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I The lagrangian of the Kaluza-Klein theory, in its simplest

five-dimensional version, should include not only the scalar

curvature R, but also the quadratic Gauss-Bonnet invariant.

I The general lagrangian is computed and the resulting

non-linear equations which generalize Maxwell’s system in a

quite unique way are investigated.

I A possibility of the existence of static solutions is presented,

and the qualitative behaviour of such solutions as models for

the electron is discussed.
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Maxwell’s equations

Let us start by recalling the standard Maxwell’s electromagnetism

and fixing the notations.

The simplest and the most elegant form of Maxwell’s system is

written in modern system of units as follows:

∂B

∂t
= −∇× E, ∇ · B = 0, (1)

∂D

∂t
+ j = ∇×H, ∇ ·D = ρ, (2)
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Geometrical nature of fields

It should be underlined that the pairs of fields (E, H) and (D, B)

represent different geometrical objects. This can be better

understood if we look at the integral form of Maxwell’s equations:

− ∂

∂t

∮
S

B · dσ =

∮
∂S

E · dl,

∮
∂V

B · σ = 0. (3)

∮
S

[
∂

∂t
D + j

]
· dσ =

∮
∂S

H · dl,

∮
∂V

D · σ = Q. (4)

Here S is a surface and ∂S its boundary, which is a closed line; V

is a volume and ∂V is its boundary, a closed surface.
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Vector fields and streams (2-forms)

I In the integral form of Maxwell’s equations, the entities E

and H are genuine vector fields which can be integrated along

curves, whereas B and D are in fact 2-forms, defining streams.

I Rate of change of fluxes of D and B through a surface is

determined by the circulation of their conjugate fields H and

E along the boundary, and vice versa.

I A problem arises with number of equations versus number of

functions: 8 equations for 4× 3 = 12 components. The

constitutive relations E = E(D, B) and H = H(D, B)
reduce the number of variables to 6, thus making the system

seemingly overdetermined.
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I Things become straightened up in a four-dimensional

notation, with 4-vector potential defined as a vector in

4-dimensional space-time endowed wth Minkowskian metric

ηµν = diag(+,−,−,−), µ, ν, .. = 0, 1, 2, 3

I We assume that the 6 variables corresponding to the fields E

and B are the 6 independent components of an antisymmetric

2-covariant tensor (a 2-form) Fµν = −Fνµ, with
F0k = Ek , Fik = εikmBm, i , k,m = 1, 2, 3.

I The Poincaré Lemma states that if a 2-form - e.g.

F = 1
2Fµνdx

µ ∧ dxν - is defined on an open subset of

Minkowskian space-time M4, then it is an exterior differential

of some 1-form, in this case A = Aµdx
µ:

F = dA → Fµν = ∂µAν − ∂νAµ. (5)
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There are two independent relativistic invariant functions of the

Faraday’s 2-form Fµν :

S = −1

4
ηµληνρFµνFλρ =

1

2

(
E2 − B2

)
, (6)

P = −1

8
εµνλρFµνFλρ = Fµν F̂

µν = E · B, (7)

with

F̂µν =
1

2
εµνλρFλρ

The choice of symbols is not accidental: S stands for “scalar”, and

P stands for “pseudo-scalar” ).
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Lagrangian and variational principle

To ensure relativistic invariance, the variational principle should be

derived from a Lagrangian depending on two invariants, L(S ,P).
The equations of motion of the electromagnetic field form two

groups: the homogeneous ones,

∂µFνλ + ∂νFλµ + ∂λFµν = 0, (8)

which are the consequence of the fact that

F = dA → dF = d2A = 0, and the equations resulting from

variational principle applied to L,

∂µG
µν = 0, with Gµν =

∂L
∂Fµν

(9)

Gµν =
∂L
∂S

Fµν +
∂L
∂P

F̂µν (10)
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The dual Faraday tensor

By definition,

G 0i = −G i0 = D i , G ik = −G ki = εik lH
l (11)

so the equations of motion become:

∂D

∂t
= ∇×H, ∇ ·D = 0, (12)

which coincide with Maxwell’s second set of equations when the

sources (the current density j and the charge density (ρ) are put to

zero.
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Dynamical properties

The dynamical properties of the electromagnetic field are

described by the energy-momentum tensor Tµν :

Tµν = FµλG
λν − ηµν L, (13)

T 00 = E ·D− L, (14)

T 0i = (E×H)i , T i0 = (D× B)i , (15)

T ik = −E iDk − H iBk + δik(L+ H · B). (16)
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Conservation laws

The energy-momentum tensor is symmetric and conserved:

Tµν = T νµ, ∂µT
µν = 0, (17)

The proof uses the following identity:

FµλF̂
λν = δνµP, (18)

The (17) result in the following conserved quantities

Pµ =

∫
Tµ0dr3, Mµν =

∫
(xµT ν0 − xνTµ0)dr3 (19)
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Canonical variables and Legendre transformations

I Out of four fields E, B, D and H we can pick four different

pairs, each consisting of one electric and one magnetic field,

and treating them as independent variables, making the

remaining two functions of them.

