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1) Continuum mechanics and weak field general relativity: what are the realities and limits of the space elastic behaviour?
- The different approaches to the state of the art
- Beam-and-plate theory and analogy with the structure of general relativity
- From a tensor point of view:
- Deformation tensor/perturbation tensor of the metric
- Stress Tensor/Stress Energy Tensor
- General form of the theory of relativity / Hooke's law
2) Deformations of space in the case of gravitational waves

/ - Perturbation theory, linearized equation of Einstein, solution of this equation, order of magnitude of deformations measured by
Ligo/Virgo

- Analogy between mechanical torsion of space and polarization of gravitational waves: consequences on G
- An equivalent Young's modulus of the elastic medium space
- Possible mechanical characteristics hidden in Einstein's constant k
- Necessity to have an anisotropic model of space to be in accordance with the Poisson's ratio v=1
3) Limits of the analogy between MMC /RG - Questioning of continuum mechanics in relation to these deformations of space
- Space as an anisotropic medium on a small scale?

- How are the deformations of space transmitted from one plane to another during the propagation of gravitational waves? Local
plasticization of an equivalent crystalline medium?

- If the RG has to be modified, the modification must be very small: is geometric torsion a good candidate?

~ -The contribution of defect theory and its analogy with Einstein Cartan's general relativity, a way to explain the propagation of
gravitational waves in space? a local dislocation of the medium?

- Are the Eolarizat.ions of gravitational waves in the case of GR with torsion a means of supplementing the tensor of plane strains of
the space medium observed in the case of GR without geometrical torsion?

4) Conclusion 2



1) Continuum mechanics and weak field general relativity: what are the
realities and limits of the space elastic behaviour?

* The different approaches to the state of the art
* Beam-and-plate theory and analogy with the structure of general relativity

* From a tensor point of view:
* Deformation tensor/disturbance tensor of the metric
* Stress Tensor/Stress-Energy Tensor
* General form of the theory of relativity / Hooke's law



State of the art : T. Damour: why an elastic
analogic space-time material?space-time like jelly

@ Les ondes grayltatlonnelleﬁpar Thibault DAMOUR ______& T.D “Spacetime is an elastic structure
' théorie d’Einstein en une pﬂi” e that is distorted by the presence within

it of mass-energy”

L'Espace-Temps est une structure élastique qui est

déformée par la présence, en son sein, de Masse-
Energie

Espace = gelée

T.D “Space = jelly”

DI: So This « jelly » is the equivalent
analogic elastic material fulling
space time

Source T.Damour
presentation

=3



State of the art : other approaches to study the
analogy between general relativity and theory of
elasticity

Start from the elasticity

: equations in 3 dimensions
Solution 1 and transform them into 4
dimensions Hooke’s law

Two main
approaches

Start from the general
relativity equation and add
terms or transform the
equations to cover elasticit
behaviour V‘
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Example of solution 1: Elasticity 3d => 4d

[178] Cherubini, C.; Filipp1, S. (2015) «An Analog of Emnstein's General Relativity Emerging from
Classical Finite Elasticity Theory: Analytical and Computational Issues»

Let be a material point of a coordinate material (xy, X5, X3) ;
Let be the position of this material point after a displacement (x'y, x'5,x'3) ;
Such as:
X' =x; + u;
With for the strain vector (or relative displacement):
up = ui (6, %) = uy(t, xq, %2, x3)
The nonlinear strain tensor is written:

1 (aui du, duyg aul)

Yik =5 \Gx, T Bx, T ax, oy

The interval between two material points after deformation is then written:
dl'? = dI? + 2uydxdx, = Cyedxtdx®

With:

dl'? = de’f +dx'3 + dx'3

dl?

\/dxlz + dx3 + dx3

Ci = Sip + 2uyy

This leads the authors to the following metric constructed from the Lamé coefficients:

Juv =

= 0 0
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Abstract. The “analogue gravity formalism”, an interdisciplinary theoretical scheme
developed in the past for studying several non relativistic classical and quantum sys-
tems through effective relativistic curved space-times, is here applied to largely de-
formable elastic bodies described by the nonlinear theory of solid mechanics. As-
suming the simplest nonlinear constitutive relation for the elastic material given by
a Kirchhoff-5t Venant strain-energy density function, it is possible to write for the per-
turbations an effective space-time metric if the deformation is purely longitudinal and
depends on one spatial coordinate only. Theoretical and numerical studies of the cor-
responding dynamics are performed in selected cases and physical implications of the
results obtained are finally discussed.




Example of solution 2: GR => Elasticity

In[62], [179] and [183] it is proposed to Eg;d(% the mQ'\eatutml eQrIgyli ’!ets rand elastic strain density

tensor of spacetime: I
‘ Gy i|- KT, I Elastic potential energy (space strained)

Where T, is the energy/effective momentum tensor obtained from the "elastic" potential energy

term in the Lagrangian

In [65] and [128] the same approach is carried out by completing the momentum energy tensor:

v 876G v Vv 1 oV
R;i = 6_4 T;s + Ou— EO,H(T + o)
1 816G

R,uv - E g;ﬂ/R = 7 [T;JV + O}w]

[62] A. Tartaglia (1995). Four Dimensional Elasticity and General Relativity (Springer, Boston).
[65] M. Beau (2015),‘ Ann. Fond. Louis P;roglie 40 1.1850083-21 « On the nature of space-time.
cosmological inflation, and expansion of the universe »

[128] M. R. Beau (2014) « Théorie des champs des contraintes et des déformations en relativité générale
et expansion cosmologique ». - Foundations of Physics manuseript arXiv:1209.0611v2 p4 and Annales
de la Fondation Louis de Broglie, Volume 40, 2015

[179] Levrino, Luca: Tartaglia, Angelo (2012) « From the elasticity theory to cosmology and vice
versa »

[183] Tartaglia, Angelo: Radicella, Ninfa (2009) «From Elastic Continua To Space-time»



The beam t
re

Cas of the Pure
bending : M= cte

m

In static (deflection Yir) independent of the time), the fundamental relation connecting the

be written as following:

ativity in one di

neory of Timoshenko as a general
mension

Pramana — J. Phys. (2020) 94:119
https://doi.org/10.1007/s12043-020-01954-5

;R
| d? by M 1
D A T — ™ dx2 EI R kgm
: U=——Xm
El S
Figure 1. Timoshenko beam, with radius of curvature R, M{x} — M —
deflection y, loaded by two equal bending moments M. R
By reporting the expression above in the energy bending expression
1 (ED? Bending rigidity | —
curvature (1/R) at the bending moment Mand at the second derivative of the deflection y(,, can _ — dx v
2J), R?EI 1 U g2 U
X — X 3
As the curvature is constant, we obtain so: 1 (kgm) mt M kgm m
m*\ s?
1EIL
1/m? T2 R?
AN 2R Energy by unit of length
in the case of the pure bending, we obtain:
1 2 U
Curvature e — ==\ In1D
R EI\L 8




hypersurface

The Timoshenko’s plate
theory

Young’s Modulus Y and .
Posson's atio v o he Relation energy curvature of a plate

space-time

2y Gravity can be thought of as the

cled i it B D 1 1 , 1 movements of particles
k= et U flexion — & —| +|| +2(1- V) ,
ks 7 " 2 )y Jy |\Ry R | R through curved space-time.
11

y Xy . |
Credit: NASA

e T,
tric strain =*P, such that
3D &/c2
Shear waves traveling at the speed of —I_ 2 -I_,-" — — dxdy
light R R
Matter ir »s  prescribed  strain * T
causing }l }

s=51 [ Viaiat With for the bending rigidity D: For 3 plate ofwidthb=1m
”|, = ] — bh?®  1xh?
Curvature 12 12 Area energy density

1\2 /1Y 1\’ 11 2(1—v?) U

—) + (=] +20- 2v]—— x
(H_L.) "\®,) T 1= Ro) [T V|RE, El ab

1/m2 X = X
12 (kg;n)mHm m?*  kgm ~ m3




Curvature in general Curvature in plate

relativity

Curvature = Second derivative of the metric g,

theory

Curvature = Second derivative of the deflection w

G ! ;
uv = R_m, — _g,mR —* |R:=g¢""R,3 |

2
2 1 d W(x,y)
o 2
R, dx
2
} 1 d Wix,y)
are, ., oore, - - T v,
Rus = oo = ot 4 TV 1, =T, 1 ‘ R, dy
2
1 0"Wy)
_ : : R, dxdy
e ._1 ao {}me +d9,tm - dg;w
R S N 7 T e

€

1 v 0 = 2
1{8 . '—Sxy} v 1 0 Gy | _ 240 -v) dU
zz xx Cyyr 2 0 0 2(1_\') sxy EI dxdy
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Other expressmns of the strength of material

(normal e

Sollicitation

Relation between

fort and shear load added) Ligo/Virgo

displacement, rotation

Displacement,

Normal effort
N(x)

Shear force
V(x)

U(x)
Lengthening
shortening (strain)

@)
Shear force
distortion

! rotation Expression of the energy
and strain
Bending d’y M 1 Vo(x) 1 _2 } U
moment dx2~ EI R Vertical deflection RZ EI' L
M(x) due to bending
Torque of I —cl do Ox) iz 2 U
twisting T(x) " dx Twisting rotation RZ GI, L

Measured in the Ligo/Virgo Arms

20-2x10 2
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Mechanical conversion of k: links with strength of material
(Timoshenko’s beam in bending at 1 dimension) (DI's Book and
Pramana publication)=> generalization Hooke’s law at all the other
solicitations: shear and tensile/compression N like k

Solicitations Curvature/energy formula Dimensional equations
=

@Z k;]u XI% At 1 dimension
: s _ x‘ﬁ At 1 dimension
kem® I
1 :K 7 | At1dimension
I

:x% At 1 dimension
1\__ /= i

Bending moment of M,

Twisting torque T,

Normal effort N,

Shear effort V',

General relativity

Second derivative of the
metric gy

Beam theory: Relation curvature 1/R,

1) GR and simplified elasticity theory (beam in strength of material) shows strain g, stress ¢ and energy density U/L in
compatibilities in terms of curvature and mechanic aspects strength of material for a material of
2) GR mixture of curvature and torsion Young’s modulus E =Y and inertia |




