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1) Continuum mechanics and weak field general relativity: what are the realities and limits of the space elastic behaviour?

- The different approaches to the state of the art

- Beam-and-plate theory and analogy with the structure of general relativity

- From a tensor point of view:

- Deformation tensor/perturbation tensor of the metric

- Stress Tensor/Stress Energy Tensor

- General form of the theory of relativity / Hooke's law

2) Deformations of space in the case of gravitational waves

- Perturbation theory, linearized equation of Einstein, solution of this equation, order of magnitude of deformations measured by 
Ligo/Virgo

- Analogy between mechanical torsion of space and polarization of gravitational waves: consequences on G

- An equivalent Young's modulus of the elastic medium space

- Possible mechanical characteristics hidden in Einstein's constant 

- Necessity to have an anisotropic model of space to be in accordance with the Poisson's ratio v=1

3) Limits of the analogy between MMC /RG - Questioning of continuum mechanics in relation to these deformations of space

- Space as an anisotropic medium on a small scale?

- How are the deformations of space transmitted from one plane to another during the propagation of gravitational waves? Local 
plasticization of an equivalent crystalline medium?

- If the RG has to be modified, the modification must be very small: is geometric torsion a good candidate?

- The contribution of defect theory and its analogy with Einstein Cartan's general relativity, a way to explain the propagation of 
gravitational waves in space? a local dislocation of the medium?

- Are the polarizations of gravitational waves in the case of GR with torsion a means of supplementing the tensor of plane strains of 
the space medium observed in the case of GR without geometrical torsion?

4) Conclusion 2



1) Continuum mechanics and weak field general relativity: what are the 
realities and limits of the space elastic behaviour?

• The different approaches to the state of the art

• Beam-and-plate theory and analogy with the structure of general relativity

• From a tensor point of view:
• Deformation tensor/disturbance tensor of the metric

• Stress Tensor/Stress-Energy Tensor

• General form of the theory of relativity / Hooke's law
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State of the art : T. Damour: why an elastic 
analogic space-time material?space-time like jelly
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T.D “Spacetime is an elastic structure 
that is distorted by the presence within 

it of mass-energy”

T.D “Space = jelly”

DI: So This « jelly » is the equivalent 
analogic elastic material fulling 

space time

Source T.Damour
presentation



State of the art : other approaches to study the 
analogy between general relativity and theory of 

elasticity
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Two main 
approaches

Start from the elasticity 
equations in 3 dimensions 
and transform them into 4 
dimensions Hooke’s law

Start from the general 
relativity equation and add 
terms or transform the 
equations to cover elasticity 
behaviour

Solution 1

Solution 2



Example of solution 1: Elasticity 3d => 4d
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Example of solution 2: GR => Elasticity 
compatibility

Elastic potential energy (space strained)



The beam theory of Timoshenko as a general 
relativity in one dimension

Energy by unit of length

Curvature
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The Timoshenko’s plate 
theory

• Relation energy curvature  of a plate

Area energy density
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Curvature

Gravity can be thought of as the 
movements of particles 
through curved space-time. 
Credit: NASA

In 2 D



Curvature in plate 
theory
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Curvature in general 
relativity

Curvature = Second derivative of the metric g Curvature = Second derivative of the deflection w

In 4 D In 2 D



Other expressions of the strength of material 
(normal effort and shear load added) Ligo/Virgo
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Bending 
moment 

M(x))

Normal effort 
N(x))0

Shear force  
V(x))0

Torque of 
twisting T(x))

Vertical deflection 
due to bending

Twisting rotation 

Lengthening 
shortening (strain)

Shear force 
distortion

Relation between 
displacement, rotation 

and strain 

Displacement, 
rotation

Expression of the energy

Measured in the Ligo/Virgo Arms 2 D = 2 x 1D



Mechanical conversion of : links with strength of material 
(Timoshenko’s beam in bending at 1 dimension) (DI’s Book and 

Pramana publication)=> generalization Hooke’s law at all the other 
solicitations: shear and tensile/compression N-1 like 
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At 1 dimension