I To start with, let us choose the fields E and B as independent

variables, akin to generalized velocities q̇ and coordinates q

in classical Lagrangean mechanics. Then D and H defined as

D =
∂L
∂E

and H =
∂L
∂B

, (20)

play the role of canonical momentum and generalized force.
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The Legendre transformations

I Let us define the Hamiltonian function:

H(D,B) = D · E(D,B)− L(E(D,B),B) (21)

which is to be treated as function of canonical variables

(D, B).

I With the help of eq. (20) we get:

E =
∂H
∂D

and H =
∂H
∂B

(22)
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The Legendre transformation

The three remaining choices of independent pairs of fields are

displayed in the following table:

(E, B) L(E,B) D =
∂L
∂E

, H =
∂L
∂B

(D, B) H(D,B) = E · B− L E =
∂H
∂D

, H =
∂H
∂B

(D, H) L̃(D,H) = E · B− B ·H− L E =
∂L̃
∂D

, B = − ∂L̃
∂H

(E, H) H̃(E,H) = B ·H + L D =
∂H̃
∂E

, B =
∂H̃
∂H
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The Hamiltonian function H coincides with the energy density.

With its use, the equations of motion of the electromagnetic field

can be presented in a quasi-canonical manner:

∂B

∂t
= −∇× ∂H

∂D
,

∂D

∂t
= ∇× ∂H

∂B
, (23)

This circumstance opens the path to canonical quantization of the

electromagnetic field, which is beyond the scope of the present

talk.
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I Since the discovery of the electron by J.J.Thomson in 1899,

physicists tried to develop models of finite energy charge

concentrations that could describe the elementary electric

charge.

I One of the ideas was to use non-linear generalizations of

Maxwell’s theory, deviating from it only at very short

distances and for very strong fields in order to ensure a cut-off

and to avoid singularity at r → 0.
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I In 1912 G. Mie, and later, in 1934, M. Born and L. Infeld

proposed two versions of non-linear electrodynamics, in hope

to obtain non-singular static configurations describing

electrons (whose spin and magnetic moment were yet

unknown).

I Their results were not convincing, mainly because the

symmetry between the electric and magnetic fields was

broken from the beginning. Roughly speaking, it seems

improbable to obtain a configuration with only electric field

present, putting B = 0 everywhere.

I Their lagrangians depended quite arbitrarily on two invariants

of the electromagnetic tensor, S = − 1
4FµνF

µν = 1
2 (E2 − B2)

and P = 1
4Fµν

∗Fµν = E · B. The second invariant does not

appear in Maxwell’s linear theory and was also discarded in G.

Mie’s non-linear version.
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Mie’s model

I G. Mie’s model was based on the assumption that the electric

field E can not exceed the limiting value E0, and that the

repulsive force should be proportional to the expression

F ∼ E√
1− E2

E2
0

(24)

I It was possible to find in this model a nonsingular solution

with finite energy and charge, and with the field E falling off

as r−2 at great distances, but this solution was not covariant

with respect to the Lorentz transformations.
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The Born-Infeld lagrangian

In 1932 and in 1934 M. Born and L. Infeld have published by now

celebrated version of non-linear electrodynamics, in whihc they

proposed the following Lorentz-invariant lagrangian:

L = β2

[√
det

(
δµλ + β−1 Fµλ

)]
(25)

The constant β appears for dimensional reasons, and plays the

same role here as the limiting value of the electric field in G. Mie’s

non-linear electrodynamics.
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When expressed in terms of two invariants of Maxwell-Faraday’s

tensor,

P =
1

4
Fµν F

µν and S =
1

4
Fµν F̃

µν , with F̃µν =
1

2
εµνλρ Fλρ

this lagrangian can be written explicitly as

LBI = β2

[
1−

√
1 + 2P − S2

]
, or as : (26)

LBI = β2

[
1−

√
1 +

1

2β2
(B2 − E2)− 1

16β4
(E · B)2

]
(27)
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Quite obviously, when developed in negative powers of the

dimensional parameter β, we get as first approximation the usual

lagrangean of the linear electrodynamics:

LBI '
1

2

(
E2 − B2)

)
+O(β−2) (28)

It has been proven by G. Boillat in the late 70-ties that the

Born-Infeld lagrangian is the unique one that admits propagation

of electromagnetic ways without bi-refringence (i.e. the

appearance of two distinct light-cones).
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The Kaluza-Klein theory

