relativistic Hyperelasticity, contrary to the conformation
H (Souriau’s 1958 theorem).
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FIXED METRIC ON %4 — FROZEN "METRIC” ON #

The definition of a strain in (hyper)elasticity is usually obtained by comparing
two metrics.

o If the body # is endowed with a fixed Riemannian metric -y, the later
can be used to define a strain tensor in Relativistic Hyperelasticity.

o Carter—Quintana (1972) and Maugin (1978) furthermore introduce the
pullback by ¥ of y, the so-called frozen metric given by

]’l() = \I/*’Y() = (T\If)*(’yo o ‘IJ)T\I’.

hy is defined on the World tube # and is of signature (0, +, +, +).
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FIXED METRIC ON %4 — FROZEN "METRIC” ON #

The definition of a strain in (hyper)elasticity is usually obtained by comparing
two metrics.

o If the body # is endowed with a fixed Riemannian metric -y, the later
can be used to define a strain tensor in Relativistic Hyperelasticity.

o Carter—Quintana (1972) and Maugin (1978) furthermore introduce the
pullback by W of ~y, the so-called frozen metric given by

h() = \I/*’Y() = (T\IJ)*('YO o ‘IJ)T\I’.
ho is defined on the World tube % and is of signature (0, +, +, +).

Remark

Conversely, given a quadratic form Ay on % with signature (0, +, +, +), the
question of when it can be realized as the pullback by ¥ of a fixed Riemannian
metric 7o on the body, has been investigated by Kijowski and Magli.
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GENERALIZED EULER-ALMANSI STRAIN TENSOR

A generalization of the Euler-Almansi strain tensor (Carter—Quintana, 1972,
Maugin, 1978) is the four-dimensional symmetric covariant tensor field,

e = %(h—ho). J

Note that e = 0 for A = hg and that e is degenerate since eU = 0.

Remark due to Maugin

Since the linear tangent map 7'V plays a role similar to that of the inverse of
F = Tp in Classical Continuum Mechanics, the frozen metric /( plays a role
similar to that of the inverse, sometimes called the finger deformation tensor,
of the left Cauchy—Green tensor b := F~, F*.
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STRAIN TENSORS DIRECTLY BUILT FROM H

Other choices for strain tensors similar to the ones of Classical Continuum
Mechanics can be made, for instance the more relevant ones

L/ o .1 _
¢im s (H'-H;') or &= log(HH;), J

where
Ho ==, Tow.
o The first one generalizes the Green—Lagrange strain, whereas the second
one generalizes the logarithmic strain.
@ They both vanish when H™! = H, = 4o 0.
@ These strain tensors are three-dimensional second-order tensors.

@ Like the conformation, they are not tensor fields on % but vector valued
functions defined on the World tube # with values in S?V.
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Note that Hy is related to hy by
ho = (T0)* Hy (T'0)

and that € is connected to e by

e=(TY)*E(TY) on¥.
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OUTLINE

© Further assumption: foliation of the World tube
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FOLIATION OF # BY SPACELIKE HYPERSURFACES Q,
INTRODUCTION OF AN OBSERVER (ARNOWITT ET AL, 1962, YORK, 1979, GOURGOULHON, 2012)

20 =ct

s WM

The 3D submanifolds {2, of timelike normal N play the role of the
configuration manifolds 2 = €2, of Continuum Mechanics. The restriction

U= A x—=X=U,(x)=Vx"=cr,x)

is not necessarily a diffeomorphism,
but its differential 7, is always a linear isomorphism.

4
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GENERALIZED LORENTZ FACTOR AND SPATIAL VELOCITY

o Introducing

V= _<U7N>g J

and setting U' = ~u/c, the orthogonal decomposition of U is written as

U:UN+UT:7<N+'E’), J

° —(U,N), is called the generalized Lorentz factor, since

[ ul
= 1/ 1-— —2 because ||U||

@ The spatial velocity u can be expressed on €2, from 7W.U = 0, as
u=—-cFTYN on

where F is the inverse of F~! = T'0,, the restriction of 70 on €.
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ORTHOGONAL DECOMPOSITION OF T

Stress-energy tensor T

1
T=ExN®N+ E(N®p+p®N) +s.
o FEiy is the total energy density,
@ p is the momentum density vector field,

@ and s is the spatial part of T (related to the stress field).

Following Eckart (1940) and Souriau (1958), there exists 2 ways to define a
spatial stress o, which generalizes the 3D stress, using either S or X.
They provide two alternative Relativistic Hyperelasticity laws.
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A STRESS-ENERGY TENSOR FOR PERFECT MATTER

The following splitting has been introduced by Souriau (1958, 1964) and
DeWitt (1962),

L(¥,H) = p,¢* + E(Y,H) = p,c? + pre(V, H),
where p, is the rest mass density, and E is the internal energy density. Then,

(Lgmaﬂer
T=-2

5—=prc2U®U—S=LU®U—2,
g

where

S:=Eg! —2g—1(T\11)*§—ﬁ(T\1/)g—1, SU =EU,
3= 2p, g—l(T\If)*g—I:(T\I/)g—l, .U =0,

correspond to two choices of a (4D) relativistic stress tensor.
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FIRST MODELING CHOICE

The 3D stress tensor o is defined as the spatial part of

_ , Oe
S=-2p¢ 1(T\IJ) OH

and is given by

2 3D\ o — de 1, 3p 72E
=—= F*——F 1=
o 7p(g ) 5H (&) 2 uou

(T9)g™' ~EU®U  (suchasS.U" = EU),

Associated (3+1)-decomposition of T = p,c’U®@ U — S
Eot = '7/’02 +E(1 + Clz ||”||2) - Cizub "o ub7
p=(yp*+Eu—o- -,

S=vpuQLu— o,

where p = 7yp, is the relativistic mass density.