Summary : = equivalence between Timoshenko

in static and Einstein

Theory Formula curvature = K density of energy Dimension | Unknown
Timoshenko _(elastic £, 2 1 2 U 1 o
beam in static) (_) e —— y(_--\-')
Z R?2 EIL ]
Timoshenko (elastic ( 1 )2 ( 1 )2 1 )2 { 11 } 2(1—v*) U 2 Wi(x,y)
: : — +|= +2(1—v)( + 2v{i——¢| = — X '
plate in static ) R, R, R,, R.R, El ab xy
1. 2 (1 24(1—v?) dU
— [(.Exx_)z + (8yy) +2(1—v) [Z.ex},} — 21-'{8xx8yy}] — o X D Ery VY
Einstein (General 1 816 4
relativity) Ruv — 5gm,R + Ag“v E— 7 L g

Curvature (g) = K x energy density

1/m?

s¥/(kg.m)=N-1

J/m3=U/V = (kgm?¥s?) / m3
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Parallelism strength of material and general GR

curvature

relativity :mechanical conversion ofK s linked

with 1/R2
Strength Strain energy density

gHH g Bep
q(pH qu @

material
curvature

1 9
—x 1+ % cost”

R=g¢"R,, = ¢" Ryy+ g""R,
g = 9" Bog 97" Rop = R R2cosh”

Mechanical

of
_}:
Energy density

parallelism GR applied at a sphere gives the
Curvature =K Energy curvature obtain for the beam
density 1/R2
du\* 2 U
(dx) " ES L
Beam (dy)z _ 2 U
dx "~ GS, L ) )
. , ’ Main conclusion
Rz =ZI T should depends on
Plate 1 i[(g 12 4 (63) + 201 =)= {6y ) + 2vfenec }] _241=v) U mechanical
| 72 | XX Y 4 xy xXxEYy Eh? dxdyh characteristics (Y=E, v)
1
GR Guy + AGuy = Ryy —Egp\,R + Agpy = 2.0766 10—4&#_1 Tuv

14
Therefore, mechanical parameters are hidden in these values lJ




The equivalences clearly established: stress

tensor ¢, / stress energy tensor T;

Appendix A, Demonstration of the equivalence
between the stress tensor oy and the stress energy
tensor Ty, [49]

In the theory of elasticity, resulting from the continuum
mechanics, the relation between the stress tensor o,
(with T; = oyyn; where T is a stress vector attached to
the facet of normal vector ), and the applied force @,
on a surface 5; can be written as follows:

o = oy 5. (Al)
In the field of variational approach, the stress tensor can
be written as follows:

oy = with AS; — 0, (A2a)

i
A5y
where AS; is an area.

S0, with m as the mass, o as the density of mass
energy. V' as the volume and q; as acceleration, we have:
Ay Alm = ap) B Alp = V = a)

AS; AS AS)

oy = . (A2b)

Assuming that the variation of the force is due only to

the variation of volume V as a function of time § we

obtain with, a; = %r.

ApxVxa) 1 (ﬁi.-’)u
as;,  as\ar )"

oy = (Ada)

Thus, we get with V = Axp = Axy = Axg

| Axp = Axy x Axg
oy = 'H,i.i_,. ( At )1':- (A3b)
We can replace 5; by its value:
AS; = Axp x Axg. (A4)
50 the new expression of the stress tensor is
oy = pi( ~ Li:" ;.Im‘ ) (AS)
After simplification we obtain

Ax;

oy = piy (F) (AB)
By definition of speed v, we have
b= (%) (AT)

We finally obtain the expression of the stress tensor at

low speed as a function of energy density p and based
on the multiplication of the velocities vy and vy:

ST  Demonstration of the Rtk

Pramana paper

The stress energy tensor results from the product of
the energy density and the multiplication of the four-
velocities (four dimensions of the space—time) resulting
from the peneral relativity:

T,'.n' = Py, (AT}

Classic speed vectors

Density

Special relativity,
four speed vectors




ransversalism between GR and elasticity theory:

mechanical conversion of k (form of mechanical
expreSSIOn funCtlon Of Y) If we compare and analyze GR and

- - 1 elasticity theory on a tensor point on
grav‘i‘t';iy(f:af;eld (5a) view, in link with strain energy U, the
“transversalism” between General
Relativity and elasticity theory appears,
it becomes clear that k should depend
of mechanical parametra and especially
Y=E and v

Weak gravitation field 'EE ] :]

1+ v
{ ::I "I[J.'E”("'-‘EHE} Elastic medium

This formula is similar to T. Damour’s formula in his book “if Einstein had

told me”

Dy =T ‘

’ j Y e = 20
(o2 ) =222
Universe B (14_1;}05.8”.
homogeneous » Hooke’s law in isotrope medium E Y
and isotropic _




Conclusion about the mechanical approach of

Reason 1 parallelism K
curvature = K energy density

(General relationship between the strain tensor and elastic strain energy

v i 2(1 -{—'Ir’:] (1 +'Ir'} §4
[(Eﬁf T 3“5'@')}3:} =—g Vi 0 7 en = U

A mechanical bridge should be
inside
Monal fields is:

The linearized form of Einstein’s equation in weak gravit

A9 h  —Th  —
Reason 2: Unit 0 gih’#"’ o h’pp _ Tﬁ“‘

he mechanical aspects of the

eI o the Flexibility m Nt general relativity should be

SRS directly introduced in k




Conclusion of this first part

1) The principles of the equation of General relativity are close to a
Hooke's law as applied to the theory of beams or plates

2) The tensorial formalism presents similarities between the stress
and strain tensors on the one hand with the stress energy tensor

and the tensor linked to the disrt]urtéance of the metric on the other
an

3) A parallelism appears between Hooke's law in a homogeneous
and isotropic medium and the general relativity equation

3) An original approach to integrate mechanical characteristics of
space into General Relativity is to express Einstein's constant Kk as a
function of these mechanical parameters



First approach: Mechanical torsion

2) Deformations of space in the case of gravitational waves

e Perturbation theory, linearized equation of Einstein, solution of this
equation, order of magnitude of deformations measured by
Ligo/Virgo

* Analogy between mechanical torsion of space and polarization of
gravitational waves: consequences on G

* An equivalent Young's modulus of the elastic medium space
e Possible mechanical characteristics hidden in Einstein's constant «

* Necessity to have an anisotropic model of space to be in accordance
with the Poisson's ratio v=1



Case of the gravitational waves far from the source

g0 o General relativity in
hy, = h.ﬂ,,+%,7mﬁ Linearized Wea k fleld

h = —h = h’ the trace of h

And the metic of the space time 1s given by:

v = My + P Small perturbation f the metric
MV — IV _ ][IV . .

g~ =n"—h measured by Ligo/Virgo 1x 102

; the solution to solve this equation

based on the Greens function:

By analogy with _h,,,

f is a function.

5*delta function of Dirac at 4 dimensions,
x*“the space variable,

x; a source point that sends something at a given time to a given location (u associated with t),

The solution 1s of the following form:
& (x° — x¢ — ||I% = %lI)
4m|X — X

The solution by analogy with the above 1s theretore:

Soluti hoo= 4G J].f T;xv(xo - xso - ”'TC) _?C)s”) A3
olution = T — .
- ct Source ”x — xs” *

O(x%—x)

fi (x) =

20



Case of the gravitational waves far from the source:
case of two masses rotating around each other

hijiry = hijey =

2G d?
Rct dt?

2G ..

Rt %i(i-5)

Rc

at(t=7) =

This expression was demonstrated by Einstein in 1916 [35]. We also give this demonstration (see derivation

in A.1.3). We check m the equation that h;js) has the dimension of a deformation (without unit).

m3

kgsz 1
m# 52

No unity as a strain

kom’ Y
m

So, we can rewrite the quadrupole formula as:

e
Which is exactly the expression used for gravitational waves: Q: I = Quadru p0|e
i, At
2G dz R 2G 4G m,m, —cos2wt —sin2aot 0
hij‘(U = 1 21” (t—_) =_4Q Ry — 4( )[12(.?)2 —sin2 ot cos2ot 0
| Rc* dt c Rc u(r—;) Rc*\my + m, 0 0 0

Z1




Gravitational wave: projection of a spheric
wave in a plane wave far of the source Via

the projection tensor in the plane xy P “
lJ “[o 0
o t
£
RIT = (P (R)P:(7) — =P (7)Py(7) | h 5
) ik Jilllr 2 Uy kl kl -1.0 = Numerical relativity
mm Reconstructed (template) | l
TT _ Kl
hi = (Piju)h —
0 | h/uv = Aﬂve] e |
0) ei(kx-at) 4 conjugate complex \ctor.
0 0 0 0 0 0 0 0 0
_ 0 1 0 0 0 0 1 0
A/“_h"'(ﬂ 0 -1 0)+h>‘(0 1 0 O)
_— X I
) y Gravitational wave o
Locally a sphe?caé wave}:l (Propagation direction) W c=c¢kE
emission very far from the R Projection of il ; SL (
source becomes a plane wave on 7 (unit vector) the vector W i
the Earth due to the big radius R ¥ along lo‘
between the source S and the Plane 7 (3)and
observer O o perpendicular
Source emitted . ~ tofi(l)and 2) Each arms of L = 3km for
Gravitational Waves Point z o S\ | Virgo and 4km for Ligo
multipole decomposed. Plane orthogonal to unit vector 71 gt by L @R Measure space strains
GW17

Figure A.6: Projection of a vector ¥ — definition of a P;;j — (T. Damour source)

Virgo 2018



Passage of the General relativity linearized
Elasticity theory

Study part left of the Einstein Equation

gij =My +hij =ny + 2859 =N +hyj =0y + 28

The linearized form of Einstein’s equation in weak gravitational fields is:

23



The linearized form of Einstein’s equation in weak gravitational fields is:

B 167G
ct

Bridge between mechanic and

3"03hy = Oh, = T GR in weak field

2 Polarisations

— 1 =
g h’#" = Ty + 5”;11'?1

0 0 0 0 0 0 0 0
0 +1 0 0 0 0 +1 0
l £ » A=Aty 0 oMo 41 0 o
E,m' — ﬂp‘-ﬂﬂﬁ( -IFG-IU) 0 0 0 0 0 0 0 0
1 0 0 0
0 -1 0 0
Consequence of the { ; }
0 0 0 -1
b”dge huvzzguv h the trace of hy,: )
h=—h
gij = nij + hij = nij + 2¢ij
hij = 2i 50, b+ 20T = O b+ 20 7) = — 57 1
. T,m o 'y v o v A v
ob L I
L 2 hz]n n By replacing h,, with 2¢,, we get:
Under the weak field condition, the metric tensor can be approximated as, 8}'8}_ (ng. + %rfﬁ},?ﬁ) =[] (Qﬂ,m- + %;?FWQE) = — 16;G T#"
gp.v - ??p.v + 25;1,1;, |€p,v| = 1 29)

Mechanical expression
of the general relativity
linearized




Passage of the General relativity linearized
Elasticity theory

Study part right of the Einstein Equation

The linearized form of Einstein’s equation in weak gravitational fields is:

1o 5 — 16?1: T

{ J
Y

Study of the correspondence of
this part with the elasticity theory

25



Stress energy tensor =stress mechanical

With for the four velocity:

yc
A
u T lyvy,
|

Under low speed y=1 the stress energy tensor becomes:

"mc?
v PCUy
Tuw = |pcvy  prvy
PCVy  PUyUx
L pCV; PV,

PCVy
PlxVy
PVy Uy

Py,

(130)

tensor

We obtain finally the expression of the stress tensor at low speed in function of the energy density p
and based on the multiplication of the velocity vi and v;:

g;; = pv;v; (128)

The stress energy tensor becomes from the product of the density of energy and the multiplication of
the four velocity (4 dimension of the space time) issued from the general relativity.

Ty

= pu,u, (129)

pcv;

PV Vs
Py Vg
PUzU; |

(131)

Based on the definition of the stress tensor, (cf. equation 128), the stress energy tensor at low speed

can be written as following:

" mc>
v Pl
Tp[ v | PCVy Oy
PCVy  Tyx
| PCV; Tzx

The Einstein equation build a link in 4 dimensions (space time) with the curvature tensor
Guy(dimension 1/m?) and the stress energy tensor T, (dimension energy/m?) that is itself a
generalization in 4 dimensions of the stress tensor of the continuum mechanics.

T

¥

Pa = N/m?*=

K
L VLV

pev, m3 S S

Tz (132) kgm 1 _

Tyz 52 m? T

. pression or stress =
force/Area




Geometric Link of GR with the mechanical torsion

Qu e St i O n : For a polarised wave A :

* Why there are two polarizations of the d ’“*C“(C(“‘“)[g od } N
gravitational waves except on a mathematical
point of view? }
(30b)

Possible answer : |.9i;' =Mn; T Ny + 2¢ij9ij

Although Equation (3.8) suggests that there are ostensibly ten strain compo-
nents, £,3, oscillating independently, in reality only two are independent and the
rest are coupled to the two. To show this, consider a traveling wave, which corre-
sponds to a gravity wave, propagating along the z° direction. It is necessary that
£3a = £a3 = 0 for the wave to be a shear wave. Furthermore, as shown previously,
co0 = 32 = 0 and £j0 = £0; = 0. Finally, we have £*P
£33 = 0 already. Therefore,

= £11 + €22 = 0, because

Tenev and Horstemeyer present the
(3.12) results but don't speak of the real
geometric consequences

£11 = —€22

£12 — £21

are the only two independent degrees of freedom left, which implies just two types
of wave polarizations. The fact that Equation (3.12) is in terms of the material
strain, which has a definite physical meaning, ensures that the waves must also be
physical as opposed to being mere coordinate displacements. This result, derived
from a Solid Mechanic’s perspective, is consistent with the analogous result from
General Relativity about the polarization of gravitational waves [26, Ch. 35].
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Elasticity

N

7
Interferometer “ il 3 # Elastic gauge

GR in weak field Gravitational wave

For a polarised wave A_:

O-n xy O"

) _
[O' ]J:_ = O'_‘_‘ O-_\J' O'_l._.
ag a g

x 2y

28

GR in weak field Gravitational wave




1t consequence: Torsion and Polarisation of
gravitational waves (see DI’s paper Pramana)

Metric perturbation (2 polarisations ) Strain tensor Stress tensor
E_I'_L' 0 U Oxx 0 0

. Oxy(Ay) = |: 0 oy 0i|-
- 0 0 0

O Q00
0 —&yy 0

For a polarised wave A : T+ E.r}-[A+j =
o o
Associated stress: Torsion state _
function facet orientation e / f

v = My + Nyw) = (M + 28000).

— = —h;;n'n? 8ij = nij + hij = nij + 2¢i; x YA G | A/

2 hij = 2si Yo BT @ T M B :

: . ;

: e " v | /CI A Tq

G000 b ir

: o (o] | |
—

% — % =102 = ¢; = %hu- (a)
D R.
' 0 &xy 0 b !
E'n(.-’-'l ) = Evx 0 0{. » Jx(AJ[T =9 0]
0 00 0 o0

Each polarisation can be associated at

GR in weak field => Strain tensor and ¢ P dium i

gravitational waves with 2 » perturbation of the metric » bItV\I/<oh alcets of a me h|'um |n-tor5|on. )

polarisations are linked 26y = huv ack hole generate this tgrsmn (see K. N
Thorne presentation)




2"d consequence :Ligo/Virgo measures space that is
compressed and stretched, but where is the shear strain?

Ligo and Virgo are equivalent stress
gauge of the space time structure

tany = y=—

and should be

measured by an
other

experience

(LISA)

by Lisa (see Nasa)

DI: Comment of R. Weiss,
impossible to measure the ;
distorsion (shear strain) with
Ligo/Virgo, perhaps possible

~l

ligo.mit.edu>

De : Rai Weiss <weiss
Envoyé : lundi 24 ao(t 2020 23:32

A : David IZABEL <d.izabel@enveloppe-metallique.fr>
Objet : Re: Possible new measurrments on Ligo.

David I,

Only this state is

De : Thorpe, Ira (GSFC-6630) <james.i.thorpe@nasa.gov>
Envoyé : mardi 22 septembre 2020 21:50

A : David IZABEL <d.izabel@enveloppe-metallique.fr>

Cc: Kazanas, Demos (GSFC-6630) <demos.kazanas-1@nasa.gov>
Objet : Re: [EXTERNAL] Possible new measurements on Lisa

measured by
Ligo/Virgo

Dear Pr. Izabel,

| found your paper interesting and a nice addition to looking at the dynamics of GR through the
window of elasticity. By the way you will get a quite similar result if you use the weak field energy
stored in the gravitational wave and relate it to the strain in space. That also gives the Young's
modulus of the new ether. | remember doing this some years ago and getting that at 100 Hz space is
10720 times stiffer than steel and gets stiffer with (if | remeber right) square of the frequency.

AS to asking LIGO to look for a gravitational wave induced motion of the mirrors transverse to the
optical direction, that looks pretty grim in the current geometry. | assume from your calculations tha

the motions are symmetric, end mirror of the left arm moves outward while the end mirror of the
right arm also moves outward - the angle between the arms grows and then in the next cycle of the
Gravitational wave the mirrors both move inward . In other words it is not a rotation of the two arms
together leaving the angle between the arms constant. In either case, symmetric or antisymmetric
the motions we are looking for is h X L. The small misalignemnt of the interferometer would be
unmeasurable given the field cnange one would measure on a pair of adjacent photodetectors, The
only hope would be to set up an equally sensitive pair of interferometrs to look at this sideways
motion, Then it does matter if the motions are symmetric or antisymmetric. | cannot see how to do
this without a major reconstruction of the interferometer.

Rainer Weiss

framework could be applied to consider HSA measurements in your “elastic gravity”

Thank you for your message and your article. My personal focus is more on the instrumentation and
measurement aspects of LISA so I’'m not sure how well | followed the details of your argument but |
think | understand some of the basics. As Rai pointed out in the discussion you shared, LISA’s
triangular configuration provides an opportunity to measure multiple components of the strain
tensor. We typically describe this as a capability to simultaneously measure the two polarization
modes of standard GR but there has also been some work to extend this to measurements (or
constraints) of the four additional basis tensors possible in non-GR metric theories. | suspect a similar

approach. There is also the possibility that LISA will operate simultaneously with a planned Chinese
observatory called Taiji, which has similar geometry and performance characteristics. Others have
pointed out that a LISA-Taiji network could be particularly powerful for constraining modified gravity
as well as for precision astrometry of GW signals. I'm afraid that is about the limit of my capabilities
on the subject, but fortunately | am surrounded by colleagues with more knowledge and experience
in gravity theory. One of these is Dr. Demos Kazanas, with whom | shared your note and who
expressed some interest in further discussions. I've copied him here in case either of you wish to
initiate a conversation. Please let me know if | can provide any additional information regarding LISA.
Kind regards,

-Ira Thorpe, NASA/GSFC



Model 1 : Isotropic medium in the plane of

For a polarised wave A_: the interferometer : Hooke’s law g =¢ Y

hyw = Ay CDS(E(EI — z))
c

: Sollicitation ) Relation betweer! Displacement,
D'rm'on 2 of t'w dlsplacaerzesrtl:,air:tahon rotation Expression of the energy
» - endin 2y Vv (x) 1 2 U
sfwtatlonal WW? anon:iengt % = _% = % Verticj d(ef)lection RZ - EI x n
y M(x) due to bending
pfopm‘lm Torque of T =G, ﬂ 9(*‘) i:ix!
twisting T(x) t gy Twisting rotation R2 Gl L
Lj \V < Normal effort | N = ES% —ESe =05 Len;:.’:ning (%)2 _ EZ_S%
|g0/ ‘rgo » / p '\ z _ NG9 d shorten;mg(strain) V\A
x¥ D shearforce | V= 65y = G5l shear force @ -27
(7 \% distortion
'I . { s Elm
T N d :
Elastic space medium | L |
Figure 10. Double perpendicular tube loaded by a normal
made by a sandwich of force. Figure 9. Tube loaded by a normal force N.
thin sheets
Earth The Hooke's law (13) can be written as a function of
posn'on o' ‘M m‘r wave dunns the dihplilt‘t‘lllt‘lll Uixy-
the time (speed c), torsion of the i (u“m, iy )F _8L, |
sheets of the space medium =S dx il i
o . . . . . . ’
Physic behaviour Model 1 :Arms in compression/traction via Hooke’s law I
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Reconstruct Einstein’s k: Ligo/Virgo plane stresses and
Indeed. the Laplacian of the gravitational field, A, N approach d efo r m at i O n S |' G G0l 502 03 -| o approach

follows the Poisson’s equation 10 11 12 ~13
L ¢ G, G, G components ij are

A¢ =4rGp Y| G20 bl Ere G2 g2 g2 g
. . used => Einstein used => spatial
and the 00 component of the metric g, is then p