Theodor Kaluza (1885− 1954) and Oskar Klein (1894− 1977)
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The Kaluza-Klein theory

The five-dimensional Kaluza-Klein space. The local coordinates

are xA = (xµ, x5); A = 1, 2, ..5, µ, ν, .. = (0, i) = 0, 1, 2, 3,
which under the projection π reduce to points in the Minkowski

space-time: π(xA) = π(xµ, x5) = (xµ) ∈ M4.
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In its first version proposed by Th. Kaluza, the fifth dimension was

just an extra space coordinate, the entire space being isomorphic

with M4 × R1 ∼ [ct, x , y , z , x5] ∼ M5, a five-dimensional Minkowski

space. Oskar Klein proposed to consider a compact fifth

dimension, a circle with a very small radius. The dependence on

the fifth dimension of functions defined on the “compactified”

space must be then periodic, with a Fourier-like decomposition:

f (xµ, x5) =
∞∑
k=0

ak(xµ)e ikmx5
. (29)

with dim (m) =cm−1.
Then the eigenvalues of the fifth component of quantum

momentum operator, p5 = −i~∂5 are integer multiples of mass m.
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Kaluza-Klein metric

Let us recall the form of the Kaluza-Klein metric tensor:

g̃AB =

(
gµν + φ2AµAν φ2Aµ

φ2Aν φ2

)
(30)

or more explicitly,

g̃µν = gµν + φ2AµAν , g̃5µ = g̃µ5 = φ2Aµ, g̃55 = φ2. (31)

with Aµ and φ functions of space-time variables, identified as the

4-vector potential and an extra scalar field.
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The inverse metric tensor g̃AB has the following components in

5-dimensional space-time:

g̃AB =

(
gµν −Aµ
−Aν φ−2 + gλρA

λAρ

)
(32)

or more explicitly,

g̃µν = gµν , g̃5µ = g̃µ5 = −Aµ, g̃55 = φ−2 + gλρA
λAρ. (33)
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I A symmetric 2-covariant tensor in 5 dimensiona has

(5× 6)/2 = 15 independent components versus 10 independent

components of the 4-dimensional metric

gµν = gνµ, µ, ν = 0, 1, 2, 3.

I In fact the metric gAB given by (31) has exactly 15

independent components, the 10 ones contained in the

space-time part gµν , the four ones given by the 4-dimensional

vector (or rather the 1-form) Aµ and one component given by

the scalar field φ.

I One easily calculates the determinants of the Kaluza-Klein

metric:

det[gAB ] = φ2, det[gAB ] = φ−2. (34)

AU DELA DES 4 DIMENSIONS: MODELE 5D DE KALUZA ET KLEIN



Summary Introduction Non-linear ED Kaluza-Klein Modified ED General properties Static solutions

I A symmetric 2-covariant tensor in 5 dimensiona has

(5× 6)/2 = 15 independent components versus 10 independent

components of the 4-dimensional metric

gµν = gνµ, µ, ν = 0, 1, 2, 3.

I In fact the metric gAB given by (31) has exactly 15

independent components, the 10 ones contained in the

space-time part gµν , the four ones given by the 4-dimensional

vector (or rather the 1-form) Aµ and one component given by

the scalar field φ.

I One easily calculates the determinants of the Kaluza-Klein

metric:

det[gAB ] = φ2, det[gAB ] = φ−2. (34)

AU DELA DES 4 DIMENSIONS: MODELE 5D DE KALUZA ET KLEIN



Summary Introduction Non-linear ED Kaluza-Klein Modified ED General properties Static solutions

I A symmetric 2-covariant tensor in 5 dimensiona has

(5× 6)/2 = 15 independent components versus 10 independent

components of the 4-dimensional metric

gµν = gνµ, µ, ν = 0, 1, 2, 3.

I In fact the metric gAB given by (31) has exactly 15

independent components, the 10 ones contained in the

space-time part gµν , the four ones given by the 4-dimensional

vector (or rather the 1-form) Aµ and one component given by

the scalar field φ.

I One easily calculates the determinants of the Kaluza-Klein

metric:

det[gAB ] = φ2, det[gAB ] = φ−2. (34)

AU DELA DES 4 DIMENSIONS: MODELE 5D DE KALUZA ET KLEIN



Summary Introduction Non-linear ED Kaluza-Klein Modified ED General properties Static solutions

Kaluza-Klein miracle

I The original aim being the unification of Einstein’s theory of

gravity with Maxwell’s electromagnetism, the scalar field φ

was set equal to 1, thus leaving only 14 unknown functions,

gµν and Aµ. However, the generalized Einstein’s theory in 5

dimensions requires 15 equations to be satisfied:

RAB −
1

2
gABR = 0, (35)

so that the system becomes overdetermined if we suppress

one of the 15 variables by fixing φ = 1.