At 1 dimension

At 1 dimension

At 1 dimension

At 4 dimensions

1) GR and simplified elasticity theory (beam in strength of material) shows 
compatibilities in terms of curvature and mechanic aspects

2) GR mixture of curvature and torsion 

Second derivative of the 
metric 𝑔

Beam theory: Relation curvature 1/R, 
strain , stress  and energy density  U/L in 

strength of material for a material of 
Young’s modulus E =Y and inertia I

 = M v /Iv

v
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Summary : = equivalence between Timoshenko 
in static and Einstein

Theory Formula curvature = K density of energy Dimension Unknown

Timoshenko (elastic 
beam in static )

1 

Timoshenko (elastic
plate in static )

2

Einstein (General
relativity)

4
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Curvature (ε) = K x  energy density 
1/m² J/m3=U/V = (kgm²/s²) / m3s²/(kg.m)=N-1



Parallelism strength of material and general 
relativity :mechanical conversion of 
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Beam

Plate

GR

Strength 
of 

material 
curvature

GR 
curvature 
is linked 

with 1/R²
Strain energy density

Energy density
Mechanical 
parallelism

Therefore, mechanical parameters are hidden in these values

GR applied at a sphere gives the 
curvature obtain for the beam 

1/R²

Main conclusion 
should depends on 

mechanical 
characteristics (Y= E, v)

N-1



The equivalences clearly established: stress 
tensor ij / stress energy tensor Tij
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Special relativity, 
four speed vectors

Classic speed vectors

Density

Demonstration of the 
Pramana paper



Transversalism between GR and elasticity theory: 
mechanical conversion of  (form of mechanical 

expression function of Y)
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If we compare and analyze GR and 
elasticity theory on a tensor point on 
view, in link with strain energy U, the 

“transversalism” between General 
Relativity and elasticity theory appears, 
it becomes clear that  should depend 

of mechanical parametra and especially 
Y=E and 

Elastic medium

Weak gravitation field

All type of 
gravitational field

Hooke’s law in isotrope medium
Universe 
homogeneous 
and isotropic



Conclusion about the mechanical approach of  

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A mechanical  bridge should be 
inside 

 = (1/K) x Force 

Flexibility m N-1

 = (1/E) x 

Parallelism of the 
formalism with the 

Hook’s law

The mechanical aspects of the 
general relativity should be 

directly introduced in 

Reason 1 parallelism 
curvature = K energy density

Reason 2: Unit



Conclusion of this first part

1) The principles of the equation of General relativity are close to a 
Hooke's law as applied to the theory of beams or plates

2) The tensorial formalism presents similarities between the stress 
and strain tensors on the one hand with the stress energy tensor 

and the tensor linked to the disturbance of the metric on the other 
hand

3) A parallelism appears between Hooke's law in a homogeneous 
and isotropic  medium and the general relativity equation

3) An original approach to integrate mechanical characteristics of 
space into General Relativity is to express Einstein's constant  as a 

function of these mechanical parameters
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First approach: Mechanical torsion

2) Deformations of space in the case of gravitational waves

• Perturbation theory, linearized equation of Einstein, solution of this 
equation, order of magnitude of deformations measured by 
Ligo/Virgo

• Analogy between mechanical torsion of space and polarization of 
gravitational waves: consequences on G

• An equivalent Young's modulus of the elastic medium space

• Possible mechanical characteristics hidden in Einstein's constant 

• Necessity to have an anisotropic model of space to be in accordance 
with the Poisson's ratio =1

19



Case of the gravitational waves far from the source
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Solution

General relativity in 
weak fieldLinearized

Small perturbation f the metric 
measured by Ligo/Virgo  1x 10-21



Case of the gravitational waves far from the source: 
case of two masses rotating around each other
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No unity as a strain

Q= I = Quadrupole



Gravitational wave: projection of a spheric 
wave in a plane wave far of the source Via 

the projection tensor in the plane xy Pij
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h

t



Passage of the General relativity linearized  
Elasticity theory

Study part left of the Einstein Equation
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Study of the correspondence of this part with the elasticity theory ℎ = 2
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2 Polarisations