630 G‘“ GSZ GJS

approach : i
L2 pp 700 Ol 702 703 mechanical part
0 2 10[ il ~pl2 i3 of space
T 1T
e =K 200 21 22 23
(2) Horizontal waves, Tiriaces Z¢ each pa- |_ qu T31 Tl‘) TH
:‘relatedt b:r the ?li;k————‘ (1} Black holes in rotation of T | S
ole rotations, in the
olan of the black mass Myand M Direction Z of the
holes, moving at the (3) Torsional waves, created by gravitational wave S r = Ligo = strain
i the black hole rotations, i tresses an
speed of ight h . perpendicular at the rotation frepageein strains are in gauge Of the
) ——— | plan of the black holes, moving A A o space
IO!SIOH o I — at the speed of light o successive planes
orques ‘m.,\) | (@ Cylinder of space time “ " (transversal wave)
P g in torsion at the passage
(/ of the torsion wave
] Elastic space medium N
(5)Earth | /’: — x Y made by a sandwich of ==
Inte.rferometer = ___ L thin sheets / / y
strain gauge : f— v must be equal to 1 to have y N s /
T:r::,ri::;tezf the parallelism with GR farth Position of the shear wave during Demonstration in Pramana
‘ the time (speed c), torsion of the paper

al,
associated at - ’
. sheets of the space medium

(measured to day)
and 7y (if measured
one day) in function y

of interferometer
orientation

See demonstration in Dl’s
Pramana paper, we obtain well G=
© f/p and we obtain a parallelism

between mechanical and GR
equation field

Main consequences
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Model 2 : Isotropic medium cylinder un 4
torsion : Hooke’s law t =7 G

|2} Horizontal waves,
created by the black
haole rotations, in the

I 11k #ack holes in ratation of

slan of the black mass Myand Mz
haoles, moving at the (3} Tarsional waves, created by
spead of light tha black hale rotations,
. perpendicular at the rotation
plan of the black holes, moving
forsion — at the speed of light
TorRuas - —  |#) Cylinder of space time
in torsion at the passage
of tha torsion wave
(5] Earth ————u ] e
Interferomutar = -
strain gauge :
measurement of

normal stresses
assoiated at%
(measured to day)
and ¢ (If measwred
one day) in function ¥
of interfarameter

orientatian

Physic behaviour Model 2 :Cylinder in torsion

Sollicitation Relation between Dicol
displ. cement, 1o i rotation Expression of the energy
Same consequence Bending dy_ _M_1 Yoo 127
moment dxz = “EI = R Vertical deflection R2 EI' L
. . M(x) due to bending
and conclusion in — —
twisting T(x) ~ g Twisting rotation RZ Gl L
the case of the [ orma e | N =BT =05 | qicug @) -5t
N(x) shortening (strain) i
I 1 d 1 t 1 "Shear force V = GS, ﬂ =GS,y, ) dyy* 2 U
cylinder in torsion o (@) —a2
distortion

For a polarised wave A ,:
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Reconstruct Einstein’s k by mechanical component
of the tensor: Torsion of a space cylinder

lon G
——T,,.

(2) Horizontal waves,
created by theblack
hole rotations, in the

plan of the black

holes, moving at the

speed of light

—— | (1) Black holes in rotation of
" mass Mjand M,

(3) Torsional waves, created by
) the black hole rotations,
H“"_-:-:_ perpendicular at the rotation

~__ >
' b w—— | planof the black holes, moving
Iﬂ ’’’’’ . ——] at the speed of light
orgues \J |~ (4) Cylinder of space time
P e . .
P in torsion at the passage
( of the torsion wave 3 1 — 1 —

. — —

- o= ox .\ hpw + Eﬁ’puh = [ hyv + zn,u:uh

— - _—~ 2

N N 7

(5) Earth i
Interferometer =

DI: See demonstration in DI’s
Pramana paper, we obtain well G=
© f/p and we obtain a parallelism

between mechanical and GR

equation field
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2 types of waves in elastic medium, but only one
type (shear) in general relativity, Why?

2.4. Postulates

‘We postulate the cosmic fabric to be (1) an elastic thin hyperplate, with (2) matter-

A nswer Of T Te nev an d P ro b d b |y das p e Cifi cn at ure Of t h e energy fields as inclusions, and (3) lapse rate of proper time proportional to the shear

wave speed vs. Each of these postulates is described and motivated in the sections

M.F Horstemeyer space time: a special fabric belo.

2.4.1. Elastic Thin Hyperplate

Cosmic space is identified with the mid-hypersurface of a hyperplate called the
T . Cosmic Fabric that is thin along the fourth spatial dimension. We imagine the
VU + fe xternal s DI . FOI IOWI ng T. Te nev fabric as foliated into 3D hypersfrfaces each ofI:;vhich is isotropic and elasgtics and
each is subject to Hooke's Law (See Fig. 4). Thus, Hooke’s Law (1.1) together
(38(1) ad nd M . F. HOFStemeye r, with concepts such as stress, strain and the Poisson effect (see Fig. 3) apply as
. . conventionally understood in Solid Mechanics, because they pertain to individual
th IS Uun |q ue type Of hypersurfaces, which are 3D bodies.

Because of its correspondence to physical space, the intrinsic curvature, R3P, of

graVItatlon a I waves IS the fabric’s mid-hypersurface corresponds to that of three-dimensional (3D) space.

Likewise, the intrinsic curvature R of the fabric’s world volume, corresponds to

(383) perha ps a Signatu re Of that of four-dimensional (4D) spacetime. The term “world volume” refers to the

four-dimensional shape traced out by an object in spacetime as it advances in time.

a SpeCifiC Stru Ctu re Ia The small transverse thickness of the fabric is needed to create resistance to
(BSf) bending, but once such resistance is accounted for, we treat the fabric as essentially a
fa b ri C) Of t h e ana IO g IC 3D hypersurface that bends within the 4D reference hyperspace. The thickness must
- . . be very small so that the fabric can behave as an essentially 3D object at ordinary
SOIUUOH Gf the Equatlﬂﬂ fU]lGWS elastic mediu m length scales and be an appropriate analogy of 3D physical space. The thickness
nosition that oives two waves itself defines a microscopic length scale at which the behavior of the physical world
f=) . .
ESDECIa”y Wlth Vv =1 3.3. Fabric Vibrations and Gravitational Waves
Having Poisson’s ratio v = 1 also implies that there can only be transverse (shear)
(?9) waves in the fabric but no longitudinal (pressure) waves. The shear modulus p and
ar, transversal - = the p-wave modulus M are as follows,
fveloci h ST
ve ol velocily ¢ . . . . . ; T2 4v) 4
\ Y Cpressure’  girection of propagation (7). A shear with a ( 1) ., (3.4)
wave of veloCily Cepear: M:Y(1_2u)(1+u) =0

implying that the transverse (shear) wave velocity v, = \/,u_/,o # 0, while the
longitudinal (pressure) wave velocity v, = /M /p = 0. This result shows why the
speed of light is the fastest entity of the universe, given that a longitudinal wave is
typically faster than a shear wave. For a shear wave to be the fastest, the Poisson’s
Ratio must be 1. This conclusion is consistent with observations, because all known
waves that propagate in free space, such as gravity or electromagnetic waves, are

(40)

Does not appear in GR

Gravitational waves

transverse.



Synthesis of this part=> mechanical

conversion of

From linearized general relativity in weak field, the link between curvature of space and stresses in
this space is the Einstein’s constant 2 times:

16 &

| .
— 2841 — Nl | = "~
huv = 2¢epy '_](‘ we + 30 ) et

Al
2c=16—
c
From (GW170817) In space gravitational waves are transverse wave and move at ¢ in an equivalent
elastic medium constituting space:

—
[
C= [—
\7
From the analogy of the Hooke's law strains in the interferometer’s arms or of a cylinder in torsion
(rotation two black holes) we obtain (see Pramana Paper):
2
4
G = i
o

50 % can be rewritten in function of mechanical characteristics in the analogy of the space elastic
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The consequence about G and k: DI’s paper
Pramana and Books

AX

| M

We obtain well the new
expression of k compatible with
states of the art (K. McDonald)

v ij (1+v) .
[(S.,;j + oy smé.@-)} g¥ = 7 Ui = z cije”




BUT we have a price to pay:
necessity following this analogy to
leave isotropic medium.



Necessity to have an anisotropic model of space to
be in accordance with the Poisson's ratio v=1

Gravitational wave = transverse wave H O rSte m eye r

 We demonstrate based on 3 different approaches:

First Approach: Analysis of the Movements

of Particles Positioned in Space on a Circle Checked on

Undergoing the Passage of a Gravitational the Ligo/Virgo

Wave Epg = —VEyy Strains measured in the measurements
arms of Virgo | R

Second Approach: In the z Direction, o
the Gravitational Wave is a Transverse Coressure = 1| T 2k _ g T O va -2
P

Wave and is Not a Compression Wave

. . Consequence 1
Consequence 2 i, q Approach: Based on Available Datas 1 ’ _ Tra!nsverse shear wave
T ; [ E implies v = 1 (outside the

E
=5 V= — — 1
‘ P=27"""32, 2(1+v) range -1, 0,5) so we have to

of plans deformed independently during

Imply also a behaviour of space as a some S SO
ply P Continuous medium
medium? —

the passage of the gravitational wave



Consequences => the isotropy =>non isotropy
of the medium? Limit validity analogy?