I Nevertheless it turned out that this particular ansatz is still a

solution to the full set of 15 equations, because in this case

the last equation R55 − g55R = 0 reduces to tautology 0 = 0.
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I From now on, the metric tensor in five-dimensional

Kaluza-Klein theory reads as follows:

gAB =

(
gµν + AµAν Aµ

Aν 1

)
, (36)

where A,B = 0, 1, 2, 3, 5 and µ, ν = 0, 1, 2, 3

I We deliberately discard the scalar field g55(xµ), putting

g55 = 1, although the full system will be overconstrained. We

shall also put gµν = ηµν = diag(+,−,−,−), saving only the

electromagnetic part of the lagrangian.
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It is easy to compute all the non-vanishing components of the

Riemann tensor RAB of the metric (36) in the non-holonomous

frame

ξµ = ∂µ − Aµ∂5, ξ5 = ∂5. (37)

They are as follows:

Rµνλρ =
1

4
FµλFρν − FνλFρµ + 2 FµνFρλ, (38)

Rµ5λρ =
1

2
∂µFρλ (39)

Rµ55λ =
1

4
ηνρ FµλFρν . (40)
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The Ricci tensor is then:

Rµν =
1

2
ηλρFµλFνρ (41)

Rµ5 =
1

2
ηνρ∂νFρµ (42)

R55 =
1

4
ηµνηλρ FµλFρν (43)

and the scalar curvature is

R = −1

4
ηµληνρ FµνFλρ (44)
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The full set of equations

The explicit form of the remaining 14 equations in the

5-dimensional Einstein’s theory is then:

Rµν −
1

2
gµνR =

1

2
ηλρFµλFνρ −

1

8
ηµνη

σληκρ FσκFλρ = Tµν (45)

Rµ5 = ∂νFµν = 0 (46)
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I Countless theories based on lagrangians depending on FµνF
µν

and (Fµν
∗Fµν)2 (the square is needed to keep the invariance

under space reflections) can be produced if we lack a guiding

principle to fix the form of the lagrangian.

I In the Kaluza-Klein theory, as well as in its improvements by

P. Jordan and Y. Thiry was based on the Einstein-Hilbert

variational principle in five-dimensional space, with lagrangian

equal to R, the scalar curvature of the metric.

I This lagrangian is unique in four dimensions, because already

the second invariant of the Riemann tensor,

I2 = RABCDR
ABCD − 4 RABR

AB + R2 (47)

turns out to be a pure divergence and does not modify the

equations of motion.
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I The invariant (47) is the only quadratic combination of the

Riemann tensor leading under variation to the second-order

equations. In five dimensions this invariant is no more a

divergence, therefore there is no reason to exclude it in the

full theory.

I This fixes the lagrangian in five dimensions, leaving the place

for the arbitrariness only in the choice of one dimensional

parameter.

I This is the starting point for non-linear modification of the

electrodynamics. In our calculations we shall discard the

gravitational and scalar fields, both too weak to influence the

behaviour of the electromagnetic field at short distances.
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The invariant I2 for the metric (36) is easily calculated and is

found to be (discarding the pure divergence term equal to

∂µ(Fρλ∂
µF ρλ)− 2∂ν(Fρλ∂νF

µλ):

I2 =
3

16

[
(FµνF

µν)2 − 2FµλFνρF
µνFλρ

]
. (48)

For fixed Minkowskian metric ηµν we can put
√
| g | = 1 and write

the full lagragian as

L = −1

4
FµνF

µν +
3ε

16e2

[
FµνF

µν)2 − 2FµλFνρF
µνFλρ

]
, (49)

with ε a numerical parameter to be determined.
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The equations of motion in vacuo are then

∂λ

[
Fλρ − 3ε

16e2
(FµνF

µν)Fλρ +
3ε

e2
FµνF

λµF ρν
]
. (50)

The identities

∂µFλρ + ∂λFρµ + ∂ρFµλ = 0 (51)

hold by definition (5), too.
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Both lagrangian and equations of motion are more transparent

when expressed by means of the fields E and B, D and H:

L =
1

2
(E2 − B2) +

3ε

2e2
(E · B)2. (52)

The new term contains only the square of the second invariant of

the electromagnetic field. The full set of modified Maxwell’s

equations is:

div B = 0, rot E = −∂B

∂t
, div D = −3ε

e2
B · grad(E · B),

rot H =
∂D

∂t
+

3ε

e2

[
H
∂(E · B)

∂t
− E× grad(E · B)