Consequence of the 
bridge h=2

Mechanical expression 
of the general relativity 

linearized

Bridge between mechanic and 
GR in weak field



Passage of the General relativity linearized  
Elasticity theory

Study part right of the Einstein Equation
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Study of the correspondence of 
this part with the elasticity theory



Stress energy tensor =stress mechanical 
tensor
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Geometric Link of GR with the mechanical torsion
Question :

• Why there are two polarizations of the 
gravitational waves except on a mathematical 
point of view?

Possible answer :
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Tenev and Horstemeyer present the 
results but don't speak of the real 

geometric consequences
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Elasticity

GR in weak field Gravitational wave

GR in weak field Gravitational wave

Interferometer Elastic gauge

Pure torsion stress 
tensor



1rst consequence: Torsion and Polarisation of 
gravitational waves (see DI’s paper Pramana)
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Strain tensor and 
perturbation of the metric 

are linked 2 = ℎ

GR in weak field => 
gravitational waves with 2 

polarisations

Each polarisation can be associated at 
two facets of a medium in torsion: 

black hole generate this torsion (see K. 
Thorne presentation)

Associated stress: Torsion state 
function facet orientation

Metric perturbation (2 polarisations ) Strain tensor Stress tensor



2nd consequence :Ligo/Virgo measures space that is 
compressed and stretched, but where is the shear strain?
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DI: Comment of R. Weiss, 
impossible to measure the 

distorsion (shear strain) with 
Ligo/Virgo, perhaps possible 

by Lisa  (see Nasa)

Ligo and Virgo are equivalent stress 
gauge of the space time structure

Only this state is 
measured by 

Ligo/Virgo

 should exists 
and should be 

measured by an 
other 

experience 
(LISA)))
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Physic behaviour Model 1 :Arms in compression/traction via Hooke’s law

Model 1 : Isotropic medium in the plane of 
the interferometer : Hooke’s law  =  Y



Reconstruct Einstein’s : Ligo/Virgo plane  stresses and 
deformations
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See demonstration in DI’s 
Pramana paper, we obtain well G= 
 f²/ and we obtain a parallelism 

between mechanical and GR 
equation field

Newton approach 
component 00 are 
used => Einstein 

approach

DI approach 
components ij are 

used => spatial 
mechanical part 

of space

Main consequences

 must be equal to 1 to have 
the parallelism with GR

1

2
3

4

5

6

7

Demonstration in Pramana
paper 

Ligo = strain 
gauge of the 

space

Stresses and 
strains are in 

successive planes 
(transversal wave)
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Same consequence 
and conclusion in 

the case of the 
cylinder in torsion

Physic behaviour Model 2 :Cylinder in torsion

Model 2 : Isotropic medium cylinder un 
torsion : Hooke’s law  =  G



Reconstruct Einstein’s  by mechanical component 
of the tensor: Torsion of a space cylinder
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DI: See demonstration in DI’s 
Pramana paper, we obtain well G= 
 f²/ and we obtain a parallelism 

between mechanical and GR 
equation field

Main consequences

D(g) = T

T.Damour (Einstein GR)



2 types of waves in elastic medium, but only one 
type (shear) in general relativity, Why?

35

DI: Following T. Tenev 
and M.F. Horstemeyer, 

this unique type of 
gravitational waves is 

perhaps a signature of 
a specific structure ‘a 
fabric) of the analogic 

elastic medium 
especially with v =1

Gravitational waves
Does not appear in GR

Probably a specific nature of the 
space time: a special fabric

Answer of T Tenev and 
M.F Horstemeyer



Synthesis of this part=> mechanical 
conversion of 
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 =
𝐸

2 1 + 

ℎ = 2



The consequence about G and : DI’s paper 
Pramana and Books
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We obtain well the new 
expression of  compatible with 
states of the art (K. McDonald)

Results compatible with the expression estimated by the parallelism between GR and elasticity theory 



BUT we have a price to pay: 
necessity following this analogy to 

leave isotropic medium.

