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|. Conservation laws : Classical Thermomechanics

/ pn -V da
do(B,t)

0 .
p—=— =0 : € —divqg + pr

e
ot

configuration actuelle ¢ (B, 1) point x

Conservation of energy in global formulation and localization.
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Conservation laws : unified framework

©Q HA-derivative (particular Lie derivative) (R 2003, 2022)

dZ L d X
(dtT> (U, ..up, wh, . wd) = o [T (ug,...up, 0, . w)]

@ Conservation laws (Poincaré’s integral invariance) not covariant

d@
dr (pwn) =0
&

— (/)viwn) = [)biwn + divpz wp, =123

d 2
o {p <u + ‘,2) w,,} =pb-v w, +div (O’T(V)) wy + pr w, — divly w,

© Entropy inequality

d.}
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> _
s (pswn) pe Wh d1v< 7 )w,,
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Conservation laws : embedded base (u,,« = 1,3)

O Mass
. wp (ug,un, u
po=pJ, with J::M
Wn (U1o, uo, U30)
@ Linear momentum:

d
oV = pob + DivP
© Energy

d
poEU =P: Vv+p0r — DiVJHO

© Entropy
JHo

d r .
POES 2 PO@ — Div <9>
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Conservation laws : "spatial” base (e;,i =1, 3)

@ Mass

ap
aerlV( pv) =0

@ Linear momentum:

9]
r (pv) + div (pv @ v) = p b + dive
© Energy
d
d—u:U:D—&—pr—diVJH
© Entropy

d r . JH
— 5 > p— — -
P tS pe d1v(0>

Remarque

Base (e;, i = 1,3) is temporarily embedded base within the continuum at
t (Goldstein " Lecture Notes on Fluid Mechanics”).

L Rakotomanana




Symmetries and conservation laws

o

(2]

Despite their unique framework for expressing conservation laws,
Newton's laws of motion are not covariant (Galilean
transformations) conversely to Lagrange's equations.

Einstein’s great advance was to put spacetime symmetry first :
SR makes particle mechanics and electromagnetism compatible
(Lorentz transformations)

For RG, Einstein introduced the principle of equivalence (local
symmetry) - invariance of law expressions under local changes of
the spacetime coordinates. Symmetry Invariance for RG requires
additional precisions: it was a source of disputes (Norton, 2005).

Indeed, Noether’s theorems relate symmetry with conservation laws:
continuous symmetries generate conservation laws.

Constructing conservation laws and conserved quantities in an
physics theory, including Einstein-Cartan Relative Gravitation
and also other field theory, is still a main problem.

L Rakotomanana



ll. Relative Gravitation and Principle of General
Covariance

@ Spacetime geometry

@ Relative Gravitation as Gauge Theory

L Rakotomanana



Tool 1. : Connection, Torsion and Curvature

Given an affine connection V on a manifold %:

© Constants of structure of Cartan (non coordinate base)!
lea,es] ;= N7, 5 €,

@ Torsion tensor

{ N(f7,eq,e5) =7 (Ve, €5 — Ve, €0 — [€q,€5])
YooY Y 24
Naﬁ - raﬁ - rﬁa - NOOcﬁ

© Curvature tensor
{ R(F7,eq, e5,ex) =7 (Ve, Ve,ex — Ve, Ve, €1 — Vie, es1€))

9%1(3/\ = (&J}A + FZ/FZW) - (aﬁrlx + FZJEN) - NgaﬁrZ)\

!Orthonormal cylindrical : (e, eq,e,) and spherical (e, eq,e,) are not
coordinate bases.
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Tool 2. : Covariant differential operators for #

Two covariant differential operators necessary for any continuum
theory. Let T be a tensor type (p, q):

© Connection and covariant derivative ON %

V’YTQI";;J — 8’YT§1 ap+Zr Dé Oés 1 M Qsy1Cp
1 q

Z r"/ﬂs ﬁs 1 Bst1e ﬁq

© Lie derivative generates an active diffeomorphism OF %

CTo ] = oo
T/glaz o 8'75 P ﬂl O‘P v 0 ga,,
+ Tjﬁz 4 861§ +ot T Bq 1Y aﬁqf
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Tool 3. : Derivative of an integral on #

@ Definition of a volume-form (measure) and action on &

Wh, 5’:2/ L wp
B

where .Z is a Lagrangian density of a action.