]
. (53)
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In what follows we shall use the units in which c = 1, and in which

we can put in the vacuum E = D and H = B. Therefore the

equations in vacuum will be

div B = 0, rot E = −∂B

∂t
, div E = −3ε

e2
B · grad(E · B),

rot B =
∂E

∂t
+

3ε

e2

[
B
∂(E · B)

∂t
− E× grad(E · B)

]
. (54)

When ε is put equal to zero, the equations recover their usual

Maxwellian form. Two other possibilities, up to a scale that can be

incorporated in e2, are ε = +1 or −1.
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The non-homogeneous couple of equations,

div E = −3ε

e2
B · grad(E · B) (55)

and

rot B =
∂E

∂t
+

3ε

e2

[
B
∂(E · B)

∂t
− E× grad(E · B)

]
(56)

can be implemented by adding the charge density ρ to the

right-hand side of (55) and the current density j to the right-hand

side of (56).
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However, even in the absence of these “external sources”, the

right-hand sides of the eqs. (55) and (56) behave like conserved

induced charge and current densities; their conservation is

independent of eventual other non-induced similar objects.

As a matter of fact, let us compare:

∂

∂t
(div E) = −3ε

e2

∂B

∂t
· grad(E · B)− 3ε

e2
B · grad

∂(E · B)

∂t
=

= −3ε

e2
(rotE) · grad(E · B)− 3ε

e2
B · grad

∂(E · B)

∂t
(57)
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and

div
∂E

∂t
= div(rotB)−3ε

e2
div

(
B
∂(E · B)

∂t

)
−3ε

e2
div(E×grad(E·B)) =

=
3ε

e2
(divB)

∂(E · B)

∂t
−3ε

e2
B·grad

∂(E · B)

∂t
+

3ε

e2
(rotE)·grad(E2·B).

(58)
because

divB = 0, rot(gradf ) = 0, div(a× b) = b · (rota)− a · (rotb),
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therefore

∂

∂t

[
−3ε

e2
B · grad(E · B)

]
+div

[
3ε

e2
B
∂(E · B)

∂t
− E× grad(E · B)

]
= 0.

(59)
We shall denote the induced charge density by ρind :

ρind = −3ε

e2
B · grad(E · B), (60)

and the induced current density by jind :

jind =
3ε

e2
B
∂(E · B)

∂t
− E× grad(E · B) (61)
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I with
∂ρind
∂t

+ div(jind) = 0. (62)

The theory will not need any non-induced charges if we can

prove the existence of charged stable static solutions,

localized in space (solitons). If we form the sum:

I

B · ∂B

∂t
+ E · ∂E

∂t
(63)

we shall easily find another conservation law:

∂

∂t

[
1

2
(E2 + B2) +

3ε

e2
(E · B)2

]
= div (E× B) (64)

AU DELA DES 4 DIMENSIONS: MODELE 5D DE KALUZA ET KLEIN



Summary Introduction Non-linear ED Kaluza-Klein Modified ED General properties Static solutions

I with
∂ρind
∂t

+ div(jind) = 0. (62)

The theory will not need any non-induced charges if we can

prove the existence of charged stable static solutions,

localized in space (solitons). If we form the sum:

I

B · ∂B

∂t
+ E · ∂E

∂t
(63)

we shall easily find another conservation law:

∂

∂t

[
1

2
(E2 + B2) +

3ε

e2
(E · B)2

]
= div (E× B) (64)

AU DELA DES 4 DIMENSIONS: MODELE 5D DE KALUZA ET KLEIN



Summary Introduction Non-linear ED Kaluza-Klein Modified ED General properties Static solutions

The Poynting vector in this theory is the same as in the linear

electrodynamics, whereas the energy density contains a new term,

as compared with the classical theory:

H =
1

2
(E2 + B2) +

3ε

e2
(E · B)2 (65)

Note that the parameter ε has to be positive, in order to ensure

the positivity of the energy. From now on we shall set ε = 1,

leaving only the coupling constant e2 to be determined.
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I The hamiltonian H can be also found from the lagrangian L
directly. The only time derivatives present in L are

∂0Ak , k = 1, 2, 3 which enter through the combination

Ek = ∂0Ak − ∂kA0.

I Therefore Ek , the components of the electric field, can be

chosen as generalized velocities, so that

H = E · ∂L
∂E
− L. (66)

which yields the same result.
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I Whenever the fields E and B are orthogonal to each other,

our system in vacuum (55, 56) coincides with Maxwell’s

equations. Such is the case of the electromagetic waves,

which are also solutions to the equations (55, 56).