38



Necessity to have an anisotropic model of space to 
be in accordance with the Poisson's ratio v=1

Horstemeyer
• We demonstrate based on 3 different approaches:
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Checked on 
the Ligo/Virgo 
measurements

Transverse shear wave 
implies  = 1 (outside the 

range -1, 0,5) so we have to 
consider an anisotropic 

medium

Strains measured in the 
arms of Virgo

Gravitational wave = transverse wave Poisson’s ratio  =1

Imply also a behaviour of space as a some 
of plans deformed independently during 

the passage of the gravitational wave

Consequence 1Consequence 2

Continuous 
medium?



Consequences => the isotropy =>non isotropy 
of the medium? Limit validity analogy?
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Direction of the gravitational 
waves

 = 1

 ≪< 1 = 0?

Planes deforming 
independently of 
each other 
(xz=yz=0)



Case of medium with transversal isotropy
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Conclusion of second part
1) The parallelism between the deformation tensor in the case of a mechanical torsion of a cylinder 
in space by the rotation of very massive objects and the polarizations of gravitational waves emerges 
from the analogy between elasticity and General relativity in weak field.

2) The writing of the deformations of the arms of the interferometers in terms of dynamic energy 
variation of the deformations of space during the passage of a gravitational wave leads to express 
and G according to mechanical parameters of elasticity (Y, ).

3) The same conclusion appears when considering a cylinder of space put in pure torsion.

4) The analogy reaches these limits because it leads by the very nature of gravitational waves which 
are transverse waves, to a Poisson's ratio = 1, that is to say to an anisotropic medium which is 
contrary to the hypothesis taken at the start ( Hooke's law in a homogeneous and isotropic medium).

5) The multiple observations of gravitational waves since 2016 seems show an identical behaviour in 
all the directions of space; so, if anisotropy there is, it il homogeneous in all the space: we have a 
medium with an  “isotropic” anisotropy!!!
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The elastic approach of space conduct at 
a very special electic medium   



Second approach: geometrical torsion

• 3) Limits of the analogy between MMC /RG - Questioning of continuum 
mechanics in relation to these deformations of space

• Space as an anisotropic medium on a small scale?

• How are the deformations of space transmitted from one plane to another during 
the propagation of gravitational waves? Local plasticization of an equivalent 
crystalline medium?

• If the RG has to be modified, the modification must be very small: is geometric 
torsion a good candidate?

• The contribution of defect theory and its analogy with Einstein Cartan's general 
relativity, a way to explain the propagation of gravitational waves in space? a local 
dislocation of the medium?

• Are the polarizations of gravitational waves in the case of GR with torsion a 
means of supplementing the tensor of plane strains of the space medium 
observed in the case of GR without geometrical torsion?
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Gravitational waves propagations following z 
= Successive xy planes deformations

Interferometer Ligo/Virgo measurments
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Limit of the homogenous elastic model
At this stage:

• Our isotropic model of space fails due to Poisson's ratio = 1 (or is valid in plane 
xy only but not in 3D)

• The shape of the successive deformations of a circle during the passage of a 
gravitational wave supposes several planes of deformations independent of 
each other without any link between these successive planes xy = yx =1 
xz=yz =0!stange and not in adequacy with the general assumption made in 
physics of space as isotropic and homogeneous

45



If the RG has to be modified, the modification 
must be very small

Difference 
between the 

calculated and 
measured 
curves  = 
some %
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Space as an anisotropic medium on a small 
scale? first approach to solve the problem 

Tenev and Horstemeyer propose that the anisotropy is at very small 
scale (Planck limit) and so, the space stay homogenous at more larger 
scale:
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Space as an anisotropic medium on a small 
scale? second approach to solve the problem 

Tenev and Horstemeyer propose that the fabric of the space time is 
effectively structured as a fabric that can have this Poisson’s ratio of 1
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T. Tenev and M.F. 
Horstemeyer 
Publication

37. D. Rodney, B. Gadot, O. R. Martinez, S. R. du Roscoat and L. Org´eas, Nat. Mater. 
15 (2016) 72. 
38. R. H. Baughman and A. F. Fonseca, Nat. Mater. 15 (2016) 7.