@ Poincaré : Variation of integral under active diffeomorphism .
Let w be a p-form (p < n) on Z. Then under the flow (with
tangent &):

/ w integral invariant <=
B

© Application on an action (remark presence of the second term !
e.g. Obukhov & Putzfield, 2014):

y:/gwn — 5y:/E§($)wn+/$£5wn
B B PB
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Continuum 1. : Riemann—Cartan Continuum

@ Continuum is a compact, connected, oriented manifold :

e a metric tensor g with components g, 3 (x)
o an affine connection V with coefficients '}, ; (x)
e a volume-form w, with components wy, 1..., (x)

@ V and g are compatible if
v'ygoc,@’ =0

© V and w, are compatible if (e.g. Saa 1995)

Lewn = (Val™)wn

¢ tangent to flow (active diffeomorphism). w,, exists !
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Continuum 2. : Riemann Continuum

@ Continuum is a compact, connected, oriented manifold :
e a metric tensor g with components g, (x)
o a Levi-Civita connection V with coefficients T (x)
o a volume-form @, := /Detg dx! A --- A dx"

@ Symmetric connection V and metric g are compatible

~+8ap =0, Tos = (1/2) 87 (938ar + Oagrs — 0rEas)

<

© Symmetric connection V and @, are compatible
L@,, = (ﬁaﬁa) Whp

¢ tangent to flow (active diffeomorphism). (Divergence
theorem)
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Relative Gravitation : Einstein spacetime (Riemann
continuum)

@ The Hilbert-Einstein action governs the (simplest) theory
for vacuum spacetime in Relative Gravitation :
ad

y::lf Ron Foimgag B, Ry = R
M

2X yo3
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1. Gravitation : Two-steps approach e.g. Ali et al. 2009

© The |Euler variation dg,.s induces the Einstein field equation:

A = (1/2) / (ﬁ‘“’ - (ﬁ/z)gaﬁ) 08ap Wn+ BT =0
M

with 6@, = —(1/2)g*" dgus ©n

@ Einstein |field equation| (not a conservation laws) holds:

aff

G =R~ (R/2)g*? =0

© Principle of General Covariance. Considering active
diffeomorphism engendered by Lie derivative along &,

6go¢ﬁ — ‘Cfgaﬁ = vafﬂ +v,8€a

we deduce the vacuum spacetime conservation laws :
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2. Gravitation : Palatini approach e.g. Ferraris et al.

@ Hilbert-Einstein action (metric, connection and derivatives):
=Y =\ =
=172 [ 2 (805,700 00T 7

@ Variations of metric and connection

6Fz1ﬂ = (1/2) g7 (V568ar + Vadgrs — Vadgas)
5%03 = ﬁ)\(6r,(>§a) - ﬁﬁ(csrﬁu)

© Euler-Lagrange equations as [field equations :

Eaﬁ = 5R(uﬁ [ /tV’a r;tu] %gOZB (gneﬁ(nﬂ [ uu’a rO’ ]) =0
vaag =0

Remarque

Conservation laws follow from 6g.5 — Legap = Vals + Vaéa
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3. Gravitation: Integral Invariance & Bianchi's identities

@ Principle of General Covariance (active diffeomorphism)
1 -
&Y:/ ’Cf( w,,—l—f( afa)w :7/ gﬂAVVR‘g)\ wp=0
B 2X Ja

The second term vanishes for divergence-free gauge ¢.
@ Bianchi's first identities
v R(v BA + Vﬂ RI/(Y)\ + vOé@?;l/k =0
© Technique : Putting o = v and multiplying by g®*:

V,R —VsR, —VaRo =0

© Deduction of the vacuum spacetime conservation laws :

e
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4. Gravitation with sources : conservation laws