Direction of the gravitational
WaVves P Wy - For Young's modulus Y=E:

Planes deforming
independently of

For the Poisson’s ratio:

each other
(szz\)yZ:O) Vro = Vir
EL
2 GLT e
v K<L 1 =07 2(1+ vip)
b) InLN (xz) and TN plans (yz)
For the Poisson’s ratio:
VNT = VNL
L 5 VLN = VIN
For shear modulus:
Gry = Gy
For the following key relationships between Poisson's ratio and Young's modulus:
v=1 INT _ VN
Ev Ef




Case of medium with transversal isotropy

Gravitational wave

IV.5.3 Case of transverse isotropy - the case of gravitational waves y
In this case we have:

vir = vpp =1

vyr/Ex = vyr/Exy = 0 This unplies that E,, 1s very large so either vy; and vy are very small (no
deformation n compression / tension following z in classical RG for polarizations + and x and very
small but not zero 1f Einstein-Cartan torsion (see chapter IV.9 below)

vin/Er = vry/Ep = 0 This mmplies that E), 1s very large so either vy; and vy are very small (no
deformation in compression / tension following z in classical RG for polarizations + and x and very
small but not zero 1f Einstemn-Cartan torsion (see chapter IV.9 below)

The matrix connecting the deformations to the stresses thus becomes in a transverse anisotropic medium:

L Tm 0 0 |
E L E L E N
( ELL _ o
-1 1 VNT (ULLY Transverse anisotropic spatial
érr — e 0 0 0 orr medium consisting of thin layers
ENN E L E L E N ONN constituting a deformed multi-
= |- sandwich in its plane
\ 27 ( VIN VIN 1 0 0 0 \ o7 ( ’
2& N E; E; Ey 2(1+1) o 0 OLN y &y
\2 ern/ 0 E L 1 0 \OTN/ Teme Position of the gravitational wave generating space deformations in
0 0 GLN 1 successive planes transverse to the direction of propagation z
0 0 0 Grn

The following xx and yy do not change parts ((E; =Y = E), so all the developments made within the

2
framework of this thesis that led to remains true G = %see publication of Pramana D. [zabel).
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Conclusion of second part

1) The parallelism between the deformation tensor in the case of a mechanical torsion of a cylinder
in space by the rotation of very massive objects and the polarizations of gravitational waves emerges
from the analogy between elasticity and General relativity in weak field.

2) The writing of the deformations of the arms of the interferometers in terms of dynamic energy
variation of the deformations of space during the passage of a gravitational wave leads to express k
and G according to mechanical parameters of elasticity EY, V).

3) The same conclusion appears when considering a cylinder of space put in pure torsion.

4) The analogy reaches these limits because it leads by the very nature of gravitational waves which
are transverse waves, to a Poisson's ratio = 1, that is to say to an anisotropic medium which is
contrary to the hypothesis taken at the start ( Hooke's law in a homogeneous and isotropic medium).

5? The multiple observations of gravitational waves since 2016 seems show an identical behaviour in
all the directions of space; so, if anisotroPy there is, it il homogeneous in all the space: we have a
medium with an “isotropic” anisotropy!!!

>

The elastic approach of space conduct at

a very special electic medium 42




Second approach: geometrical torsion

3) Limits of the analogy between MMC /RG - Questioning of continuum
mechanics in relation to these deformations of space

Space as an anisotropic medium on a small scale?

How are the deformations of space transmitted from one plane to another during
the propagation of §raV|tat|onaI waves? Local plasticization of an equivalent
crystalline medium?-

If the RG has to be modified, the modification must be very small: is geometric
torsion a good candidate?

The contribution of defect theory and its analogy with Einstein Cartan's general
relativity, a way to explain the propagation of gravitational waves in space? a local
dislocation of the medium?

Are the polarizations of gravitational waves in the case of GR with torsion a
means of supplementing the tensor of plane strains of the space medium
observed in the case of GR without geometrical torsion?
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Gravitational waves propagations following z
= Successive xy planes deformations

X
Interferometer Ligo/Virgo measurments

Figure 46: Deformation of the space by gravitational waves -

g ee
Source:[199] F Bondu Visualization of blue and red tensile and compression deformations in the *
4 @\\/z/(\ 2z

planes xy following the rotation of the two massive and compact celestial bodies. The space

IS : ; : 44
deformations in each plane are contrary signs

arms presentation F Bondu -



Limit of the homogenous elastic model
At this stage:

e OQur isotropic model of space fails due to Poisson's ratio = 1 (or is valid in plane
xy only but not in 3D)

* The shape of the successive deformations of a circle during the passage of a
gravitational wave supposes several planes of deformations independent of
each other without any link between these successive planes v, =v,, =1

V,.=V,, =0lstange and not in adequacy with the general assumption made in
physics of space as isotropic and homogeneous

Test mass

Direction z of propagation of
the gravitational wave

constituting a deformed multi-
sandwich in its plane

1 - T = \H =] e
=\ s o — e
AN\ W - N~ ™ 1" ~— ] e = —= I
LA '\’ AN ~{__ n — —T —— =
i\ || = . - =] T ~ L
™ N ) ] ] = = = N — > [ 1l
Y Transverse anisotropic spatial ——— 1
medium consisting of thin layers = = ] = ] I‘ ? !
To | [T |
|

Position of the gravitational wave generating space deformations in

, gencral L Figure 47: Source: [200] Visualization of deformations in the plans xy due at the rotation of the two
SUCCEssIVE planes transverse to the direction of propagation z

massive bodies perpendicular to this plane (z ) direction -
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If the RG has to be modified, the modification
must be very small

Hanford, Washington (H1) Livingston, Louisiana (L1)
1 ] ' 1
1.0
0.5
0.0
0.5 | "
;'“ -1.0 - A =11 cbeerves ! -
|o ; i : — H1 ouser'{ed (shefted, m.fm:san : :
Difference ‘:' 101 ' 1r "
between the NGl LA M §
n 0.0 | ’ W l M\»-v-
calculated and 05 L | kv 1L | i
measured -1.0 = Tumerca reiativety J Ll omerical reiativity i}
Reconstructed (wavelet) Reconstructec (wavelet)
curves = -ucconstn:cted (temolatex) i l -Rm:mstn‘actcc (templue"; 1 1
some % 05F T ‘ * T T T : :
0.0 s AN A M L i A gty

Figure 45: Source: [43] gravitational wave GW150914 — physical review — measurement of h-
deformations of space function of the time in the plane of Ligo interferometers -

[43] Collective (20516) LIGO Scientific Collaboration and Virgo Collaboration, Physical. Review.
Letter. 116, 061102 GW140915



Space as an anisotropic medium on a small
scale? first approach to solve the problem

Tenev and Horstemeyer propose that the anisotropy is at very small
scale (Planck limit) and so, the space stay homogenous at more larger
scale:

1V.8.2 Fabric of' equivalent space :;ppl'oach
T. Tenev and M.F. Horstemeyer in the article [47] propose on the basis of publications [134].[135]: that

The Mechanics of Spacetime — A Solid Mechanics space would be a kind of superposition of fabrics, a hyper-resistant sandwich. I quote [47]:

Perspective on the Theory of General Relativity "Known materials with a Poisson’s ratio of = 1 have a fibrous substructure, which suggests that cosmic
tissue is, in fact, fabric! For v= 1. the isostatic modulus of elasticity is K = Y/[3(1-2v)] < 0. A negative

T G Tenev - M F Horstemeyer isostatic modulus of elasticity means that the compression of the fabric results in an overall increase in

the volume of material and vice versa. Although such behavior is unusual for most conventional
materials, stretched compressive [29] and densifying [5] dilating materials have recently been
discovered. for which v =1 in compression or tensile "

In his thesis T. Tenev considers a scale factor to explain anisotropy at a very small scale and isotropy at
a larger scale. We take below Figure 5.4 of it:

Received: date / Accepted: date

Abstract We present an elastic constitutive model of gravity where we identify
physical space with the mid-hypersurface of an elastic hyperplate called the “cos-
mic fabric” and spacetime with the fabric’s world volume. Using a Lagrangian
formulation, we show that the fabric’s behavior as derived from Hooke's Law is
analogous to that of spacetime per the Field Equations of General Relativity. The
study is conducted in the limit of small strains, or analogously, in the limit of

weak and nearly static gravitational fields. The Fabric’s Lagrangian outside of in- (8)

clusions is shown to have the same form as the Einstein-Hilbert Lagrangian for . ~ . . . . .

free space. Properties of the fabric such as strain, stress, vibrations, and elastic Flgure 53: Flgure 5.4 Different tl"l]E‘S of IMICroscopic anlsotl'opy Source [4?]
moduli are related to properties of gravity and space, such as the gravitational po- Substructure of a Sphel‘ic ally S}ilﬂlletlic bﬂdy

tential, gravitational acceleration, gravitational waves, and the energy density of

free space. By introducing a mechanical analogy of General Relativity, we enable "The substructure of an OS'(ellSibl}’ continuous and iSQTl“GPiC bOdY 1s gl‘aduall}’ revealed from (a] to (C)

the application of Solid Mechanics tools to address problems in Cosmology. where (a) shows the 1dealized bOd}' as perfectly continuous and spheric Elll}' Sylllll]etl'ic. The dotted lines
Keywords modified gravity - constitutive model - spacetime - cosmic fabric represent the il]lagillal'}' subdivision of the bOd}' into cells. In (b). the mass of each cell is found to be
PACS 04.50.Kd - 46.90 4 concentrated into a small particle. while the overall density of the body remains unchanged. In (c). each

particle turns out to be locally anisotropic. while the body remains globally ostensibly isotropic” source

Mathematics Subject Classification (2000) 83D05 - 74L99 .
thesis [207] Tenev p108.



Space as an anisotropic medium on a small
scale? second approach to solve the problem

Tenev and Horstemeyer propose that the fabric of the space time is
effectively structured as a fabric that can have this Poisson’s ratio of 1

3.2, Poisson’s Ratio and the Substructure of Space

Known materials with a Poisson’s ratio of ¥ = 1 have a fibrous substructure, which

suggests that the cosmic fabric 1s, in fact, a fabric! For v = 1, the bulk modulus 1s
K =Y/[3(1-2v)] < 0. A negative bulk modulus means that compressing the fabric

results in an overall increase of the material volume and vice versa. Although such
behavior 1s unusual for most conventional materials, there are recently discovered

compressive dilatant® and streteh densifying®® materials, for which v = 1 in either T. Tenev and M.F.
compression or tension, respectively. Compressive dilatant materials are artificially Horstemeyer
mamifactured and their substructure consists of entangled stiff wires. Stretch den- Publication

sifying materials, have textile-like substructure comprised of woven threads each
consisting of twisted fibers.
37. D. Rodney, B. Gadot, O. R. Martinez, S. R. du Roscoat and L. Org’eas, Nat. Mater.