R. Desmorat et B. Kolev (LMPS) Contraintes et déformations Troyes, mardi 9 mai 2023

29/38



SECOND MODELING CHOICE

The 3D stress tensor o is defined as the spatial part of

Oe

¥ =208 (TO) o

—(TV)g~ (such as B.U" = 0),
and is given by

2

_, Oe
g = —;P(gw)ﬁF "

0€ 1/ 3D\

Associated (3+1)-decomposition of T = LU ® U — X

Etot ’yL——zub g - ub
p=7Lu—o- u,

2
s:fC’—Lu®u—a

where v2L = v* (p,c* + E) = ypc* + E(1 + Cli ).
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OUTLINE

e Further assumption: restriction W, of the matter field is a diffeomorphism
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3D RIEMANNIAN METRICS ON THE BODY %4

If we make the stronger assumption that ¥,: €0, — 4 is a diffeomorphism,
then, the conformation induces a one-parameter family () of
three-dimensional Riemannian metrics on the three-dimensional body %

() i=Hojo W', A(1):=H 'ojoW".
Ji: Q — A : canonical embedding of these submanifolds into Universe ./Z .

The metric ~y(¢) is the true analogue of the right Cauchy—Green tensor
C := F*¢F when the body 4 is identified with a reference configuration 2. J

The following result relates «(¢) with the degenerate quadratic form A.

Lemma

On );, we have
Uiy (1) = jih,
where h = g + U’ @ U and jih = (Tj;)*(h o ji) Tj.

g = = Tyt
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Any of the three following 3D symmetric covariant tensor fields

H'oj, (S*V-vector valued, on §,),
(1) (on ),
and Jrh (on ),

leads then to equivalent formulations of Relativistic Hyperelasticity models.

Indeed, these tensor fields are related to each other by

on A : ~(#)=H'oj0 ‘I’t_l = VU, jih,
S?V-vector valued, on ©;: H'oj, = (Vujh) oV, =~(1) o T,
on Q: Jih= (0 (1) = (9) (H ™ ojio W71,
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THREE-DIMENSIONAL STRAINS
The associated (equivalent) definitions of strain tensors are the following
® on #:

1 _ 1 _ ~
5 (V0 =) =€o ¥, Slog(vg (1)) =€o T,

e S?V-vector valued, on €,

1 _ _ . i 1 _ . K e
§<H 1—H01> i =Ji€  —7log(HH;") 0ji =ji€,

@ on )

L. : : 1 PN
E(];‘h_JrhO) Zer, zlog ((/;kh()) IJ;kh)v

ho = W*~y: the so-called frozen metric on the World tube 7',
Jiho = U ~y: its restriction to ),
Hy=~,'00.
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CONCLUSION

Souriau’s Lagrangian General relativity formulation of Hyperelasticity
Key role of the body % (of the mass measure u and the fixed metric ~yg)

Key role of the conformation (as strain)

Proper definitions of strains and stresses tensors (according to the
assumptions made)

Even if the full theory is 4D, Hyperelasticity constitutive laws are 3D
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MASS CONSERVATION IN HYPERELASTICITY
Lemma (Souriau, 1958)

Let 7y be a fixed Riemannian metric on the body 9. Then, the rest mass
density p, can be written as

pr = pao (¥)/det [H(~g o W),

where WV is the matter field, H is the conformation, and p~, = i

vol,,

The fixed mass density p~, (W.r.t. 7p) is defined on the body %.

Mass conservation in Classical Continuum Mechanics (on €2)

po=(pod)J,  J:=,/det(g~'C),

¢: Qo — 2 is the deformation
C := ¢*q is the right Cauchy—Green tensor.
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RELATIVISTIC PERFECT FLUID

The stress-energy tensor of a Relativistic perfect fluid,
T=(L+P)URU+Pg !, L=pc?+E,
corresponds to an internal energy density of the form

E = pre(pr),

where
P = pie(pr)-

S=-Pg ' —PU®U=—PK,
S=X-EUU=-Pg!—(E+PUxU.
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REFERENCE METRIC ON THE BODY &4

There are several choices for a reference metric on the body 2.
@ One possibility is to endow the body with an arbitrary fixed metric g
(for example 7y = ¢, the Euclidean metric, in (Souriau, 1958, 1964)).

@ But when a spacetime and the associated spacelike hypersurfaces €2, are
introduced, with in particular the choice of a reference configuration €2,
and when the restriction ¥, = j;j)\I/ of the matter field to £2;, is a
diffeomorphism, then two other —mechanistic— possibilities are
offered:

(a) either to consider as reference metric on the body %, ~(t = to) ,
Y6 = v(t0) = (W)« i
(b) or to endow the body Z with the Riemannian metric
Yo = (L) wing-

These two reference metrics do not coincide in general.
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