@ Variational formulation of Hilbert-Einstein action with source :
0. = i /@ (?R”H - § g“5> Le8as E,,—l—/:%)a‘mﬁggaﬂ w,=0
@ Field equation and energy-momentum tensor o®”:
(1/2x) (R - R/2 %) +0°F =0,

© Conservation laws following 6gas — Le8as = Valp + Véa:

Voo +(1/20Vs (R - R/2g7) =0 — | Vo =0

The conservation laws of o "do not contain” the gravitational term.
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Some remarks

(1) Two-steps approach similar to use substantial variation which
includes transformations of space(time) coordinates and of physical fields
(e.g. Obukhov et al. 2014-5, Lompay & Petrov, 2013, ... )

(2) Spacetime in Einstein RG is a second gradient continuum :

=A
Ropu = (1/2)8"7 (0400805 — 00580 + Do 0p8uc — Do Dagps)

+ (1/4)3)\0 (&lgU’Y + 8’Yg040 - ao’goz'\/) g’YK (aﬁgmu + augﬂn' - &1gﬁu)
- (1/4)g>\0 (aﬂgﬂv + avgﬁd - acrgﬁv) gVK (8ozgi<a,u + augom - angozu)

Remarque

The goal is now to extend the conservation laws which takes the generic
expression V3o®? =0 to more general geometries of Relative
Gravitation and to some Inelastic continuum.
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[Il. Description of some Inelastic Deformation

Channel

Compressive force

Rotating punch

. i Billet
Fixed container

(b)

(d)

Figure: Material Processing with Grain Refinement by Severe Plastic
Deformation : Strengthening of material.
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Severe Plastic deformation : Example of HPT

a b

I

| |

Figure: Hight Pressure Torsion Loadings : (a) Unconstrained; (b) and
(c) Constrained.

_a




Exemples of HPT plastification

Position of

observation Number of turns

|
. C?"’ 5
f zoumg

center
(0 mm)

middle

(distance from center)

Figure: Optical Micrographs : Microstructures after HPT at the center

half-way position and edge of the disk in a magnesium AZ61 alloy after
processing N turns at 423 K (Zhilayev & Langdon 2008).
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Severe Plastic Deformation

FIgU €. Grain size refinement under SPD (Cao et al. 2018):
(1) Initial : formation of large size dislocations cell blocks containing dislocations and dislocation cells structures;

(2) Formation of micro-bands and transformation of some nearly dislocations cells into cells blocks;
(3) Formation of lamellar sub-grains containing numerous dislocations;
(4) Formation of well-developed lamellar sub-grains and some ~equiaxed sub-grains ;

(5) Homogeneous distribution of ~equiaxed ultrafine grains or nano-grains..



Plastic deformation : Some conclusions

@ Twinning and relative motions of grain with refinement (e.g.
Zhylaiev & Langdon 2008) are mostly the mechanisms underlying
plastic deformation.

@ In addition, density of dislocation augments when the plastic
deformation increases (e.g. Cao et al. 2018).

© Asympotic response. For complicated deformation operating in
SPD, microstructure mostly reach a steady state at which further
deformation does not change the overall microstructure.
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Dislocations density and grains relative motions

- ——
¥ : / . M, afMeeh)
A‘ - M’
e, f, (M)
&y f, (M+e,f))
M

e fi (M) M,

Figure: (L) Shear band formation. (R) Cartan parallelogram.

© (Left) lllustration of a shear band formation resulting from a defect
discontinuity (4, ¢) at points M’ and M".