15 (2016) 72. 18
38. R. H. Baughman and A. F. Fonseca, Nat. Mater. 15 (2016) 7.



As an example the authors of [210] obtain I quote " The maximum Poisson's ratio is 0.820 along [001]

V and the minimum is —0.133 along [1 0] ¥ so thatl K = 0.820 —( —0.133) =.0.953. For [112] V

loading ( Fig. 3 ). the maximum Poisson's ratio in the transverse plane is 0.502 along [1 0] V and the
minimum value is 0.184 along [111] 1 7. Therefore. 7 ([112] ) =10.953 —(0.502 —0.184) = 0.635. »
In addition. it is also interesting to note that the directions in the transverse plane at the direction of the

effort for which copper has an Isotropic Poisson’s ratio form as for gravitational waves two modes. +
mode and x mode! (See Figure 52 below from [210]).

0.5

Space as an anisotropic
medium on a small
scale? Third approach to
solve the problem

* At small scale the medium as a
crystallin structure with some

Tw T particular direction the
Poisson’s ratio is 1 and other
directions is in the curent range
D X. '1 <V< 0,5
* Observe in this example the
. direction that are as the wave
:,\.:(,\,53(,3 @ polarisation + and x

P & mpmcnn . (1) he sy st o g (s g (3 0 e vewes sng o . s (€ o e vewa e ve 5 [210]'S. Shrikanth , Kevin M. Knowles , Suresh Neelakantan , Rajesh Prasad dans leur publication de
A S A St o Y S A i i a“”LZ oot 1 4 a0t e seveogrone o e poper W (2020) « Planes of isotropic Poisson’s ratio in anisotropic crystalline solids »

Figure 52 Source [210] Figure 4
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Space as an anisotropic medium on a small
scale? fourth approach to solve the problem

One way to satisfy the criteria of small modification of the classical RG
is to consider in addition of the classical curvature a geometric torsion.

M.L Ruggiero and A, Tartaglia in « Einstein-Cartan theory of defect of
space time » precise that effectively the effect of the torsion is very

small:

Einstein-Cartan theory as a theory of defects in space-time

M. L. Ruggiero* and A. Tartagliaf
Dip. Fisica, Politecnico and INFN, Torino, Italy, 1-10129

The Einstein-Cartan theory of gravitation and the classical theory of defects in an elastic medium
are presented and compared. The former is an extension of general relativity and refers to four-
dimensional space-time, while we introduce the latter as a description of the equilibrium state of
a three-dimensional continuum. Despite these important differences, an analogy is built on their
common geometrical foundations, and it is shown that a space-time with curvature and torsion can
be considered as a state of a four-dimensional continuum containing defects. This formal analogy is
useful for illustrating the geometrical concept of torsion by applying it to concrete physical problems.
Moreover, the presentation of these theories using a common geometrical basis allows a deeper
understanding of their foundations.

Trautman®® introduced a characteristic length to estimate the effects of torsion, the “Cartan” radius. To achieve

the condition p ~ ks?, we can imagine that a nucleon of mass m should be squeezed so that its radius coincides with

the Cartan radius rcart ;2>

h

m 2 o
—— = k() (38)
T"Cart TCart
whence
TCart = (E )% (rC'ompt)% (39)

where [* ~ 1.6 x 10723 cm}is the Planck length, and rcompt 1s the Compton length. For a nucleon we obtain
- rery small when Compared with macroscopical scales, but it is larger than the Planck
length. Hence, torsion must be taken into account to achieve a quantum theory of gravity.
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The Einstein-Cartan theory in some words
and equations

LR

The vectors do not point in the same If the curve does not close, then there 1s
direction so there 1s curvature geometric torsion (modified general

Link with quantum field theory:
Curvature G,,,= > mass energy T,

Twisting by torsion = > spin of

Figure 23: Curvature of space-time parallel transport - twisting of space-time [162] -

[162] V. Nikiforova (2020) Einstein généralisé - Théorie Cartanienne de la gravité Institut des hautes
études Scientifiques (IHES) https://av.tib.euw/media/50915




Mathematically the Riemann tensor with
geometric torsion change

* Classical general relativity (without geometric torsion)

1
‘ Raﬁ;w = E{g,ﬁ:u,va — Ipvua + Gavup — Yoy, Vﬁ} - gcrp{fca;sﬁﬂv - ]_Gafvfpﬁu} ‘

With: R +R +Ryup=0

afuv avpu

— azgﬁ,u ) _ azgﬁv . _ 82‘9&1/. _ az'ga'.“
Ghuve = Govgya’ Ibvume = gaugya’ Savih = Goiug B el = G vgh

The curvature tensor therefore tells us how a vector changes when transported parallel to itself along The curvature is determined using the
an infinitesimal closed curve: o parallel transport tool associated at the
covariant derivative

&' - A
«—Y So, without torsion we have for the covariant derivative of the vector V¥ transported parallel along a

—

The covariant closed curve (vector at a point P located in the plane tangent to the surface along a curve, closed See
derivative =0 Figure 24) equal to O:
DV =0=DV"=0VH+T" V=0 ‘ ‘ IV = %V“ =11V =0 >
x




Mathematically the Riemann tensor with
geometric torsion change

=> Modified General relativity (with geometric torsion) geerywms

From a mathematical point of view the variation of the component u of the contravariant vector V in transport does
not close

general relativity without torsion during parallel transport 3V //4:

A VI

[ v/ = - vyoc |

T+(V,V)

Implies in the case of a geometric torsion of the Einstein-Cartan type:

Main ‘ TH o 2
| 0 iz

The geometric torsion destroys the parallelogram in Figure 25.

[/

For symmetric components:

I [va] =%(va+ av) I

p v

For anti-symmetrical components:

I [val =%(va— av) I

In classical Einstein general relativity I'",, = I'",, and therefore the geometric torsion disappears and
its remains the well-known the Riemann tensor.

53



he Riemann Tensor with geometric Torsion

| [D,u rDV]V'O = D;JDVVP — DVD,HV'O = (6;!;[}35 e’G + Fg-j/]_’l:-ﬁ Pf/ I-;“G)VG—_ Zj_fmf]D/ZV'o |
We define the Riemann tensor: e E—
= (0,0 — 0,15+ I, I — I, : :
Rouy = (0ule = 0T o+ Ty Lo Complementary term du to the geometric torsion
We therefore obtain at the end the following expressions of the Riemann tensor and the torsion tensor Different ways to
obtained from the second derivatives covariants of the contravariant tensor V*: present

auv

[D
I
|p,,D,|V#=D,DVP~D,D,VP=RE VT~21],,D,V"

D,V#=D,DVP—-D,DVP =R, VT—|T/ DV} =<

mathematically the
geometric torsion

UV
[D,u ) DV]VP = D'”DVV‘O - DVD;;V = (d;spga - 6»@?( + Ij;/p ]_i/ﬁf(') (ﬂ{zf - jj}v)D,{Vp
[D,u ’ DV]VP = D,UDVVp - DVD‘HV)O = (aupﬂc - 6»“]_.‘;36 + Iﬂ/[/ ]_i/]_ff(—) (]_?iif - I:}V)(a/‘_vp + ]_i'_)c,-V 0—)
Remark
We had obtained:

DQ(DVV)”) - DV(DQ'V'”) = (_av j_ﬁif + ac:r P;){u + fgfcrfgu - ﬁjg[gu)v'ﬂ

In the right parenthesis of the above expressions if we make the following index change: (L= o; a—
w, o= A), we get well:

D,(DYV?) =DD,VP) = (=0,11,+ 0,1 s+ 1", 1e— 11,V

A
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111.3.15 Einstein-Cartan Linearized 3-dimensional theory [159] and [153 chapters 3.2 and 3.3]

In [153] p1395 formula 3.52 and 3.53 and [159] formula 40 and 41 it is shown that in 3 dimensions the
linearized gravitational field equation with geometric torsion now has 2 equations:

First equation (3. f[153]:
Curvature Gij— lak(si.k — Siki— Skij) = —%T,. = —«T;;
2 i, ki ij ot U ij
With:
The torsion tensor (related to the density of dislocations)
PR A
S _E(ﬁwl _14,{»')
Spvi = SAWHQW
Or depending on the dislocation density:
Sijk = &iji G Gij —%@k(ﬂ? - Pjf = Pfj) = Ty Einstein-

Cartan
theory =2
equations

Einstein's tensor: Pij = 2Sij + 264 S; — 283.Si = ,(Z”k
iy

1 k

Gij = Rji == 9ijRy

With in 3 dimensions:

. s T;; the stress field (force
The classical stress-energy tensor of General Relativity: Y ( )

2ijx constraint field (Moment)

T;;
_ ]
Pijk = &jiag

Second equation (3.53) of [153]:

afg dislocation density s

And for spin density, a complementary equation:

1 1
—-K

spin ) __R=§Sij,k = Sijk t SuS; — S
i,

KZ =2$5jk+25,-ksj—2c5}k$,-
ijk

Or depending on the dislocation density:

KZ__ = E&ijl Or1
ij k

It can also be shown that the stress energy tensor is equivalent to the default density at factor 1/«
ready:
T 1
0= T

According to M Ruggiero [159] formula (40) and (41] the Einstein-Cartan theory linearized theory in
3D is written:

Einstein-Cartan theory
in 3 and 4 dimensions

111.3.16 Einstein-Cartan 4-dimensional theory [159] and [153 chapters s 3.2 and 3.3]

Einstein's theory of relativity is written without twisting:

G,uv = KT;(W
With:
86
K= e

When we include geometric torsion, we introduce a new degree of freedom, and the starting equation
is now broken down into 2 equations described in the Einstein-Cartan formalism (See [159] formula
(34) and (35)):

(G;w_ lD;(P,UV,V_ Py P,v;n) = «TH
2

¥
14
P,m/ = ’*z
v

With:

D,the covariant derivative
D,=D,+25,=D,+25,

P, is the Palatini tensor:(%P’L,, =S+ 38,5,— 85,

no— ;
Sh, = @l for the torsion tensor

[i 59] M. L. Ruggiero et A. Tartaglia (2003) «E instein-Cartan theory as a theory of defects in spacetime»

American Journal of Physics 71,

[153] H. Klemert (1989) «Gauge Fields m Condensed Matter, IL
Defects»WorldScientific, Smgapore,

Stresses  am



Einstein Cartan Theory in
3D

111.3.15 Einstein-Cartan Linearized 3-dimensional theory [159] and [153 chapters 3.2 and 3.3]

In [153) p1395 formula 3.52 and 3.53 and [159] formula 40 and 41 it is shown that in 3 dimensions the
linearized gravitational field equation with geometric torsion now has 2 equations:

The density of defects ¥/ is expressed

in terms of the density of dislocations «;; and the disclina-
tions ©;; by the following relation (see, for example, Ref. 7):

X'=@l—emg (—a'+ 18 ak).