Space as an anisotropic 
medium on a small 
scale? Third approach to 
solve the problem 

• At small scale the medium as a 
crystallin structure with some 
particular direction the 
Poisson’s ratio is 1 and other 
directions is in the curent range 
-1 < v < 0,5

• Observe in this example the 
direction that are as the wave 
polarisation + and x
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Space as an anisotropic medium on a small 
scale? fourth  approach to solve the problem 

One way to satisfy the criteria of small modification of the classical RG 
is to consider in addition of the classical curvature a geometric torsion.

M.L Ruggiero and A, Tartaglia in « Einstein-Cartan theory of defect of 
space time »  precise that effectively the effect of the torsion is very 
small:
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The Einstein-Cartan theory in some words 
and equations
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Mathematically the Riemann tensor with 
geometric torsion change

• Classical general relativity (without geometric torsion)

The covariant 
derivative  = 0
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The curvature is determined using the 
parallel transport tool associated at the 

covariant derivative



Mathematically the Riemann tensor with 
geometric torsion change

=> Modified General relativity (with geometric torsion):
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The parallel 
transport does 

not close

Main 
difference



The Riemann Tensor with geometric Torsion

Complementary term du to the geometric torsion
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Different ways to 
present 

mathematically the 
geometric torsion



Einstein-Cartan theory 
in 3 and 4 dimensions
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Einstein-
Cartan

theory =2 
equations

spin

Curvature
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Einstein Cartan Theory in 
3D 

and

Defect = Dislocation = torsion via the Burgers 
vector

Defect = Disclination =curvature 

Defect theory in 3D
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Defect theoryEinstein Cartan Theory

and



Curvature   Torsion
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Source université de tous les savoirs 
T.Damour 2000

spacing

Area



Proposal conclusion about the interaction of 
the different views about torsion
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The opening  on the cone due to distorsion =equivalent 
rotation  on the equivalent cylinder in torsion

Angle 









First interest of the torsion: The geometric torsion by this analogy with the 
defects theory allow to propose a way to explain how the gravitational wave 

deformation pass to a plan to an other successively  by local dislocation in 
plasticity
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Torsion : a solution to link the several plans distorted by GW

• The propagation of the deformation of the space
put in torsion by rotation for example of two black
holes is equivalent at a propagation of a dislocation
of the equivalent elastic material of the space time.
Thus, the Einstein-Cartan and defect theory ( angle
opening of dislocation associated with the burgers
Vector) are correlated with the mechanical torsion
( for the shear strain due to the torsion torque T
and  the rotation of the section in pure torsion)

must be considered in the Einstein-Field equation.



Second interest of the torsion: the Shapes of the polarizations of the gravitational 
waves in the case of GR with geometric torsion correspond by analogy at the 

component of the stain tensor that are missing to have a spatial deformation and 
not only a plane deformation as in classical general relativity
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classical

New



Use of the analogy

62

Tensile Strain in the 
propagation direction of 
the gravitational wave

Shear Strain in the 
propagation direction z of 

the gravitational wave

Time

The analogy of the polarization with 
the deformation tensor makes it 

possible to immediately check the 
plausibility of the polarizations 

obtained. Here deformations appear 
in the direction of propagation of 

the gravitational wave suppressing 
the apparent discontinuity between 
deformation planes obtained in GR 

without torsion



Shape of the potential additional polarisation 
in case of geometric torsion
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Complementary 
strains in zx and zy
due to polarizations 
of the gravitational 
wave in direction (z)

Strains in the plane 
xy due to the classical 
polarization in 
general relativity