@ (Right) Cartan parallelogram with area €1 X €5. At the continuum
level, nucleation and migration of a great number of defects

(discontinuities) occur, and give rise to macroscopic plastic strain
(Luders-Hartmann bands)
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Dislocations density and grains relative motions

Schouten’s relations, 1954:

Theorem

Say an affinely connected manifold . Let consider two arbitrary vectors
f; and f, at a point M, they define two paths of length e€; and ;. Then:

. (9/ _ 9//)
lim ——2 = R(f,K)[
(61,;?)1—>0 €162 (f1, 2) [0]
. (w// _ w/)
(61,I2£T)1—>0 7 = R (fl’ f2a W) — VN(fth)W

Proof (Partly R 1997, complete R 2021) With

N(f,R2)[0] = (Vifo— Vgfi)[0] - [f1, ©][0]
R (fl, "-27 W) = Vf1Vf2W - VfZVflw - V[fhfz]w
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Sketch of the proof (1)

1) Consider a scalar field 6 (M), we have respectively the relations:

{ 9(/\/’1) = 9(M+€1 fl)ze(M)+V5lfl 9(/\/1)
(M) = 0(M +exfo(M+eif)) = 9(/\/71) + Vet (Mmiesy) 0 (M)

We obtain the value of scalar field at M’ in terms of its value at M ,

by noticing 6 (M') =6 and (M) =16,

9 = 0+ 51Vf19 + €2Vf29 + €2€1va1f29 + 5251Vf2Vf19
+ €2€§Vv,1f2Vfll9 (1)

2) Similarly, we also obtain:

0" = 0+ 62Vf29 + ElVfﬁ + €1€2va2f19 + 61€2Vf1Vf29
+ Elé‘gvvfzflV&@ (2)
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Sketch of the proof (2)

3) Following the same method, say a vector field, with w :=w (M) ,:

/!

w = w +€1Vflw+€2szw+€2€1Vv,1fzw+€2€1Vf2Vf1W
+ €2givvf1f2 Viw (3)
and
w' = wHaViwteaViw +eaeVy, W+ 16V Viw
+ €1€§Vv,2f1Vf2W (4)
4) Final step:

(1) - (2) induces the first relation on torsion.

(3) - (4) induces the second result on curvature (and torsion). O

Remarque

Calculus is done exculsively at point M (then 9y, %). Without
curvature but with torsion, we may have vector field discontinuities.
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Covariance of Lagrangian . (Antonio & R 2011)

The model of continuum defined by the Lagrangian (Reichenbach, 1929)

f:f(gaﬁ’ rlﬁ7 aArl;’j)

is covariant if and only if

& = Z(gap, N?xﬂﬂ m:;ﬁ’/\)

Remarks :
@ Primal / internal variables are metric g, , torsion R/, and
curvature 9‘{15/\ (Continuum physics : elasticity, fluid mechanics,
gravitation, electromagnetism, plastic deformation ... )

@ This theorem extends Cartan (1922) and Lovelock-Rund (1971,
1975) theorems from Riemann to Riemann-Cartan continuum.
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Sketch of proof

Proof: Different steps is given below (Antonio & R, 2011):
@ Consider an arbitrary change of coordinates (C> diffeomorphism)
x% = x¢ (yi) , and J&:=09;x°,---
Write as follows : gjj = J* Jjﬁ 8aBr -

@ Assume diffeomorphism-invariance (covariance) and the
transformation rules for the metric gns and the connection ') 5

L, T, O +TFTh) = ZL(8ap: T 5 WL s +TH 5T

ijr
© Decompose FZB and 9,15y + rgArgg into symmetric and skew
symmetric parts.
Q Differentiate £ with respect to J&, ...

© Apply the Quotient theorem (h tensor):
Aaﬁhaﬁ + BQBVV,Yhaﬁ scalar = A%, B*87 tensors [.

Remarque
L satisfies the second axiom of Hilbert on the invariance of the action.
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Differential geometry links RG and IC

@ Elastic Continuum (deduced from Cauchy-Weyl theorem, 1850,
1939)?
"g’ﬂ:g(gaﬁ)v 8ap ::g(faafﬂ)

where {f,,a =1, n} is an embedded base of & (Pfaffian F!).