First equation (3. 1.
1 B2G <+
Curvature Gy - Efl,,us,“ — Sini— Spiy) = - = Ty = —xTy;
With:

The torsion tensor (related to the density of dislocations)

1, 4 "
.‘-“=}{F w=I")

Or depending on the dislocation density:

. I S
Sijx = & ji iy by = E‘jl'[F.: - PJ" - Prl.lJ = xTy;

Einstein's tensor: Pijs = Z5,n + 265 — 25, = .,-Z

ik

. 1
Gy = Ry _E_liu-ﬁ': With in 3 dimensions:
The classical stress-energy tensor of General Relativity: Tiy the stress feld | I
) Y. constraint field {Moment)
Tij
Py = quoy
Second equation (3.53) of [153]: )
ay dislocation density s
And for spin density, a complementary equation:
1 1
“ _ElY =§5|rl = Siju + SuSy — SuSi
e
h.":;‘ = 2 5”;. T 2:“,;5, - 2-*,;5,
d—!|'
Or depending on the dislocation density:
K ‘;‘ = &ij] Tgp

e |

It can also be shown that the stress energy tensor is equivalent to the default density at factor 1/x
ready:

According to M Ruggiero [159] formula (40) and (41] the Einstein-Cartan theory linearized theory in
3D is written:

Einstein-

equations

(15) e

Vﬂ

Figure 33 : Disclination [153 fig 2.10] -

The disclmatton density corresponding to each line is
given by

0,(x)=6,(L)4,, (12)

where &;(L) 1s a Dirac delta function which is nonzero only
along the disclination line L.”

Figure 32a: Screw dislocation- [153 fig2.9] Figure 32b: Edge Dislocation —

The meaning of Eq. (25) 1s that dislocations, through then
density aﬁ, ; [defined in Eq. (23)], constitute the sources for
torsion. This result is very general, and does not depend on

the coordinates we used, because torsion is a tensor.

P} is the Palatini tensor (%PEB; Supt 0aSp

(@ ®)

Fig. 7. Dislocations and geometry. (a) on the left the usual Burgers circuit
around an edge dislocation, and (b). on the right. the differential geometric
view in terms of parallel transport.

curvature of the medium also 1s mmfluenced by the

Defect = Disclination =curvature

&+5

Defect = Dislocation = torsion via the Burgers

Defect theory in 3D

presence of defects.

Bjj = &l 010 ;

1 1
Vi = — ERﬁw(é‘xrax" — Sx'ex")V* = — =R/, .V*ds*

h
Avhz - %R”mféAnmvl Rﬁmfzﬁ)ﬁmi
GUE %einmeﬂq}a
GY=gV,
oV =x"+ o (— aj+ 30)a))
Xij:Gij_akeij;
ki=(—aj+ 3 o)

nmlg

ajj = giklakafuj

h h
Smr= r[r_n_l]

is called the torsion tensor.

dA™ =d \x"d>x'— dx'd,x™

dp"=s" d4™

h_1 _nh ml_ _h mi h _
db"=3za"e, dA™=a, ,dA™ S=a

h
mi -

—03S,) and Sig=als

'3

where e,,,; and e"™ are defined in terms of the completely
antisymmetric tensors €,,,;, €™, and the determinant of

the metric g:

Cnmi— \"'Igenml enm}': nmi.
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Einstein Cartan Theory

Defect theory

That we can with the Einstein-Cartan theory linearized in 4 Dimensions (See [159] formula (46) at (48))

The extension of the 4-dimensional defect theory is therefore written (see [159] formula (44) and (45)):
G = g

{ P;fv = Kz;;f/v {G";V = v
With: Siov = v

1 With (see [159] formula 28 to 31):
WJV — T,uv_l_ —D;(Z’“W— ZV/ﬂ + Z)’I‘V)

2 1

ij — ij JrU[_ iy ¢ n

It can therefore be seen that the formalism of the theory of defects is identical to that of the Einstein- ' 1+ Oge ( o+ 2 (Sia”)
Cartan theory.

A =GY -0, ¥k}
. . 1 _
P}z 1s the Palatini tensor (3P ;3=S33+0,Sz _ 5%S.4) i = lemmeﬂqumq
4

and 533:0‘33

1
enmi = /G Enm enml — ___ uml
2. il _ g, KK o il B
ki = (—di+5 el
- By _ Co1 _ 1.
o/ = GU — 9, &/ (-ai +;f5ﬁ%)+6kef” (—a& +§5§%”)

Consequently, there is the following analogy between the defect theory and the general relativity
modified (Einstein Cartan with geometric torsion):

A link between the curvature tensor of Riemann and the disclination density (see [159] formula (27)):

h _ 1
anl — “nmt

A link between the torsion tensor of Einstein-cartan and the dislocation density (see [159] formula
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Curvature

Source université de tous les savoirs
T.Damour 2000

“2ar>

Crouge

db" = I ;,dA"

Torsion

H_ H_ H_
SVA - I[wl] - (1/2)Tv/1 =0
dbH

7]
L ~um g

Systémes en involution

et parallélisme absolu

Joél MERKER
(CNRS & DMA)

Paris, IHP

11 mai 2007

| Theorie der Transfo

rmationsgruppen

I. Le probleme de Riemann-Lie-Helmholtz
www.dma.ens.fr/~merker/
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3

Torsion := lim - — 5
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=N i 2
. angle _ o T
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Proposal conclusion about the interaction of
the different views about torsion

The opening o on the cone due to distorsion =equivalent

rotation o on the equivalent cylinder in torsion

Figure F.1: Cone tangent to a spherical cap of unit radius Source [168] and [169] -

] .
’ —’! Figure F.2: Flat cut cone. Visualization of the cut-off & and visualization of the parallel transport of the
1
vector ¥ [168] and [169] -

Spacing o ar X

Torsion = lim = lim—2 = lim—2 =lim—=

Area ar ar ar?
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First interest of the torsion: The geometric torsion by this analogy with the
defects theory allow to propose a way to explain how the gravitational wave
deformation pass to a plan to an other successively by local dislocation in

Direction of the gravitational [e o : p | d St ICl ty
vitati g ™
waves ¥ R > B Direction z of propa
ce st T\- 7,\.\

— The propagation of the deformation of the space the gravitatonal wa
independently of =—]
each other C

put in torsion by rotation for example of two black

(=, =0) ¥ holes is equivalent at a propagation of a dislocation
PR | of the equivalent elastic material of the space time.
Vz*L- Thus, the Einstein-Cartan and defect theory (o angle \
opening of dislocation associated with the burgers Ve
Vector) are correlated with the mechanical torsion Succesive planes wansers

(y for the shear strain due to the torsion torque T
-and a the rotation of the section in pure torsion)

. must be considered in the Einstein-Field equation.

T=y

IL

Ligo/Virgo which measures
traction/compression

Distortion/plane
dislocation

Urgers vector

[6°2314 €5T] -uonedosip mauds :ezg aun3iy

Figure 55. Visualization of the dislocations between the different layers of the structure of the
fabric of space-time during the passage of a gravitational wave - Figure 33 : Disclination [153 fig 2.10] -
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Second interest of the torsion: the Shapes of the polarizations of the gravitational
waves in the case of GR with geometric torsion correspond by analogy at the
component of the stain tensor that are missing to have a spatial deformation and
not only a plane deformation as in classical general relativity

Einstein-Cartan-Sciamma-Kibble
of Hz. For instance, it i possible to write the polarization of a gravitational wave propagating
in the third direction of the orthonormal frame as

Gravitational Waves in ECSK theory:
Robustness of mergers as standard sirens

t) i 3 [B) i ¥ T
Pu = Py Pl + P Pl + 2Pl + PPl + Py P + 1, P

with the orthonormal polarization hasis

31 Mar 2022

and nonvanishing| torsion
oo 0 0 0o oo
Emilio Elizalde'*™ | Fernando Izaurieta®' = | Cristian Riveros® Gonzalo Salgado® pit) RS oL P ! oo o Cla Ssical
o B ab \’E oh 'VIE
and Omar Valdivial451 00 -10 0100
oo 0 0 0o oo
U Institute of Space Sciences (IEEC-CSIC), Campus Universitat Auténoma de Bareelona,
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C. Can Magrans s/n, 08193 Bellaterm (Bareclona), Spain. oo ooao
2 L o . ; . ; ; 1 o100 o000
epartamento de Fisica, Universidad de Concepeicn, casille {60-C, Conccpeicn, Chile. p[;] - p[fb]
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The amplitude propagation of gravitational waves in an Einstein-Cartan-Sciamma-Kibble
(ECSK) theory i studied by assuming & dark matter spin tensor sourcing for spacetime tor-
si0T1 at'r_‘oﬁmu]ug'ie-al seales. The analysis focuses on & “weak-torsion regime,” soch that p[l ]p[i ] 1 p:.“(]pf.\t:l 1 II':B]-ile!:l] 1 p:]:lp[n!} " pi:]p[:] 1 1"-":;.':lj":'[;.li- 1.
gravitetional weve emission, at leading and sublesding orders, does not deviate from stan-
derd General Relativity. We show that, in prineiple, the background torsion induced by an

and where

arXiv:2204.00090v1 [gr-qc]