Third interest of the torsion: the Einstein Cartan theory and by analogy 
the defect theory introduce a second spin equation in general relativity 

that is a step in direction of the quantum gravity where spin is necessary

64



Conclusion of Third part
1) Several solutions are possible to take into account the potential anisotropy of 
space and to complete the GR with small value of the deformations of the space 
(anisotropy at plank scale, direction of anisotropy due at crystallography structure, 
geometric torsion via Einstein-Cartan Theory),

2) Einstein-Cartan theory and defect theory present a similar formalism. This analogy 
allow to have an image in elasticity of the geometrical torsion (local dislocation and 
yielding of the medium). This behaviour could a way to transmit the deformation 
plane to plane during the propagation of a gravitational wave,

3) The potential complementary polarizations associated with the geometric torsion 
complete the plane strain tensor associated at the classical general relativity,

4) The geometric torsion added at the general relativity is a step-in direction of the 
quantum gravity via the additional equation in link with spins and quantum gravity,

5) Complementary measurements via for example LISA are necessary to confirm or 
not these complementary deformations in the wave propagation direction.
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How the distorsion (shear 
strain)  can be measured by 

Lisa ?

66

DI: The Mohr ‘s circle explains how to check if 
there are or not distorsion (shear strain) of space 

when a gravitational waves passes



4) Conclusion

.
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The interests and limits of this 
analogy : convergence points

- At this stage :

- The analogy of the elastic medium with general relativity has many 
points of convergence:

- The measurements of the deformations of space are compatible with an 
elastic medium responding to the stresses resulting from moving energy 
masses

- The general form of Einstein's equation is compatible with Hooke's law 
transcribed in 1D in beam theory, in 2D in plate theory and in 3D in the stress-
strain tensor relations in isotropic elasticity and in particular under 
mechanical torsion stresses

- The shape of the deformation tensors and the polarizations of gravitational 
waves with and without geometric torsion (Einstein-Cartan) is compatible
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the interest and limits of this 
analogy : Divergence points
• But the analogy reaches its limits:

• The correspondence between the polarizations of the gravitational waves and the deformation 
tensor, in line with the measurements made, lead to a Poisson's ratio of 1 in the plane of the 
interferometers, which is contrary to an isotropic medium, the basic hypothesis of relativity 
general when considering space and in cosmology (Friedmann Lemaitre equations)

• Geometric torsion partly repairs the behavior of space solicited by gravitational waves in 
independent planes deforming successively one after the other and independently of each other 
in the case of General Relativity without geometric torsion, but the deformations outside of these 
planes remain extremely small (scale) of Planck and therefore do not resolve this functioning in 
therefore discontinuous and non-homogeneous planes of space

• These plane distortions of space manifest themselves in all directions of space regardless of the 
direction of the gravitational waves! We thus arrive at a homogeneity of the anisotropy! which is 
paradoxical

• The deformation of time remains unexplained by an elastic medium even if the tensorial 
expressions make it possible to integrate it into a 4-dimensional elasticity

• How can one have a hyper-rigid elastic medium and celestial bodies which move freely within it? 
This rigidity only manifests itself at the speeds of light. Would space therefore be a low-speed 
fluid and a hyper-rigid medium at the speed of light rather than a crystalline medium made up of 
space atoms the size of the Planck length?
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Source wikipedia



Next steps…

• Test the analogy (elasticity strain deformation/ G W polarisations) on the 
differents ways to introduce geometric torsion in GR,

• Test the analogy (elasticity strain deformation/ G W polarisations) on the 
classical general relativity but with linearisation based on quadratic form of 
assembly A+ and Ax at second order,

• See potential interactions between the analogy and the elastic space 
medium concerning the dark matter and dark energy,

• Verifiy the order of magnitude of the equivalent Young’s modulus of space 
time base on a model of the Prob B angular distorsion of the space,

• Mind about the possible structure of the space (interaction between the 
deformation in the plane of the interferometer and out of this plane with 
the different Poisson’s ratio, possible anisotropy etc),

• Identify when the analogy work and where are the limits,
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Other possible displacements perpendicular at the 
plane of the test masses (linear general relativity 

at second order)

71

Circle of 
test masses

Wave direction
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