@ Einstein Relative Gravitation

i'\y P 7)\
Z = f(gaﬁ, ERaﬁ/\) as ZL=(1/2x) g o Ryap

extended to Einstein-Cartan ¥ =¥ (gaﬁangﬁlm) :

@ Class of Inelastic Continua ¢ =% (gag,Nlﬂ,ﬂ?ZB/\>

2Complete proof in R2003 for rotational transformations
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. . _ )\
Some Inelastic continuum models .2 = £ (gag, Ngﬁ, %aﬁv)

JaB (Xa 0) 9ap (X f) = F‘(N (X f) Guv (X O) F‘g (Xa t)

dx =F (dX)

(X, 1) #0

af

N;ﬂ (X,00=0 — R

R (X 0)=0 = R (X 1) #0

Figure: Inelastic deformation includes : (1) variation of the metric
components; (2) variations of the torsion and curvature.
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V. Principle of General Covariance and Applications

Figure: Left: Plastic deformation of (Metallic alloy, set of microcosms);
Middle: Spacetime in Loop Quantum Gravitation (set of "quanta”).
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Gauge Invariance & Conservation laws

For the general case, we have.

@ Principle of General Covariance. 3 (e.g. Souriau 1975, Duval &
Kiinzle 1978, R 2018) The principle dwells upon Poincaré’s invariant
integral involving Lie derivatives,:

8.7 = / ((aaﬁcggag + TP LR 5+ EK‘B“CEERLA,SN) wy =0
B

V compatible with w, and £ divergence-free.

@ Conservation laws are obtained when the trajectory is shifted
while the action is left unchanged. Active diffeomorphisms are
defined by Lie derivative variations

{‘Cfgaﬁ’ EEN’;Q’ [’5§R23;L}

3]t can be extended to Noether-Klein method to provide Klein identities by
considering &, V&, VVE, ... )e.g. Lompay & Petrov 2013)
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Application (1) : Lagrangian of the form .Z(g.3)

Constitutive laws. The "stress” ¢ is defined as :

0Z "
O.Dtﬁ = (gHV7 NZI/’ %/’JI/F)
agaﬁ ——

frozen

Consider a Riemann-Cartan continuum (4,8, V) with a Lagrangian
function £(guap). Then :

V,lafyv =0

Proof: 1. Local invariance. The PGC of the Lagrangian holds:

0L = /aaﬁ Legas Wn

‘Cﬁ 8o = €’Y v’yga,@”"' 8v5 Vaé’y +goc'y Vﬂg’y
+ 5"/ (gau N'yﬂ + 8vp Nw(x)

Integrate by parts and shift the boundary terms to obtain:

Vool + X, 08 =0
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Proof (2)

2. Global Invariance. By considering a uniform vector field £ such that
V¢ =0, we obtain a Klein Identity:

o (8av N+ 8u5 RY,) =200 W, =0
We deduce the classical continuum conservation laws:

VQU;J“ =0 O

@ The implicit presence of the torsion within the covariant derivative
should be accounted for (e.g. Futhazar et al. 2014). (Spatial fading
of waves)

@ Other identities might exist according to the choice of £ (x). (e.g.
Lompay & Petrov 2013)

L Rakotomanana



Example of 3D-elasticity with non evolving defects

© Lagrangian .&
A
ue) =3 Tr?e + uTr(e?), : || ||2 u(e)
© Small strain assumption:

8aB = 0ag + Vaug + Vg, (Vu+Vu )

T2
© Extended Navier equation:

A ,
PRu™ = %V“Vgu%r%vﬁvﬁu%r%g““ (?R,,,,, u — Ngukuﬁ)

Remarque

Wave behaviour similar to the bending of light (electromagnetic wave)
waving through a gravitational field !
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Application (2) : Inelastic continuum

@ Separate the torsion into skew-symmetric Cartan’s forms:
2l @, @ (3
N(xﬂ - {w(xﬂ7 w(yﬂ’ wuﬁ}
(dislocations density)
@ Reduction of curvature to Ricci tensor in 3D:

nY Y
RNW — Rayj =R

Yo
(disclinations density)

© (Covariant) Lagrangian of some class of inelastic continua

Z = "iﬂ(gaﬁ’w((;ga Rm?)
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Principle of General Covariance

@ Gauge Invariance (divergence-free gauge &)
0. = / 5£§ga5 + Z ngaﬂ + =af ﬁan j) w,=0
&