I Moreover, these solutions are stable with respect to

perturbations. As a matter of fact, any deviation from the

usual solution in which E is everywhere orthogonal to B, leads

automatically to the rise of the energy H, ensuring stability.
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Let us also note that the energy-momentum tensor could be

obtained directly as

Tµν =
∂(
√
| g |L

∂gµν
(67)

yielding the same expressions for the Hamiltonian T00 and the

Poynting vector Pk = T0k .
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Let us rewrite the equations (55 and 56) in the stationary case,

when all the time derivatives vanish:

div B = 0, rot E = 0,

div E = − 3

e2
B ·grad(E ·B), rot B = − 3

e2
E×grad(E ·B). (68)

It would be very interesting to obtain a static and non-singular

solution of this system, having finite energy and behaving like a

soliton.
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I This is excluded in the linear case, therefore, if such solution

exists, both fields E and B must be different from zero and

non-orthogonal at least in some finite domain of space. We

should also impose the rapid enough vanishing of both fields

at infinity.

I Spherical symmetry for B leads immediately to the singularity

at the origin; so, if the condition div B is to be maintained

everywhere, the lines of force of the field B have to be closed.
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I The lines of the local current

jind = rot B = −3ε

e2
E× grad(E · B)

must be closed, too.

I This suggests the axial symmetry in which the current would

have only the azimuthal component, and the field B would be

everywhere perpendicular to the azimuthal unit vector eϕ (in

cylindrical coordinates (ρ =
√
x2 + y2), z , ϕ)), i.e. B having

its components along ez and eρ only. Also the field E should

have only the z and ρ components; then the Poynting vector

P = E× B will have the azimuthal component only.
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I Such a configuration has some remarkable symmetry

properties:

The trilinear combinations on the right-hand sides of

equations (68) produce induced charge and current densities.

I The current having only the azimuthal component will

produce magnetic field which at great distances is similar to

that of a circular distribution of currents, i.e. the one of a

magnetic dipole.

I At the same time, one can expect a non-vanishing charge

concentration falling off quite rapidly with distance from the

origin, at large distances E should be then similar to the

electric Coulomb field.
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All these conditions put together lead to the following symmetry

properties of the components E and B:

Ez(ρ, z) = −Ez(ρ,−z); Eρ(ρ, z) = Eρ(ρ,−z), (69)

and

Bz(ρ, z) = Bz(ρ,−z); Bρ(ρ, z) = −Bρ(ρ,−z). (70)

Let us evaluate the behaviour of charge and current distributions

far away from the origin. We can take the field of a magnetic

dipole and of concentrated charge as zeroth approximation

satisfying Maxwell’s equations, then insert them into the

right-hand sides of eqs. (68) and compute the first corrections,

supposing that the fields E and B develop as:
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E =
(0)

E +
1

e2

(1)

E + ...., B =
(0)

B +
1

e2

(1)

B + .... (71)

if we put
(0)

E =
Q ρ

(ρ2 + z2)
3
2

eρ +
Q z

(ρ2 + z2)
3
2

ez , (72)

and
(0)

B =
3µ ρz

4(ρ2 + z2)
5
2

eρ +
µ (2z2 − ρ2)

4(ρ2 + z2)
5
2

ez , (73)

where Q is the total charge, µ the total magnetic moment.
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As the first correction, we obtain

div
(1)

E =
3µ2Q

8(ρ2 + z2)
11
2

(ρ2 + 10z2), (74)

and

rot
(1)

B =
3µQ2 ρ

2(ρ2 + z2)
9
2

eϕ (75)

which shows that the charge density falls off as R−9 and the

current density as R−8 (R =
√
ρ2 + z2), i.e. really fast.
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The lines of force of the field B form a family of closed curves

which can be transformed into a family of circles by a suitable

coordinate transformation; the toroidal coordinates are best

adapted to describe the situation.

Let us introduce toroidal coordinates (µ, η, φ):

ρ =
a sinhµ

coshµ− cos η
, z =

a sin η

coshµ− cos η
, φ = ϕ, (76)

with 0 ≤ φ ≤ 2π, 0 ≤ η ≤ 2π and 0 ≤ µ ≤ ∞; a is the constant

of dimension of length fixing the scale; µ, η and φ are

dimensionless.
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Toroidal coordinates

Constant coordinate lines µ = Const. and η = Const. in the

(ρ, z)-plane.
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A surface µ = µ0 = Const. is a torus with he external radius

a cothµ0 and internal radius a/ sinhµ0. When µ→∞ it reduces to

a circle of radius a in the (x , y)-plane. When µ→ 0, the

corresponding circle approaches the z-axis.