It is essential to remember that, even in the case of standard torsionless GH, further gaupe

eventual dark matter spin component could lead to an anomalous dampening or amplifi- fixing 95 the transverse traceloss gnugo} is only approximate on & generic background geometry,
eation of the gravitational weve amplitude, after going across a long cosmologieal distance, and it i only valid at leading and subleading orders in the eikonal expansion. For a generic
The importance of this torsion-induced ancmelous propegation of amplitude for binary black geometry background, this means that in standard torsionless GR, some polarization eomponents

hole mergers is assessed. For realistic late-universe astrophysical scenarios, the effect is tiny
and falls below deteetion thresholds, even for near-future interferometers such as LISA. To
detect this effect may not be impossible, but it is still beyvond our technological capabilities.

dominate over others,

BiyProy + PP = 1, (2.20)
“plizaldefice. csic.es P Pisy + FinPiy + PigyPrxy + PPy = . (2.21)
izauriefndec el
:ccrlwmutﬂunal.edu_m This hierarchy of polarization modes can break down in a generic torsional background, and in
pualgado2016fuder.cl P ) = 4 ¥ .
ovaldiviGunap.cl principle, the modes beyond (+) and (%) could become significant. 61



The analogy of the polarization with

U Se Of th e ana ‘ Ogy the deformation tensor makes it

possible to immediately check the

plausibility of the polarizations

Lgij = rlij t ij = T|I-}- t ZEijgij' = rlij + ij = T|U- + 281'1" obtained. Here deformations appear
: . - in the direction of propagation of

the gravitational wave suppressing

f 0 0 0 0 . .
: the apparent discontinuity between
) 0D 0o 0 0 deformation planes obtained in GR
Pl — pli) — : .
ab i without torsion
0
0 Tensile Strain in the
propagation direction of
the gravitational wave
) _
P =

Shear Strain in the

propagation direction z of
the gravitational wave

T,uv = |PCVUx  Oxx Ty Q

pcv T o 62
bl & &Y.




Shape of the potential additional polarisation

Strains in the plane

£
xy due to the classical /?/_ \
. . . | .
polarization in \’\/M
)

general relativity

Complementary
strains in zx and zy
due to polarizations
of the gravitational
wave in direction (z)

in case of geometric torsion

" 10| 106

—

Longitudinal Vector X Vector y
Figure 56: Different polarizations -Source Teukolsky
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Third interest of the torsion: the Einstein Cartan theory and by analogy

the defect theory introduce a second spin equation in general relativity
that is a step in direction of the quantum gravity where spin is necessary

Einstein-Cartan theory as a theory of defects in space-time

M. L. Ruggiero® and A. Tartaglia
Dip. Fisica, Politecnico and INFN, Torine, Italy, I-10129

VI. SUMMARY

The Einstein—Cartan theory of gravitation has been intro-
duced starting from an analogy with the static theory of de-
fects, which describes the equilibrium state of a three-
dimensional continuum; ECT agrees with the known tests of
general relativity. Moreover, we stressed that the Einstein—
Cartan theory has a richer geometric and physical structure.
In particular, a nonsymmetric connection is used, and torsion
1s linked to the density of spin. In ECT. both the mass and
spin determine the geometric properties of space—time and
shape its structure.

We also showed that in the classical theory of defects, a
geometric approach is possible and leads to the description
of a continuous medium by means of geometric entities that
are determined by the presence of defects. such as disclina-
tions and dislocations which we related to curvature and tor-
sion. Then we outlined a comparison between these two
theories, which share a similar underlying geometric struc-
ture, even though they apply to very different physical phe-
nomena.

We showed that the equations that describe the state of the
medium and its structure in the presence of defects may be
interpreted as the Einstein—Cartan field equations for a three-

plastic d
thesis we stay in elastic

dimensional continuum, at least in the linear approximation.
On the other hand, the incompatibility equation of the theory
of defects, which is usually obtained in the linear approxi-
mation, can be extended to a more general situation, where

By pursuing this formal analogy, space—time. as described
by ECT, can be interpreted as a defect state of a four-
dimensional continuum. We suggest that this analogy, al-
though formal. might be useful in modern astrophysics. be-
cause cosmic strings may be interpreted as extensions of
three-dimensional defects.

It 1s fascinating that the theory of defects, whose origin
dates back to the beginning of the 20th century, can have
such a strong and fruitful analogy with recent developments
in theoretical physics. We believe that the analogy we have
outlined can be useful for understanding the key concepts of
differential geometry and the geometric theories of gravita-
tion as well as helping to stimulate interest in these fields.

4 Arule in three dimensions: Dislocation density equals torsion

* In the 1930s, the concept of a crystal dislocation was introduced in
order to understand the plastic deformation of crystalline solids,

as, for instance, of iron. Dislocations are one-dimensional lattice
defects. Basically, there exist two types of dislocations, edge and
screw dislocation, see Weertman &Weertman

1. and J.A. Weertuman, Elemeriary Dislocation Theory,
MacMillsn, London
(1969,
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Conclusion of Third part

1) Several solutions are possible to take into account the potential anisotropy of
space and to complete the GR with small value of the deformations of the space
(anisotropy at plank scale, direction of anisotropy due at crystallography structure,
geometric torsion via Einstein-Cartan Theory),

2) Einstein-Cartan theory and defect theory present a similar formalism. This analogy
allow to have an image in elasticity of the geometrical torsion (local dislocation and
yielding of the medium). This behaviour could a way to transmit the deformation
plane to plane during the propagation of a gravitational wave,

3) The potential complementary polarizations associated with the geometric torsion
complete the plane strain tensor associated at the classical general relativity,

4) The geometric torsion added at the general relativity is a step-in direction of the
guantum gravity via the additional equation in link with spins and quantum gravity,

5) Complementary measurements via for example LISA are necessary to confirm or
not these complementary deformations in the wave propagation direction.



The CONSTELLATION of LISA Satellites will therefore be sent into space in the coming years. The 3
satellites 2.5 million km apart will "exchange" their positions via lasers as in the LIGO/VIRGO

Direction of the

\ SR E
Ty R :'.'*“ - gravitational wave

Arm 1
£12

How the distorsion (shear
strain) y can be measured by

Lisa ?

DI: The Mohr ‘s circle explains how to check if
there are or not distorsion (shear strain) of space
when a gravitational waves passes

=

Satellite 3

Virtual Ligo .

Figure 46: Moht’s circle of the strains plane X, y

LISA in
space

Satellite 1

Satellite 2

Figure 44: Locating LISA versus A Virtual Positioning of LIGO -

66



4) Conclusion
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9 dgtt

sorie d'Elnstem en une piliase |

L'Espace-Temps est une structure élastique qui est

The interests and limits of this
analogy : convergence points

- At th iS Sta ge : SourceT.Damor )

presentation

- The analogy of the elastic medium with general relativity has many
points of convergence:

- The measurements of the deformations of space are compatible with an
elastic medium responding to the stresses resulting from moving energy
masses

- The general form of Einstein's equation is compatible with Hooke's law
transcribed in 1D in beam theory, in 2D in plate theory and in 3D in the stress-
strain tensor relations in isotropic elasticity and in particular under
mechanical torsion stresses

- The shape of the deformation tensors and the polarizations of gravitational
waves with and without geometric torsion (Einstein-Cartan) is compatible
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the interest and limits of this
analogy : Divergence points

* But the analogy reaches its limits:

Source wikipedia /
* The correspondence between the polarizations of the gravitational waves and the detormation

tensor, in line with the measurements made, lead to a Poisson's ratio of 1 in the plane of the
interferometers, which is contrary to an |sotro,o|c medium, the basic hypothesis of relativity
general when considering space and in cosmology (Friedmann Lemaitre equations)

* Geometric torsion partly repairs the behavior of space solicited by gravitational waves in
independent planes deforming successively one after the other and independently of each other
in the case of General Relativity without geometric torsion, but the deformations outside of these
planes remain extremely small (scale) of Planck and therefore do not resolve this functioning in
therefore discontinuous and non-homogeneous planes of space

* These plane distortions of space manifest themselves in all directions of SEace regardless of the
dlrecéclon 01|‘ the gravitational waves! We thus arrive at a homogeneity of the anisotropy! which is
paradoxica

* The deformation of time remains unexplained by an elastic medium even if the tensorial
expressions make it possible to integrate it into a 4-dimensional elasticity

* How can one have a h¥per-rigid elastic medium and celestial bodies which move freely within it?
This rigidity only manifests itself at the speeds of light. Would space therefore be a low-speed
fluid and a hyper-rigid medium at the speed of light rather than a crystalline medium made up of

space atoms the size of the Planck length? o



Next steps...

* Test the analogy (elasticity strain deformation/ G W polarisations) on the
differents ways to introduce geometric torsion in GR,

* Test the analogy (elasticity strain deformation/ G W polarisations) on the
classical general relativity but with linearisation based on quadratic form of
assembly A+ and Ax at second order,

* See potential interactions between the analogy and the elastic space
medium concerning the dark matter and dark energy,

 Verifiy the order of magnitude of the equivalent Young’s modulus of space
time base on a model of the Prob B angular distorsion of the space,

* Mind about the Eossible structure of the space (interaction between the
deformation in the plane of the interferometer and out of this plane with
the different Poisson’s ratio, possible anisotropy etc),

* |dentify when the analogy work and where are the limits,



Other possible displacements perpendicular at the
plane of the test masses (linear general relativity
at second order)
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Fig. 1 Time evolution due to the gravitomagnetic effects of the + polarization; 8§ = oT

Gravitomagnetic induction in the field of a gravitational  Abstract
wave The interaction of a plane gravitational wave with test masses can be described in the

proper detector frame, using Fermi coordinates, in terms of a gravitoelectric and a

gravitomagnetic field. We use this approach to calculate the displacements produced
Matteo Luca Ruggiero'? by gravitational waves up to second order in the distance parameter and, in doing so, we
emphasize the relevance of the gravitomagnetic contribution related to gravitational
induction. In addition, we show how this approach can be generalized to calculate
displacements up to arbitrary order.
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