@ Constitutive laws

O,aﬁ — 0% Zoéﬁ . 0L —af .__

Ggs’ O T 9 T T R

Remarque

Stress 0P s symmetric, Zzg are skew-symmetric. The dual of Ricci

af

curvature =" is not necessarily symmetric.
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Conservation Laws from Gauge Theory

Theorem

Let A a continuum with Lagrangian f(ga/g,wsﬁ),Rag), n=1,23.
Then the conservation laws hold:

V65 =0

Y

where we define the generalized stress 63

259 =205 +2 LW +2 2R 4

Remarque

Presence of dislocations density in G seems giving new interesting
insights for modeling strain hardening phenomenon during plastic
deformation : "the first problem to be attempted by dislocation theory
and may be the last to be solved” (e.g. Kocks & Mecking, 2003).
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Sketch of the proof

o Lie derivatives of primal variables:

ngaﬁ = & (vwgaﬁ + 8av

(n) _
Lﬁwaﬁ =

LeRap

€7 (Vo Rap + Rup Rog,

Y5+ 8up Rog ) + (848 Vat” +8ay VpE?)

€ (Tl + i) vy, ol 8 + (W) VagT +wl) vaeT)

af
+ Raw RY5) + (RysVa€” + Ray Vge")

e The three Klein-Noether identities take the following form for v = 1,2, 3:

+

5
ey (V.Ygaﬁ + gav N:ﬁ +8u8 N,’;a)

3
cal) )]

S [z (Tt + o w2,

3
Il
-

=% (V4Rap + Rup R, + Raw R )

e By accounting fot these identities, it is easy to deduce the following equation by integrating by parts:

/g”va [20 42520,

oyl + @Ry +27 Rg ) wa =0 O



Comment on Generalized Stress

Different names of Zzg and =*" : Hypermomentum in Relative
Gravitation with spin (e.g. Hehl et al., 1975-76,77,78), or Total energy
stress (e.g. Duval and Kiinzle, 1978); Micro-stress and

Polar micro-stress in Strain Gradient Plasticity (e.g. Gurtin and

Anand, 2004-2005); Currents in Generalized Gravity (e.g. Obukhov et
al. 2013, 2015, Lompay et al. 2013) ....

o
Remarque

Generalized stress 25,‘;‘ includes

© a "reversible” part o

@ contribution of Cartan forms w((;g (corresponding to a spin, due to

dislocations) and its dual ¥

«

(n)’

© contribution of Ricci tensor R,z and its dual =ab (due to
disclinations).
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V. Concluding remarks

Figure: Plasticity, Gravitation and way of Life

The Principle of General Covariance (Gauge Theory) can be applied
for Relative Gravitation spacetime and for Inelastic Continuum modeled
as Riemann-Cartan manifold. Application in sequence the two invariance
criteria is worth:

@ Covariance (passive diffeomorphism, necessary criterium for any
physics theory, e.g. Norton 2005)

@ Principle of General Covariance (active gauge invariance, e.g.
Souriau, 1975)
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Some other applications (R 2023)

The same sequential method was applied to other various
model :

© Riemann-Cartan spacetime / continuum Z(gap, X} 5, %, 5,)
(MAG without nonmetricity) (e.g. Obukhov et al, 2015);

@ Weitzebock Continuum with Lagrangian .Z(gag, 726) where
Tos =Tl — f;ﬁ is the contortion tensor (similar to plasticity);

© "Gradient Weitzebock” Continuum with Lagrangian
L (8ap> Tz VT,3) which is very similar to the Strain Gradient

Plasticity (e.g. review Voyiadjis & Song, 2019, Gurtin-Anand,
2005)

We get an unified framework for conservation laws :

Vad§=0| [6=0+CNRT,Z) | or | 6=0+%(T,VT,5,3)

Very similar generalized stress was obtained in e.g. Medina et al, 2019,
for studying Einstein-Cartan cosmologies, avoiding singularity.
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Merci

pour votre attention !
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