The lines of force of B coincide with circles µ = Const., i.e. in new

coordinates (76)

B = Bη(µ, η) eη. (77)

while Bµ(µ, η) = 0. This determines the dependence of B on η:

as Bµ(µ, η) = (rotA) · eµ with A = Aφ(µ, η)eφ, (78)
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we have

Bµ(µ, η) =
(coshµ− cos η)2

a sinhµ

∂

∂η

(
sinhµ

coshµ− cos η
Aφ

)
= 0. (79)

Therefore

Aφ(µ, η) = (coshµ− cos η) G (µ), (80)

and

Bη(µ, η) = −(coshµ− cos η)2

a sinhµ

∂

∂η
(sinhµ G (µ)) (81)

with yet unknown function G (µ).
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I Putting aside the problem of eventual singularity, we can at

this point see quite well what the induced charge and current

distributions look like. Consider one of the lines of force of B,

i.e. a circle µ =m u0, φ = φ0 in the (ρ, z) plane (Figure 1, left).

I The symmetry properties of the fields E impose the vanishing

of its η-component for z = 0, i.e. for η = 0 or π, because

Eη(η) = −Eη(2π − η). On the other hand,

Bη(η) = Bη(2π − η) >, so that the scalar product E · B = EηBη
on the circle µ = µ0 is an odd function of η (Figure 1, right).
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In order to obtain the charge distribution along this circle, we have

to compute −B · grad(E · B), which reduces to the expression

−Bη
(coshµ− cos η)

a

∂

∂η
(E · B) . (82)

The corresponding functions are displayed in Figure 3:
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a) The projection of grad(E ·B) on the unit vector eη as a function

of η; b) The charge density distribution q(η) as function of η.
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I The charge density changes its sign between η1 and

η2 = 2π − η1. This phenomenon describes vacuum

polarization: if at the core of the static solution there is an

accumulation of charge density of a given sign, it must be

surrounded by a cloud of charge density of opposite sign.

I The value of η1 at which the change of sign occurs depends

on the line (i.e. the value of µ). Reproducing similar

reasoning for all circles µ = Const. we obtain the picture of

the overall charge density (Figure 4):
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The cross-section (x , z , φ = Const.) of the charge density

distribution. The strongest vacuum polarization is on the z-axis

and in the symmetry plane (x , y), around the axially symmetric

charge distribution at the core.
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I If at any point of this distribution we would like to interpret

the azimuthal current density obtained from the last equation

(68) as being produced by a rotational movement of the

charge density around the z-axis, then it is easy to see, just

comparing the units (remember that we have put c = 1), that

the induced charge has to “move” with the speed of light.

I Of course, nothing is moving here: there is just a distribution

of static fields E and B which produces this illusion, because

the Poynting vector E× B has only the azimuthal component.

Nevertheless, the illusion produced is the same as for the

electron as a whole submitted to the “zitterbewegung” with

the speed c as it comes out from the Dirac equation.
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I There is also another striking similarity between the

predictions of this model and those of the Dirac equation.

The equations (68) are invariant with respect to the

independent changes of sign, E→ −E and B→ −B.

I This means that any static solution generates automatically

three other ones, obtained by the inversions of E and B. Now,

the total charge is linear in E, while the total magnetic

moment is linear in B; the Poynting vector is proportional to

E× B, and so will be the total kinetic angular momentum

obtained by the integration of r × (E× B) over entire space.
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The four solutions so obtained can be put together in Table 1:

Solution Energy Charge Magnetic µ Spin

E, B m q µ S

E, −B m q −µ −S

−E, B m −q µ −S

−E, −B m −q −µ S
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I Any static solution is, as a matter of fact, a quadruplet of

solutions with the same rest mass. The first two solutions

describe a particle with electric charge q and magnetic

moment µ parallel to spin S, in states with spin up or down

(with respect to the z-axis).

I The second pair of solutions describes a particle with the

opposite charge −q and magnetic moment antiparallel to the

spin S, also in two states with spin up or down. This result is

identical with the predictions of Dirac’s equation for the

electron, which leads to the existence of the positron and a

half-integer spin, which seems to be good news.
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The bad news is that unfortunately no C∞-class solution of the

system (68 does exist. The proof is simple and goes as follows:

Knowing that div B = 0, we can write

B · grad(E · B) = div (B (E · B)) (83)

Similarly,

E× grad(E · B) = rot(E (E · B)), (84)

because rot E = 0. This leads to

div

(
E +

3

e2
B(E · B)

)
= 0, rot

(
B− 3

e2
E(E · B)

)
= 0.

(85)
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If the space we are working in has the topology of R3, and all the

functions are supposed to be C∞-smooth, then the Poincaré

lemma states that

E +
3

e2
B(E ·B) = rot C ; and B− 3

e2
E(E ·B) = gradψ. (86)

with C(r) and ψ(r) supposed to be C∞ smooth (vector and scalar,

respectively) functions of r.
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Taking the scalar product of the first equation in (86) by E and of

the second equation by B we get (supposing that E = −gradV ):

E2 +
3

e2
(E ·B)2 = E · rotC = −(gradV ) · rotC = −div (V rotC),

(87)
and

B2 − 3

e2
(E · B)2 = B · gradψ = div(ψ B). (88)
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Combining equations (87) and (88) together, we have

E2 + B2 = div(ψB− V rot C). (89)

If we want the total energy, as well as the total charge, to be finite,

then both E and B must decrease at infinity at least as R−2, so

that the right-hand side of (89) must be of the order of R−4, which

means in turn that the vector field ψ B− V rot C is decreasing at

infinity as R−3. Applying the Gauss-Ostrogradsky theorem to a

finite 3-volume Ω and its 2-dimensional boundary ∂Ω:∫
Ω
div(ψ B− V rot C) d3r =

∫
∂Ω

(ψ B− V rot C) · dΣ, (90)
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I we see that the integral of E2 + B2 over a spherical volume of

radius R behaves as R−1, i.e. it vanishes when taken over the

whole space.

I Both expressions E2 and B2 being positive, this means that

E = 0 and B = 0, unless the solution is not C∞ and the

Poincaré lemma does not hold at least on some line or surface.

I The impossibility of obtaining a C∞ solution with finite energy

can be also seen if we try to construct it by applying the

method of successive approximations in toroidal coordinates.
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Now the problem can be reduced down to two equations for two

unknown functions, the azimuthal component of the vector

potential Aφ and the scalar potential V . We can believe that in

basic state the dependence on the azimuthal angle φ is trivial,

therefore we may set

Aφ = Aφ(µ, η) and V = V (µ, η) (91)

The dependence of both potentials on the toroidal angle η must be

of the form sin(kη) or cos(kη), k = 1, 2, ...; using the substitution

Aφ = u(η)
√

coshµ− cos η = (coshµ− cos η) G (µ) (92)

we make the µ-component of the magnetic field vanish, Bµ = 0.
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Along with another substitution

V = v(η)
√

coshµ− cos η (93)

the laplacians appearing on the left-hand side of equations (68)

will have their variables separated. For example, the equation

div E = − 3

e2
B · grad(E · B) (94)

will take on the form:
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1

sinhµ

∂

∂µ

(
sinhµ

∂v

∂µ

)
+
∂2v

∂η2
+

1

4
v =

3

a2e2

(coshµ− cos η)

sinh2 µ

[
∂

∂µ
(sinhµ G (µ))

]2

[W (µ, η)], (95)

with

W = [coshµ−cos η)
∂2v

∂η2
+4 sin η

∂v

∂η
+

(5 sin2 η + 2 coshµ cos η − cos2 η)

4(coshµ− cos η)
.

(96)
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Similarly, the laplacian of the function u(µ, η) is equal to some

non-linear terms mutiplied by 3/(a2e2.

Developing functions u and v as e.g.

∞∑
n=1

[
(1)
v n(µ) sin(nη) +

(2)
v n(µ) cos(nη)]

the second derivatives in (95) will be replaced by n2v , and the

solutions of the homogeneous equations, which correspond to the

zeroth approximation ( 2
a2e2 = 0) are given as a series in spherical

harmonics of half-integer order (cf. Morse and Feshbach).

Pn+ 1
2
(coshµ) and Qn− 1

2
(coshµ) (97)
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I The functions Pn+ 1
2

display a logarithmic singularity for

µ =∞, i.e. on the circle ρ = a, whereas the functions Qn− 1
2

have a logarithmic singularity for µ = 0 (i.e. ρ, z →∞).

I In order to avoid singularity we may use the combination of

both, but the price to pay is a discontinuity for some value of

µ (on some toroidal surface). If we feed in such a solution to

the right-hand side and use the Green functions in order to

compute the first correction, we shall be faced with exactly

the same problem, because any Green function has at least

one singularity of the same kind.
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I The failure of producing a non-singular soliton is probably due

to the fact that we have projected everything onto three

space dimensions, discarding the fifth circular one. It seems

possible to obtain solitons using the fifth dimension in a

non-trivial way, like in the case of Kaluza-Klein monopoles of

Sorkin and Gross and Perry.

I Another development should include the non-abelian

generalization of the Kaluza-Klein theory into more

dimensions, in which also higher order invariants of the

Riemann tensor might be included to the generalized

lagrangian.
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Recently toroidal solutions for the Higgs-’t Hooft SU(2)× U(1)

monopole were produced numerically by M.S. Volkov et al..

The constant energy density surfaces are represented in cartesian

coordinates.
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